燃料电池发电系统及其操作方法

文档序号:7153452阅读:199来源:国知局
专利名称:燃料电池发电系统及其操作方法
技术领域
本发明涉及燃料电池发电系统及其操作方法。具体而言,本发明涉及在没有将残留物质如可燃气体或水分、氧等留在燃料重整装置中的条件下、以低成本和小型结构将这些残留物质可靠地去除的技术。
背景技术
燃料电池发电系统主要由燃料重整装置和燃料电池主体构成,并作为用于家庭等的分散型电源受到人们的关注。燃料重整装置将燃料气体如城市煤气转化为富氢重整气体,并将其供应至燃料电池主体。燃料电池主体将重整气体与空气进行电化学反应以产生电能。
在这种燃料电池发电系统中,如果操作瞬间停止,那么可燃气体如氢或甲烷、水分等就会保留在燃料重整装置或类似装置的不同部位。在维修和检查的过程中,可燃气体会泄漏到外部,或者水分会在催化剂上形成露水,使催化剂失效。
因此,例如,日本专利申请JP特开2001-277137提出了在停止发电时将空气输送至燃料重整装置中以用空气填充燃料重整装置,由此从燃料重整装置的内部中去除残留物质例如可燃气体或水分。但是,在空气中的氧可能破坏燃料重整装置的催化剂(尤其是,在CO转化反应中采用的Cu/Zn基LTS催化剂)。
因而,例如,日本专利申请JP特开2001-180908提出了将最低程度被氧破坏的贵金属催化剂应用于燃料重整装置。但贵金属催化剂的催化效率比Cu/Zn基催化剂低(以体积比表示,约为1/5至1/10),因此造成燃料重整装置的尺寸增大,在均匀加热整个装置方面存在困难。
鉴于这些缺点,例如,日本专利申请JP特开2000-277137提出了在燃料气体或重整气体和空气之间进行燃烧反应,从而生成主要由氮气和二氧化碳构成的惰性气体;将惰性气体暂时存储在箱体内;当停止操作时将惰性气体从箱体内取出,将惰性气体填入燃料重整装置,由此从燃料重整装置内部去除残留物质如可燃气体或水分。
并且,例如,日本专利申请JP特开2000-277138示出了新设有与发电用燃料电池主体不同的第二燃料电池主体的系统,并提出了在第二燃料电池主体中、在重整气体和空气或由发电用燃料电池主体放出的空气之间进行电化学反应,以从第二燃料电池主体中放出低氧、富氮废空气,从而将其用作惰性气体;并且,当停止操作时,将惰性气体充入燃料重整装置,由此从燃料重整装置中去除残留物质,例如可燃气体或水分。
然而,利用在上述日本专利申请JP特开2000-277137中提出的上述装置,除非对燃料气体或重整气体或空气进行相等化学计量比的燃烧反应,否则氧或可燃气体会保留在惰性气体中。这实际上难以产生惰性气体。并且,不得不保留用于存储惰性气体的箱体以备使用,造成系统的体积增大、成本增加。这明显不利于采用该系统作为家庭用分散型电源。
另一方面,利用在上述日本专利申请JP特开2000-277138中提出的上述装置,采用由于在第二燃料电池主体中进行的、在重整气体和空气、或由发电用燃料电池主体放出的空气之间的电化学反应所放出的空气作为惰性气体。因此,氧没有完全在第二燃料电池主体中被消耗,而是保留在惰性气体中。这实际上难以产生完全的惰性气体。并且,不得不保留用于产生惰性气体的燃料电池主体以备使用,由此造成系统的体积增大、成本增加。这明显不利于采用该系统作为家庭用分散型电源。
在这些情况下,本发明的目的是提供在没有将残留物质如可燃气体或水分、氧等留在燃料电池发电系统的燃料重整装置中的条件下、以低成本和小型结构将这些残留物质可靠地去除的技术。

发明内容
用于解决上述问题的、根据第一项发明的燃料电池发电系统是装配有燃料重整装置和燃料电池主体的燃料电池发电系统,该燃料电池发电系统的特征在于,原料气体供应装置,用于将在从燃料重整装置的燃烧炉中放出的炉废气、从燃料电池主体的阴极放出的废空气以及来自系统外部的空气中的至少一种原料气体供应至燃料重整装置中;和惰性气体形成装置,该装置包括可氧化和还原的氧吸附剂,所述氧吸附剂吸附原料气体中的氧以从原料气体中去除氧并产生惰性气体。
根据第二项发明的燃料电池发电系统是第一项发明的燃料电池发电系统,其特征在于,吸附剂还原装置,用于还原已吸附氧的氧吸附剂。
根据第三项发明的燃料电池发电系统是第一或第二项发明的燃料电池发电系统,其特征在于,氧吸附剂设置在原料气体供应装置中的位置、在燃料重整装置中设置的重整催化剂层和CO转化催化剂层之间的位置、在燃料重整装置内重整催化剂层的上游位置、以及在燃料重整装置中设置的重整催化剂层中的位置之中的至少一个位置中。
根据第四项发明的燃料电池发电系统是第一至第三项发明中任意一项的发电系统,其特征在于,氧吸附剂包括铬(Cr)、锰(Mn)、铁(Fe)、钴(Co)、镍(Ni)、铜(Cu)和锌(Zn)的至少一种。
根据第五项发明的燃料电池发电系统是装配有燃料重整装置和燃料电池主体的燃料电池发电系统,该燃料电池发电系统的特征在于,原料气体供应装置,用于将在从燃料重整装置的燃烧炉中放出的炉废气、从燃料电池主体的阴极放出的废空气以及来自系统外部的空气中的至少一种原料气体供应至燃料重整装置中;和惰性气体形成装置,该装置包括吸氧溶液,所述吸氧溶液吸收原料气体中的氧以从原料气体中去除氧并产生惰性气体。
根据第六项发明的燃料电池发电系统是第五项发明的发电系统,其特征在于,吸氧溶液是Na2SO3溶液。
根据第七项发明的燃料电池发电系统是装配有燃料重整装置和燃料电池主体的燃料电池发电系统,该燃料电池发电系统的特征在于惰性气体形成装置,该装置包括二氧化碳回收装置,包括水性氨基溶液(aqueous amine solution),向所述水性氨基溶液中输送从燃料电池主体的阳极中放出的阳极废气和通过在燃料重整装置中的重整所形成的重整气体中的至少一种原料气体,以吸收在原料气体中的二氧化碳;和二氧化碳供应装置,适合于加热二氧化碳回收装置的水性氨基溶液,由此从水性氨基溶液中释放出二氧化碳,并将二氧化碳供应至燃料重整装置中。
根据第八项发明的燃料电池发电系统是第七项发明的发电系统,其特征在于原料气体循环装置,用于将已由二氧化碳回收装置从中将二氧化碳回收走的原料气体供应至燃料重整装置的燃烧炉。
根据第九项发明的燃料电池发电系统是第七或第八项发明的发电系统,其特征在于,水分回收装置,用于将从二氧化碳回收的水分供应到燃料重整装置中;和水分循环装置,用于将由水分回收装置回收的水分返回至二氧化碳回收装置的水性氨基溶液。
根据第十项发明的用于操作燃料电池发电系统的方法是用于操作根据第一至第四项发明的任意一项的燃料电池发电系统的方法,其特征在于,通过惰性气体形成装置形成惰性气体,并且在停止发电操作的过程中、利用惰性气体进行清洗、去除留在燃料重整装置内的残留物质。
根据第十一项发明的用于操作燃料电池发电系统的方法是第十项发明的方法,其特征在于,利用由在燃料重整装置中的重整所形成的重整气体或由燃料电池主体的阳极放出的阳极废气对惰性气体形成装置的氧吸附剂进行还原,由此进行惰性气体形成装置的氧吸附剂的再生。
根据第十二项发明的用于操作燃料电池发电系统的方法是第十一项发明的方法,其特征在于,在进行发电操作的过程中进行再生。
根据第十三项发明的用于操作燃料电池发电系统的方法是用于操作第五或六项的燃料电池发电系统的方法,其特征在于,由惰性气体形成装置形成惰性气体,在停止发电操作期间利用惰性气体进行清洗、去除留在燃料重整装置内的残留物质。
根据第十四项发明的用于操作燃料电池发电系统的方法是用于操作第七至第九项发明中任意一项的燃料电池发电系统的方法,其特征在于,在发电操作的过程中通过惰性气体形成装置的二氧化碳回收装置回收原料气体中的二氧化碳,启动惰性气体形成装置的二氧化碳供应装置以形成来自水性氨基溶液的惰性气体,由此在停止发电操作期间利用惰性气体进行清洗、去除留在燃料重整装置内的残留物质。
根据第十五项发明的用于操作燃料电池发电系统的方法是第十四项发明的方法,其特征在于,在发电操作的过程中,将其中的二氧化碳已由二氧化碳回收装置回收的原料气体供应到燃料重整装置的加热炉中。
根据第十六项发明的用于操作燃料电池发电系统的方法是第十四或第十五项发明的方法,其特征在于,从通过二氧化碳供应装置供应到燃料重整装置的二氧化碳中回收水分,并在停止发电操作期间将水分通过二氧化碳供应装置返回至二氧化碳回收装置的水性氨基溶液。
根据第十七项发明的用于操作燃料电池发电系统的方法是第十至第十六项发明中任意一项的方法,其特征在于,在利用惰性气体净化燃料重整装置内部之前利用蒸汽去除在燃料重整装置内的残留物质。
根据第十八项发明的用于操作燃料电池发电系统的方法是第十七项发明的方法,其特征在于,利用蒸汽去除在燃料重整装置内的残留物质,然后仅使空气流入燃料重整装置的燃烧炉以冷却燃料重整装置,然后利用惰性气体净化燃料重整装置的内部。
根据第十九项发明的用于操作燃料电池发电系统的方法是第十七或第十八项发明的方法,其特征在于,用于去除燃料重整装置内的残留物质的蒸汽具有结合于其中的燃料气体,该燃料气体的含量必须足以防止燃料重整装置内的氧化。
根据第二十项发明的用于操作燃料电池发电系统的方法是第十至第十九项发明中任意一项的方法,其特征在于,仅启动燃料重整装置的燃烧炉以加热并升高燃料重整装置的温度;在燃料重整装置的温度升高过程中将蒸汽供应至燃料重整装置,该蒸汽含有所需的、足够量的燃料气体以防止燃料重整装置内的氧化;并在燃料重整装置的温度提升完成之后,以根据燃料电池主体的启动所需的量提供燃料气体,从而启动发电操作。


图1是根据本发明的燃料电池发电系统的第一实施例的结构示意图。
图2是表示用于吸氧和还原的试验装置的例子的示图。
图3是表示在吸氧试验期间在氧吸附剂出口气体中氧浓度变化的示图。
图4是根据本发明的燃料电池发电系统的第二实施例的结构示意图。
图5是根据本发明的燃料电池发电系统的第三实施例的结构示意图。
图6是根据本发明的燃料电池发电系统的第四实施例的结构示意图。
图7是根据本发明的燃料电池发电系统的第五实施例的结构示意图。
图8是根据本发明的燃料电池发电系统的第五实施例的另一例的主要部分的结构示意图。
图9是根据本发明的燃料电池发电系统的第五实施例的再一例的主要部分的结构示意图。
图10是根据本发明的燃料电池发电系统的第六实施例的结构示意图。
具体实施例方式
现在参照附图描述根据本发明的燃料电池发电系统及其操作方法的实施例,但本发明决不限于这些实施例。
具体实施方式
(第一实施例氧吸附剂的采用)参照图1描述根据本发明的燃料电池发电系统及其操作方法的第一实施例。图1是燃料电池发电系统的结构示意图。
根据本实施例的燃料电池发电系统是装配有燃料重整装置60和燃料电池主体4的燃料电池发电系统,如图1所示。这种燃料电池发电系统包括阀30a、32、管线30b、31、冷凝器34、泵35等,它们构成用于输送由燃料重整装置60的燃烧炉10放出的炉废气25(原料气体)的原料气体供应装置;和惰性气体形成装置5A,这种装置5A是含有在管线30b、31中设置的可氧化并可还原的氧吸附剂28的惰性气体形成装置以吸附在炉废气25中的氧,由此从炉废气25中去除氧并形成惰性气体40。
根据本实施例的燃料电池发电系统还包括加热器33,此加热器33是用于对具有吸附的氧的氧吸附剂28进行还原的吸附剂还原装置。
燃料重整装置60装配有燃料重整器1、CO转化催化剂反应器2和PROX催化剂反应器3。进行燃料气体6的重整,这主要是在燃料重整器1中将燃料气体6和蒸汽混合,并使混合物流过重整催化剂层7,由此引起蒸汽重整反应(),这通常以500-700℃的温度进行。例如,Ru/Al2O3可用作重整催化剂。采用城市煤气或LPG(液化石油气)、DME(二甲基乙醇)或煤油作为燃料气体6。
将燃料气体6经过主阀8和副阀9供应至燃料重整器1。由于蒸汽重整反应是吸热反应,因此燃料重整器1提供有作为热源的燃烧炉10。将水11经过阀12供应至燃料重整器1。利用燃烧炉10的热量通过蒸发器(未示出)将水12转化为蒸汽。经过阀13向燃烧炉10提供部分燃料气体6,经过泵15向燃烧炉10提供空气14。
CO转化催化剂反应器2利用CO转化催化剂层、通过CO转化(也称作CO转变)反应()、由水蒸汽和一氧化碳形成氢,并且该反应器2通过有效利用由燃料重整器1中的蒸汽重整反应所形成的CO而提高了重整效率。
在CO转化催化剂中,有以较高温度(约400℃)工作的HTS(高温转变催化剂)和以较低温度(约200℃)工作的LTS(低温转变催化剂)。有仅采用LTS的情况,和同时采用HTS和LTS的情况。例如,Fe2O3·Cr2O3可用作HTS催化剂。例如,CuO·ZnO可用作LTS催化剂。
PROX催化剂反应器3利用PROX催化剂层进行优选氧化反应(),由此将作为有毒物质的一氧化碳转化为二氧化碳(碳酸气体),并用于使重整气体16的一氧化碳浓度最小。Ru/Al2O3可用作PROX催化剂。此外,以约100-150℃进行PROX反应。
将已使燃料气体6经过燃料重整器1、CO转化催化剂反应器2和PROX催化剂反应器3而进行重整后的重整气体16经由阀17供应至燃料电池主体4的阳极18。经由泵21向燃料电池主体4的阴极19提供空气20。
将由燃料电池主体4放出的阳极废气(使用后的重整气体)22经由阳极废气通道36和阀38返回至燃料重整器1,并例如用作燃烧炉10的燃料。将已由燃料重整装置60重整过、但对于发电负载而言过剩的未用重整气体23也经由阀24、阳极废气通道36和阀38返回至燃料重整器1,并例如用作燃烧炉10的燃料。
将由燃料重整器1放出的炉废气25和由燃料电池主体4放出的阴极废空气26排放到系统废气通道27。
惰性气体形成装置5A主要由能够进行反复氧化和还原的氧吸附剂28构成。本实施例中的氧吸附剂28安装在包括燃料重整器1、CO转化催化剂反应器2和PROX催化剂反应器3的燃料重整装置60的外部。将氧吸附剂28装入合适的容器中。经由炉废气通道29、阀30a和管线30b向氧吸附剂28的容器入口提供部分或全部的炉废气25。将氧吸附剂28的容器出口经由管线31和阀32连接到燃料重整器1。
将利用电能等的加热器33附加到氧吸附剂28。将冷凝器34和泵35依次连接到在阀30a和氧吸附剂28的容器入口之间的管线30b。将能够使已用过的重整气体22或没有用过的重整气体23由阀38下游的阳极废气通道36一部分提供的阀37a和管线37b连接到冷凝器34上游的管线30b。
将用过的重整气体22和未用过的重整气体23从阀38的上游侧排放到系统废气通道27的阀39a和管线39b连接到阳极废气通道36。
氧吸附剂28可以是能够进行氧化和还原的任何一种。例如,可以采用Cr(铬)、Mn(锰)、Fe(铁)、Co(钴)、Ni(镍)、Cu(铜)和Zn(锌)中的任意一种(优选采用金属铜(Cu))。此外,可以采用在此提及的Cr、Mn、Fe、Co、Ni、Cu和Zn的两种或多种的组合(例如,Cn/Zn混合物)。
除了Cu或Cu/Zn之外,可以采用类似于LTS催化剂的物质。LTS催化剂如Cu/Zn混合物具有在重复氧化和还原时其CO转化功能的恶化,但其氧化和还原功能自身不下降。氧吸附剂28不受其形状的限制,但优选是球状(pellet)或蜂窝状的。
如果Cu用作氧吸附剂28,根据由的表示的氧化反应从炉废气25中吸附并除去氧。这种脱氧处理以100℃或更高的温度进行,优选150℃-700℃,更优选200℃-400℃。通过将氧吸附剂28加热至100℃或更高,能够容易地从炉废气25中去除氧。
如果Cu用作氧吸附剂28,根据由表示的还原反应将CuO还原成Cu。这种还原性再生处理以100℃或更高的温度进行,优选150℃-700℃,更优选200℃-400℃。通过将已吸附氧的氧吸附剂28加热至100℃或以上,可容易地再生氧吸附剂28。
为了启动根据本实施例的上述燃料电池发电系统(启动发电操作),进行下述工序(1)燃料重整器1以空转的方式运行以加热并提升温度。也就是说,打开阀13,并对泵15进行操作以仅开启燃料重整器1的燃烧炉10。关闭主阀8、副阀9、阀12、阀30a和阀32,停止冷凝器34和泵35。此时,不需要考虑阀17、阀24、阀37a、阀38和阀39a的打开或关闭以及泵21的启动。但此情况下,还同时关闭阀17、24、37a和39a,同时停止泵21。
(2)在提高燃料重整器1的温度的同时,打开阀12以使蒸汽流入燃料重整器1并促进燃料重整器1的温度升高。为了防止燃料重整器1的内部在其作用的过程中被蒸汽氧化,打开副阀9以向蒸汽中加入很少量的燃料气体6,很少量的燃料气体6足以防止燃料重整器1的内部的氧化。并且,打开阀17和阀39a以使蒸汽从阳极废气通道36排放到系统废气通道27。
(3)当完成燃料重整器的温度升高时,打开主阀8,进行稳定状态的操作。换句话说,向燃料重整器1提供适于燃料电池主体4的发电工作的所需量的燃料气体6。在此情况下,启动泵21,打开阀38,关闭阀39a。打开阀24,正如所愿,出现了重整气体的盈余。副阀9可以保持打开或关闭。
(4)如果在发电操作的最初阶段,燃料重整装置60没有达到预定温度,重整气体16的CO浓度没有变为10ppm或更低,那么重整气体16旁路通过阳极废气通道36并用于加热炉10的燃烧。
另一方面,在停止根据本实施例的燃料电池发电系统的操作的过程中,进行下述工序(1)利用蒸汽对系统内部进行几分钟的净化。为此,在燃烧炉10保持工作的同时,也就是说,在阀13保持开启、泵15进行工作的同时,关闭主阀8,停止泵21,仅使蒸汽流过燃料重整器1。
在此过程中,关闭阀38,打开阀39a以将蒸汽从燃料电池主体4的阳极18排放到系统排气通道27。通过这些装置,用蒸汽清洗掉在燃料重整器1、CO转化催化剂反应器2、PROX催化剂反应器3和燃料电池主体4中的残留物质。并且,通过打开副阀9,将足以防止燃料重整装置60的内部氧化的极少量燃料气体6加入蒸汽中。优选关闭阀24。
(2)在用蒸汽清洗系统内部的过程中,降低燃料重整器1的温度(例如,下降至500℃)。
(3)当燃料重整器1已经冷却时,终止用蒸汽的净化。也就是说,关闭副阀9和阀12。
(4)然后,用惰性气体40去除由于用蒸汽净化而留在系统内的残留物质如水分。为此,打开阀30a以将部分炉废气25供应到氧吸附剂28并将炉废气25中的氧吸附到氧吸附剂28上,由此从炉废气25中去除氧。通过这种方式,形成了缺少氧的惰性气体40。
为了用惰性气体40净化系统内部,打开阀32。惰性气体40从燃料重整器1流出并经过CO转化催化剂反应器2、PROX催化剂反应器3和燃料电池主体4,并从阳极19经由阀39a释放到系统废气通道27。通过这种方式,完全去除了留在燃料重整器1、CO转化催化剂反应器2、PROX催化剂反应器3和燃料电池主体4中的残留物质例如水分。
在形成惰性气体40的过程中,开启冷凝器34以通过冷凝器34冷却炉废气25,由此去除在炉废气25中的水分。通过这种方式,获得已经变干的惰性气体40。此外,开启泵35以增加惰性气体40的体积。使燃料电池主体4保持在湿润条件下,惰性气体40可在没有经过燃料电池主体4的条件下被旁路。
(5)当完成了用惰性气体40净化系统内部时,停止燃烧炉10,自然冷却系统。并且关闭阀30a和阀32,停止冷凝器34和泵35。
已吸附了氧的氧吸附剂28的氧吸附功能逐渐饱和。因此,为了在系统内用惰性气体40进行的下一次净化时再生的目的,利用氢气气氛还原氧吸附剂28。
根据本实施例,在进行下一次系统操作的过程中,换句话说,在进行下一次发电操作时(包括在发电操作开始前的状态,形成重整气体23的状态),打开阀37a以将用过的重整气体22或没用过的重整气体23经过阀37a和管线37b供应到氧吸附剂28,由此对氧吸附剂28进行还原。在此情况下,开启加热器33(100℃或更高)以提高氧吸附剂28的温度(在Cu的情况下,约200℃),由此提高还原效率。
在完成还原后,停止加热器33。开启冷凝器34以去除在重整气体22、23中的水分,由此提高还原效率。并且,开启泵35以增加重整气体22、23的含量。优选通过打开阀32将在用于氧吸附剂28的再生之后的重整气体22、23返回至重整催化剂层7,但这些重整气体22、23也可以经由适当的路径供应至燃烧炉10。
通常对燃烧炉10进行调节,使得炉废气25含有约2%的氧。这里,假设系统的内部容积是几升,采用几倍于此体积的(例如10升)的惰性气体40净化系统内部。现在假设从炉废气25中去除约2%的氧,总的惰性气体40以约10升/分钟的流速流动1分钟。在这种情况下,需要约0.01mol(=10升×0.02/22.4)的氧吸附。因而,如果铜用作氧吸附剂28,需要约1.3g的铜。
《试验例》利用图2所示的试验装置,在下述表1中所示的测试条件下进行氧吸附试验。在图2所示的试验装置中,采用Cu/Zn混合物作为氧吸附剂28,将20cc的Cu/Zn混合物注入容器中,进行在用于氧吸附的气体A和用于还原的气体B之间的转换,从而把二者中任何一种气体引入氧吸附剂28,并将O2测量仪(氧浓度传感器)设置在氧吸附剂28的出口以测量氧浓度。
利用图2所示的测试装置,以100℃、200℃或300℃的吸附温度进行氧吸附试验,将在氧吸附剂28的入口处在氧吸附时的气体A设定为具有模拟炉废气25(O22%,CO210%,H2O3%、余量为N2)的组成。主要以5000(l/h)的空间速度为基础,确定在氧吸附剂28中气体的停留时间。在这些条件下,证实了吸附温度的作用。
结果示于表2中。在氧吸附试验中在氧吸附剂28的出口处的气体中的氧浓度变化示于图3中。在图3中,纵坐标表示氧的浓度(%),横坐标表示时间(min),气体流速固定在600升,空间速度固定在5000(l/h),吸附温度选择为三种类型,100℃、200℃和300℃。
{表1}

{表2}

表2和图3表示以100℃的吸附温度,在氧吸附剂28的出口处的气体中的氧浓度保持为零的过程的时间是14分钟;以200℃的吸附温度,在氧吸附剂28的出口处的气体中的氧浓度保持为零的过程的时间是24分钟;和以300℃的吸附温度,在氧吸附剂28的出口处的气体中的氧浓度保持为零的过程的时间是32分钟。
由此证实,将炉废气25加入到氧吸附剂28以从炉废气25中去除氧而形成惰性气体40,并利用这种惰性气体40净化系统是没有问题的。
根据上述本实施例的燃料电池发电系统及其操作方法,可取得下述效果(1)由氧吸附剂28去除炉废气25中的氧。因此,形成了比之前更少氧(基本上没有)的惰性气体40。
(2)利用所形成的惰性气体40净化系统内部。因此,不需要常规采用的用于惰性气体40的存储箱。与原有技术相比,可节省空间、降低成本。
(3)在用蒸汽净化之后,进行用惰性气体40的净化。因此,净化花费的时间短,所用的惰性气体40的量降低,氧吸附剂28的量也同样变小。因此,可降低运行成本。
(4)减少了已吸附氧的氧吸附剂28,由此氧吸附剂28能够再生。因此,可降低运行成本,便于维护和检测。
(5)采用用过的重整气体22或未用过的重整气体23还原氧吸附剂28,由此能够再生。因此,不需要再有还原剂,可降低运行成本。
(6)在开始工作时或当用蒸汽净化时,将待要重整的燃料气体6少量加入到蒸汽中。因此,可防止蒸汽对系统内部的氧化。
根据本实施例,利用加热器33加热氧吸附剂28。然而,氧吸附剂28可例如邻近燃料重整装置60(例如,热绝缘体的内部)放置。通过这种方式,利用燃料重整装置60的热量,将氧吸附剂28保持在适当温度。
(第二实施例吸氧溶液的采用)参照图4描述根据本发明的燃料电池发电系统的第二实施例及其操作方法。图4是燃料电池发电系统的结构示意图。然而,与上述第一实施例相同的部件采用与上述第一实施例的描述中所用的标记相同的标记,因此省略了重复描述。
根据本实施例的燃料电池发电系统是装配有燃料重整装置60和燃料电池主体4的燃料电池发电系统,如图4所示。这种燃料电池发电系统包括阀30a、32、管线30b、31、冷凝器34、泵35等,它们构成用于输送由燃料重整装置60的燃烧炉10放出的炉废气25(原料气体)的原料气体供应装置;和惰性气体形成装置5B,作为含有吸氧溶液41的惰性气体形成装置,该装置设置在管线30b和31之间并吸收在炉废气25中的氧,由此从炉废气25中去除氧并形成惰性气体40。
惰性气体形成装置5B主要由吸氧溶液41构成。将吸氧溶液41注入箱(容器)42内。经由炉废气通道29、阀30a和管线30b向箱42的入口提供部分或全部的炉废气25。将箱42的出口经由管线31和阀32连接到燃料重整器1。
可采用具有吸氧作用的任何液体作为吸氧溶液41。例如,名称为亚硫酸钠的(Na2SO3)溶液。当采用亚硫酸钠时,根据由表示的氧化反应从炉废气25中吸收并去除氧。
也就是说,根据本实施例的燃料电池发电系统相当于根据上述第一实施例(图1)的其中采用由吸氧溶液41取代氧吸附剂28的惰性气体形成装置5B,并且省略了加热器33、阀37a和管线37b的燃料电池发电系统。
为了操作根据本实施例的上述燃料电池发电系统,执行与上述第一实施例所描述的相同工序。
另一方面,在停止根据本实施例的燃料电池发电系统的操作时,执行下述工序(1)在完成了与上述第一实施例相同方式利用蒸汽进行净化之后,用惰性气体40去除由于用蒸汽净化而留在系统内的残留物质如水分。为此,打开阀30a以将部分炉废气25供应到吸氧溶液41并将炉废气25中的氧吸收到吸氧溶液41中,由此从炉废气25中去除氧。通过这种方式,在容器42的气相部分中(在吸氧溶液41之上的空间中)形成脱去氧的惰性气体40。
为了用惰性气体40净化系统内部,打开阀32。惰性气体40从燃料重整器1流出并经过CO转化催化剂反应器2、PROX催化剂反应器3和燃料电池主体4,并从阳极18经由阀39a释放到系统废气通道27。通过这种方式,完全去除了留在燃料重整器1、CO转化催化剂反应器2、PROX催化剂反应器3和燃料电池主体4中的残留物质例如水分。
在形成惰性气体40的过程中,开启冷凝器34以通过冷凝器34冷却炉废气25,由此去除在炉废气25中的水分。通过这种方式,获得已经变干的惰性气体40。此外,开启泵35以增加惰性气体40的体积。
(2)当完成了用惰性气体40净化系统内部时,停止燃烧炉10,自然冷却系统,正如上述第一实施例的情况。并且,关闭阀30a和阀32,停止冷凝器34和泵35。
已吸收了氧的吸氧溶液41的氧吸收能力逐渐饱和。因此,当吸氧溶液41的吸氧能力接近其饱和度时,在下一次净化之前由新的吸氧溶液41替换该吸氧溶液41。例如,以约1年或几年的规则间隔替换吸氧溶液41。
让我们举个例子。正如利用第一实施例,假设从炉废气25中除去约2%的氧的情况,总的惰性气体40以约10升/分钟的流速流动1分钟。在这种情况下,每一次净化需要约0.01mol(=10升×0.02/22.4)的氧吸收。如果系统一天停一次,例如,中断次数是365/年,那么每年所需的氧吸收量是3.65mol(=0.01mol×365)。
因此,当亚硫酸钠(Na2SO3)用作吸氧溶液41时,每年所需的亚硫酸钠的量(126g/mol)是氧量的两倍,是7.3mol(约920g)。如果吸氧溶液是20wt.%的水溶液,则需要约4.6升的吸氧溶液41。此外,要求含吸氧溶液41的箱42具有约6-10升的体积。
因此,根据本实施例的燃料电池发电系统及其操作方法,可获得与上述第一实施例相同的效果。
(第三实施例采用氨基(amine)溶液)参照图5描述根据本发明的燃料电池发电系统的第三实施例及其操作方法。图5是燃料电池发电系统的结构示意图。然而,与上述第一实施例相同的部件采用与上述第一实施例的描述中所用的标记相同的标记,因此省略了重复描述。
根据本实施例的燃料电池发电系统是装配有燃料重整装置60和燃料电池主体4的燃料电池发电系统,如图5所示。这种燃料电池发电系统具有作为惰性气体形成结构的惰性气体形成装置5C,该惰性气体形成装置5C包括阀37a、37c、管线37b、泵35、箱42等,它们构成二氧化碳回收装置,该回收装置包括水性氨基溶液43,向所述水性氨基溶液43中输送从燃料电池主体4的阳极18中放出的阳极废气22以吸收在阳极废气22中的二氧化碳;和阀44、32、管线31和加热器33等,它们构成二氧化碳供应装置,用于加热二氧化碳回收装置的水性氨基溶液43,由此从水性氨基溶液43中释放出二氧化碳,并将二氧化碳供应至燃料重整装置60中。
根据本实施例的燃料电池发电系统还包括阀45a、管线45b等,构成原料气体循环装置,用于将已由上述二氧化碳回收装置从中将二氧化碳回收走的阳极废气22供应至燃料重整装置60的燃烧炉10。
根据本实施例的燃料电池发电系统还包括冷凝器34,它作为水分回收装置,用于从供应到燃料重整装置60中的二氧化碳中回收水分;和管线46等,作为水分循环装置,用于将由冷凝器34回收的水分返回至水性氨基溶液43。
惰性气体形成装置5C主要由水性氨基溶液43和加热器33构成。将水性氨基溶液43注入箱体42。将部分阳极废气22从阳极废气通道36上的阀38和阀39a之间经由阀37a、管线37b、阀37c和泵35提供到箱体42的入口。作为加热器33,采用利用交流电源(AC)工作的加热器。
将在箱体42内的气相部分(即,溶液之上的空间)经由管线31和阀32连接到燃料重整器1。将压力调节阀44和冷凝器34顺次连接到管线31。箱体42的气相部分还经由阀45a和管线45b连接到阀38下游的一部分阳极废气通道36。
作为氨基(amine),可采用各种氨基(amine),例如一元氨(primaryamine)。当采用一元氨时,在大气压下、以室温至50℃发生由表示的二氧化碳气体吸收反应。另一方面,在包括0.8kg/cm2的气压和约120℃的温度的条件下,发生由表示的二氧化碳气体释放反应。
也就是说,根据本实施例的燃料电池发电系统是根据上述第一实施例(图1)的其中采用由水性氨基溶液43取代氧吸附剂28的惰性气体形成装置5C,冷凝器34安装在惰性气体形成装置5C的下游,新添加了阀37C、压力调节阀44、阀45a和管线45b,省略了阀30a和管线30的燃料电池发电系统。
在操作根据本实施例的上述燃料电池发电系统的过程中,执行与上述第一实施例所描述的相同工序。
在根据本实施例的燃料电池发电系统的操作过程中,进行以下工序(1)打开阀37a和阀37c,开启泵35,以使部分或所有的阳极废气22进入水性氨基溶液43,由此通过二氧化碳气体吸收反应将二氧化碳(碳酸气体)吸入水性氨基溶液43。在此情况下,阀45a保持打开,这样,二氧化碳已被回收的阳极废气22,即没有被吸入水性氨基溶液43的气体(即,氮气、氢气、CH4、未被吸收的二氧化碳等)经由用于燃烧炉10燃烧的管线45b、通过阳极废气通道36供应至燃烧炉10。
(2)当所需量的二氧化碳被吸入到水性氨基溶液43之后,关闭阀37a、阀37c和阀45a。
(3)阳极废气22包含约50%的二氧化碳,因此优选作为用于将二氧化碳吸入水性氨基溶液43的供应源。剩余的未使用重整气体23还包含二氧化碳,这种重整气体23也可以进入水性氨基溶液43,以将二氧化碳吸入水性氨基溶液43。
另一方面,在终止根据本实施例的燃料电池发电系统的操作时,进行下述工序(1)在完成了以与上述第一实施例相同方式进行的利用蒸汽净化以后,在用惰性气体40净化之前,关闭阀13以仅让空气流入燃烧炉10,由此将燃料重整器1冷却至500℃或更低。然后,停止泵15。
(2)然后,启动加热器33以对具有吸收的二氧化碳的水性氨基溶液43进行加热。当将水性氨基溶液43加热至120℃并且箱体42内的气压达到0.8kg/cm2时,发生二氧化碳气体释放反应。结果,由水性氨基溶液43产生二氧化碳,由此形成惰性气体40。
(3)打开阀32,以使已经通过加热而析出的二氧化碳气体经过燃料重整器1的重整催化剂层7,由此进行清洗。惰性气体(二氧化碳)40流过燃料重整器1、CO转化催化剂反应器2、PROX催化剂反应器3和燃料电池主体4的阳极18,并经由阀39a排放到系统废气通道27。因此,完全去除了留在燃料重整器1、CO转化催化剂反应器2、PROX催化剂反应器3和燃料电池主体4中的残留物质,如水分。
(4)此时,通过压力调节阀4调节压力,由此以0.8kg/cm2释放二氧化碳气体。
(5)为了回收在清洗系统内部的惰性气体(二氧化碳)40中的水分,启动冷凝器34以冷却放出的二氧化碳气体并分离水分。分离的水分经由管线46返回至容器43以再循环水分。通过这种水分的回收,获得了干的二氧化碳气体。
(6)在完成了利用惰性气体(二氧化碳)40对系统内部的净化以后,切断整个系统。也就是说,停止了加热器33和冷凝器34,关闭了阀32。
描述氨的需要量。作为举例,假设每次净化需要的二氧化碳气体的释放量是1mol(22.4升)。在这种情况下,对于一次净化,如果氨的类型是MEA(分子量61),吸收1mol二氧化碳气体所需的氨量是2mol(122g)。假设水性氨基溶液是50wt%的水溶液,需要大约250ml的水性氨基溶液。如果假设包含气相部分的容器42的容积是600ml,容器42测得直径为50mm、高度为300mm、溶液表面的高度是约130mm。
因而,根据本实施例的燃料电池发电系统及其操作方法,不用说,能够获得与上述第一实施例相同的效果,另外,可获得以下效果(1)由水性氨基溶液43的二氧化碳的吸收和释放具有半永久性的耐久性,这样能够降低运行成本,便于维护和检测。
(2)将已经过水性氨基溶液43的气体返回至没有经过水性氨基溶液43的剩余阳极废气22。以此方式,气体可再循环,用以燃烧炉10的燃烧。因此,降低了运行成本。
(3)在已从水性氨基溶液43中收回的二氧化碳中的水分被回收并返回至水性氨基溶液43。因此,水性氨基溶液43不需要从外部补充水分,由此降低了运行成本,便于维修和检测。
(4)从利用蒸汽净化完成到利用惰性气体(二氧化碳)40净化开始的时间段内仅空气流过燃烧炉10,由此使得燃料重整器1的温度低于在用蒸汽净化完成时的温度。因此,可优选进行用惰性气体(二氧化碳)40的净化。
即使采用过剩的未使用重整气体23代替阳极废气22,也可获得与本实施例相同的效果。
(第四实施例在燃料重整装置中氧吸附剂的安装)参照图6描述根据本发明的燃料电池发电系统的第四实施例及其操作方法。图6是燃料电池发电系统的结构示意图。然而,与上述第一实施例相同的部件采用与上述第一实施例的描述中所用的标记相同的标记,因此省略了重复描述。
根据本实施例的燃料电池发电系统是根据第一实施例(图1)的燃料电池发电系统,其中,改变了氧吸附剂28的安装位置,省略了加热器33、阀37a和管线37b。
具体而言,在本实施例中,能够进行重复的氧化和还原的氧吸收剂28安装在包括燃料重整器1、CO转化催化剂反应器2和PROX催化剂反应器3的燃料重整装置60内的燃料重整器1和CO转化催化剂反应器2之间,换句话说,在重整催化剂层7和CO转化催化剂层之间,并装入合适的容器。将氧吸附剂28的容器入口连接到燃料重整器1,同时将氧吸收剂28的容器出口连接到CO转化催化剂反应器2。
将炉废气通道29经由阀30a、管线30b、冷凝器34、泵35、管线31和阀32连接到燃料重整器1的重整催化剂层7。
也就是说,在上述第一实施例(图1)中,氧吸附剂28安装在燃料重整装置60的外部(即,在原料供应装置中)。另一方面,在本实施例中,氧吸附剂28安装在燃料重整装置60内(在重整催化剂层7和CO转化催化剂层之间)。
因此,在净化过程中,打开阀30a和阀32,由此让部分或所有的炉废气25从炉废气通道29经由阀30a、管线30b、冷凝器34、泵35、管线31和阀32进入燃料重整器1的重整催化剂层7。通过重整催化剂层7,将炉废气25从容器的入口加入至氧吸附剂28。炉废气25通过氧吸附剂28吸附和去除在其内部的氧,由此变成惰性气体40,然后依次供应到CO转化催化剂反应器2、PROX催化剂反应器3和燃料电池主体4。
在重整操作中,关闭阀30a和阀32,将由重整催化剂层7形成的重整气体16通过容器入口加入到氧吸附剂28,并通过氧吸附剂28加入到CO转化催化剂反应器2。
在净化过程中,含氧的炉废气25流过重整催化剂层7。因此,必须采用贵金属催化剂作为重整催化剂层7,例如Ru,贵金属催化剂是抗氧化的催化剂,不会被氧破坏,与用在CO转化反应中的CO转化催化剂例如LTS催化剂不同。
此外,在不被氧破坏的重整催化剂层7和易于被氧破坏的CO转化催化剂层之间设置氧吸附剂28。因此,让脱去氧的惰性气体40经过CO转化催化剂层,从而使CO转化催化剂免受破坏。
此外,在重整操作过程中,当来自重整催化剂层7的重整气体16经过时,将氧吸附剂28还原。基于上述第一实施例所描述的试验结果,在此过程中,氧吸附剂28的氧吸附温度和氧释放温度是200-300℃。这样,在CO转化催化剂层上游的气体温度保持在约250℃,由此不再需要用于加热氧吸附剂28的电加热器(参见图1中的标记33)等。
在停止根据本实施例的燃料电池发电系统的工作时,进行下述工序(1)在完成了以与上述第一实施例相同方式进行的利用蒸汽净化之后,由于用蒸汽净化而留在系统内的残留物质如水分利用炉废气25和惰性气体40去除。为此,打开阀30a和阀32以使部分或全部炉废气25流过燃料重整器1。通过这种方式,用炉废气25净化了燃料重整器1,完全去除了留在燃料重整器1中的残留物质例如水分。
如之前所述,在采用炉废气25净化重整催化剂层7的过程中不存在问题。氧吸附剂28通过吸附氧去除了已经过重整催化剂层7的炉废气25中的氧。也就是说,通过在易于被氧破坏的CO转化催化剂层之前的氧吸附剂28,从炉废气25中去除了氧。结果,脱去氧的惰性气体40流过CO转化催化剂层2、PROX催化剂反应器3和燃料电池主体4的阳极,并经由阀39a释放到系统废气通道27。因此,能够完全去除留在CO转化催化剂反应器2、PROX催化剂反应器3和燃料电池主体4中的残留物质,例如水分。
(2)当完成了用炉废气25和由此形成的惰性气体40的净化时,停止燃烧炉10,将系统自然冷却。并且,关闭阀30a和阀32,停止冷凝器34和泵35。
在本实施例中自动地还原已吸附氧的氧吸附剂28,这是因为在系统的下一操作过程中、换句话说在下一次重整操作的过程中、把来自燃料重整器1的重整气体16加入至氧吸附剂28。
因而,根据本实施例的燃料电池发电系统及其操作方法,不用说,能够获得与上述第一实施例相同的效果,另外,可获得以下效果(1)由于不需要电加热器33等,降低了初始成本。
(2)由于利用来自燃料重整器1的重整气体16还原氧吸附剂28,因此不需要特殊的还原剂。
由氧吸附剂28的氧化-还原反应所产生的热量会严重影响燃料重整装置60内的催化剂,尤其是LTS催化剂。为了防止这种严重影响,优选在氧吸附剂28和CO转化催化剂反应器2之间设置例如采用真空绝热的热绝缘层或热交换部分。
(第五实施例在燃料重整装置中氧吸附剂的安装)参照图7描述根据本发明的燃料电池发电系统的第五实施例及其操作方法。图7是燃料电池发电系统的结构示意图。然而,与上述第一实施例相同的部件采用与上述第一实施例的描述中所用的标记相同的标记,因此省略了重复描述。
根据本实施例的燃料电池发电系统是根据第一实施例(图1)的燃料电池发电系统,其中,改变了氧吸附剂28的安装位置,省略了加热器33。
具体而言,在本实施例中,能够进行重复的氧化和还原的氧吸收剂28安装在燃料重整装置60内重整催化剂层7上游的燃料重整器1的部分中,换句话说,在用于燃料气体6和水11的燃料重整器1的入口和重整催化剂层7之间,并装入与重整催化剂层7连接的另一层中。
在停止根据本实施例的燃料电池发电系统的工作时,进行下述工序(1)在完成了以与上述第一实施例相同方式进行的利用蒸汽净化之后,利用惰性气体40去除由于用蒸汽净化而留在系统内的残留物质如水分。为此,打开阀30a和阀32,启动泵35,以使部分炉废气25流至燃料重整器1。在燃料重整器1内,通过在前级设置的氧吸附剂层28吸附并去除炉废气25中的氧,由此形成惰性气体40。
所得到的惰性气体40流过在燃料重整器1内的重整催化剂层7、CO转化催化剂反应器2、PROX催化剂反应器3和燃料电池主体4的阳极18,并经由阀39a排放到系统废气通道27。通过这种方式,能够完全去除在燃料重整器1内的重整催化剂层7、CO转化催化剂反应器2、PROX催化剂反应器3和燃料电池主体4中存留的残留物质,例如水分。
在形成惰性气体40的过程中,启动冷凝器34,让炉废气25经过冷凝器34,由此冷却炉废气25,去除在炉废气25中的水分。因此,获得了变干的惰性气体。在使燃料电池主体4保持润湿的条件下,使惰性气体40旁路,而不经过燃料电池主体4。
(2)当完成了用惰性气体40对系统内部的净化时,停止燃烧炉40,将系统自然冷却。并且,关闭阀30a和阀32,停止冷凝器34和泵35。
已吸附氧的氧吸附剂28的氧吸附功能逐渐饱和。因此,为了在利用惰性气体40进行系统内部的下一次净化时再生的目的,用氢气气氛还原氧吸附剂28。
根据本实施例,像上述第一实施例那样,在系统的下一次操作过程中,换句话说,在下一次发电操作(包括发电操作启动前的状态、形成重整气体23的状态)时,打开阀37a以将用过的重整气体22和未用过的重整气体23经由阀37a和管线37b供应到氧吸附剂28,由此对氧吸附剂28进行还原。
用于氧吸收剂28的再生之后的重整气体22、23优选通过打开阀32返回至重整催化剂层7,但这些重整气体22、23还可以通过适当路径供应至燃烧炉10。
因此,根据本实施例的燃料电池发电系统及其操作方法,不用说,能够获得与上述第一实施例相同的效果,并且氧吸附剂28可通过燃料重整装置60的燃烧炉10加热至还原温度。因此,不需要用于还原再生的电加热器(参见图1的标记33)等,进一步降低了运行成本。
在减少惰性气体40中的水分的过程中,可在燃料重整器1和CO转化催化剂反应器2之间设置例如吸水剂52,如图8所示,代替冷凝器34、泵35等。作为吸水剂52,可采用例如硅胶、沸石、分子筛。
此外,在本实施例中,在燃料重整器1内分离地设置重整催化剂层7和氧吸附剂层28。然而,如果不会被氧破坏的催化剂用于重整催化剂层7,例如,氧吸附剂28可设置在重整催化剂层7中,也就是说,可将重整催化剂和氧吸附剂的混合物层54设置在燃料重整器1内,如图9所示。这种构思可以避免在图7所示的重整器1内出现双层结构,简化了燃料重整器1的结构。
(第六实施例来自作为原料的空气中的惰性气体)参照图10描述根据本发明的燃料电池发电系统的第六实施例及其操作方法。图10是燃料电池发电系统的结构示意图。然而,与上述第一实施例相同的部件采用与上述第一实施例的描述中所用的标记相同的标记,因此省略了重复描述。
根据本实施例的燃料电池发电系统是根据第一实施例(图1)的燃料电池发电系统,其中,改变了阀30a和管线30b的连接位置。
具体而言,在本实施例中,将阀30a和管线30b在没有连接到炉废气通道29的条件下与外部连接。
也就是说,在上述第一实施例(图1)中,炉废气25用作惰性气体40的原料(原料气体)。另一方面,在本实施例中,系统外部的空气用作惰性气体40的原材料(原料气体)。
因此,在净化时,打开阀30a和阀32,启动冷凝器34和泵35,由此使外部的空气进入氧吸附剂28。通过氧吸附剂28吸附并去除空气中的氧以形成惰性气体40。然后将惰性气体40依次供应到CO转化催化剂反应器2、PROX催化剂反应器3和燃料电池主体4。
在停止根据本实施例的燃料电池发电系统的工作时,进行下述工序(1)在完成了以与上述第一实施例相同方式进行的利用蒸汽净化之后,利用惰性气体40去除由于用蒸汽净化而留在系统内的残留物质如水分。为此,停止燃烧炉10的工作,开始系统的自发冷却。并且,打开阀30a和阀32,启动冷凝器34和泵35,以使系统外部的空气进入氧吸附剂28。通过氧吸附剂28吸收并去除空气中的氧,由此形成惰性气体40。所得到的惰性气体40经由管线31和阀32流入燃料重整器1。结果,利用惰性气体40净化燃料重整器1,由此完全去除了在燃料重整器1内存留的残留物质,例如水分。
(2)当完成了用惰性气体40的净化时,关闭阀30a和阀32,停止了冷凝器34和泵35。
因而,根据本实施例的燃料电池发电系统及其操作方法,不用说,能够获得与上述第一实施例相同的效果,另外,可获得以下效果(1)由于在没有采用炉废气25的情况下得到了惰性气体40,可降低燃料气体6的消耗量,降低了运行成本。
利用本实施例,利用外部空气形成了惰性气体40。但是,例如,也可以利用由燃料电池主体4的阴极19放出的废空气26形成惰性气体40。
<其它实施例>
利用上述各实施例,最初使用蒸汽从系统内去除残留物质。然而,在没有采用蒸汽的条件下,从一开始就用惰性气体净化系统的内部也是无害的。
在上述第一和第三实施例中的阳极废气通道36和管线37b之间的连接可位于阀38的上游或下游。
在上述第一、第二和第四至第六实施例中,像上述第三实施例一样,可以进行包括关闭阀13以仅让空气经过加热炉10的处理,由此在完成用蒸汽的净化之后,将燃料重整器1冷却至500℃或更低。
在上述第二、第四和第五实施例中,像上述第六实施例一样,可通过采用在系统外部的空气作为原料气体形成惰性气体40,或者可通过从燃料电池主体4的阴极19放出的废空气26作为原料气体形成惰性气体40。
在上述第一至第六实施例中的惰性气体形成方法或装置可适当的进行多种结合以形成惰性气体,该惰性气体可用于净化。
在上述第一至第六实施例中,具有脱硫催化剂的脱硫催化剂反应器可设置在重整催化剂反应器1的上游。作为脱硫催化剂,可采用沸石等。这种脱硫催化剂反应器通常以常温工作。
根据第一项发明的燃料电池发电系统是装配有燃料重整装置和燃料电池主体的燃料电池发电系统,该燃料电池发电系统包括原料气体供应装置,用于将在从燃料重整装置的加热燃烧炉中放出的炉废气、从燃料电池主体的阴极放出的废空气以及来自系统外部的空气中的至少一种原料气体供应至燃料重整装置中;和惰性气体形成装置,该装置包括可氧化和还原的氧吸附剂,所述氧吸附剂吸附原料气体中的氧以从原料气体中去除氧并产生惰性气体。因此,可以形成具有比原有技术的氧含量更低(基本上没有)的惰性气体。因此,通过利用惰性气体的净化没有破坏用于CO转化的LTS催化剂。此外,通过在吸附氧后进行还原,氧吸附剂可以多次使用。并且,在形成惰性气体的同时可进行净化。结果,能够以低成本、小型结构、简单方式可靠地去除残留物质如可燃烧气体或水分、以及氧,而没有将它们留在燃料重整装置内。
根据第二项发明的燃料电池发电系统是第一项发明的燃料电池发电系统,进一步包括吸附剂还原装置,用于还原已吸附氧的氧吸附剂。这样,氧吸附剂可重复使用多次。
根据第三项发明的燃料电池发电系统是第一或第二项发明的燃料电池发电系统,其中,氧吸附剂设置在原料气体供应装置中的位置、在燃料重整装置中设置的重整催化剂层和CO转化催化剂层之间的位置、在燃料重整装置内重整催化剂层的上游位置、以及在燃料重整装置中设置的重整催化剂层中的位置之中的至少一个位置中。因此,如果氧吸附剂设置在原料气体供应装置中,那么可自由地设置惰性气体形成装置的安装位置。如果氧吸附剂设置在位于燃料重整装置中的重整催化剂层和CO转化催化剂层之间,那么就不需要用于加热氧吸附剂的特殊装置。如果氧吸附剂设置在燃料重整装置内的重整催化剂层的上游,即使它是会被氧坡坏的催化剂,这种氧吸附剂也可以用作重整催化剂,不需要用于加热氧吸附剂的特殊装置。如果氧吸附剂设置在位于燃料重整装置中的重整催化剂层中,就不需要用于加热氧吸附剂的特殊装置。
根据第四项发明的燃料电池发电系统是第一至第三项发明中任意一项的发电系统,其中,氧吸附剂包括铬(Cr)、锰(Mn)、铁(Fe)、钴(Co)、镍(Ni)、铜(Cu)和锌(Zn)的至少一种。因此,能够可靠地吸附氧。
根据第五项发明的燃料电池发电系统是装配有燃料重整装置和燃料电池主体的燃料电池发电系统,该燃料电池发电系统还包括原料气体供应装置,用于将从燃料重整装置的加热燃烧炉中放出的炉废气、从燃料电池主体的阴极放出的废空气以及来自系统外部的空气中的至少一种原料气体供应至燃料重整装置中;和惰性气体形成装置,该装置包括吸氧溶液,所述吸氧溶液吸收原料气体中的氧以从原料气体中去除氧并产生惰性气体。因此,可以形成具有比原有技术的氧含量更低(基本上没有)的惰性气体。因此,通过利用惰性气体的净化没有破坏用于CO转化的LTS催化剂。此外,可在形成惰性气体的同时进行净化。结果,能够以低成本、小型结构、简单方式可靠地去除残留物质如可燃烧气体或水分、以及氧,而没有将它们留在燃料重整装置内。
根据第六项发明的燃料电池发电系统是第五项发明的发电系统,其中,吸氧溶液是Na2SO3溶液。这样,能够可靠地吸收氧。
根据第七项发明的燃料电池发电系统是装配有燃料重整装置和燃料电池主体的燃料电池发电系统,该燃料电池发电系统进一步包括惰性气体形成装置,该装置包括二氧化碳回收装置,包括水性氨基溶液(aqueous amine solution),向所述水性氨基溶液中输送从燃料电池主体的阳极中放出的阳极废气和通过在燃料重整装置中的重整所形成的重整气体中的至少一种原料气体,以吸收在原料气体中的二氧化碳;和二氧化碳供应装置,适合于加热二氧化碳回收装置的水性氨基溶液,由此从水性氨基溶液中释放出二氧化碳,并将二氧化碳供应至燃料重整装置中。因此,与原有技术相比,能够形成没有氧的惰性气体(二氧化碳)。通过水性氨基溶液吸收并释放二氧化碳具有半永久性的耐久性。此外,可在形成惰性气体的同时进行净化。结果,能够以低成本、小型结构、简单方式可靠地去除残留物质如可燃烧气体或水分、以及氧,而没有将它们留在燃料重整装置内。
根据第八项发明的燃料电池发电系统是第七项发明的发电系统,还包括原料气体循环装置,用于将已由二氧化碳回收装置从中将二氧化碳回收走的原料气体供应至燃料重整装置的燃烧炉。因此,原料气体可作为燃烧炉的燃料进行再循环。
根据第九项发明的燃料电池发电系统是第七或第八项发明的发电系统,还包括水分回收装置,用于将回收的来自二氧化碳的水分供应到燃料重整装置中;和水分循环装置,用于将由水分回收装置回收的水分返回至二氧化碳回收装置的水性氨基溶液。因此,不需要用来自外部的水补充水性氨基溶液。
根据第十项发明的用于操作燃料电池发电系统的方法是用于操作根据第一至第四项发明的任意一项的燃料电池发电系统的方法,包括通过惰性气体形成装置形成惰性气体,并且在停止发电操作的过程中、利用用于惰性气体清洗的惰性气体、去除留在燃料重整装置内的残留物质。因此,可以形成具有比原有技术的氧含量更低(基本上没有)的惰性气体。因此,通过利用惰性气体的净化没有破坏用于CO转化的LTS催化剂。此外,可在形成惰性气体的同时进行净化。此外,通过在吸氧后的还原,氧吸附剂可重复使用多次。结果,能够以低成本、小型结构、简单方式可靠地去除残留物质如可燃烧气体或水分、以及氧,而没有将它们留在燃料重整装置内。
根据第十一项发明的用于操作燃料电池发电系统的方法是第十项发明的方法,包括利用由燃料重整装置中的重整所形成的重整气体或由燃料电池主体的阳极放出的阳极废气对惰性气体形成装置的氧吸附剂进行还原,由此进行惰性气体形成装置的氧吸附剂的再生。因此,不需要特殊的还原剂。
根据第十二项发明的用于操作燃料电池发电系统的方法是第十一项发明的方法,包括在进行发电操作的过程中进行再生。因此,可进行高效的再生处理。
根据第十三项发明的用于操作燃料电池发电系统的方法是用于操作第五或第六项的燃料电池发电系统的方法,其特征在于,由惰性气体形成装置形成惰性气体,在停止发电操作期间利用用于惰性气体清洗的惰性气体、去除留在燃料重整装置内的残留物质。因此,可以形成具有比原有技术的氧含量更低(基本上没有)的惰性气体。因此,通过利用惰性气体的净化没有破坏用于CO转化的LTS催化剂。此外,可在形成惰性气体的同时进行净化。结果,能够以低成本、小型结构、简单方式可靠地去除残留物质如可燃烧气体或水分、以及氧,而没有将它们留在燃料重整装置内。
根据第十四项发明的用于操作燃料电池发电系统的方法是用于操作第七至第九项发明中任意一项的燃料电池发电系统的方法,包括在发电操作的过程中通过惰性气体形成装置的二氧化碳回收装置回收原料气体中的二氧化碳,启动惰性气体形成装置的二氧化碳供应装置以形成来自水性氨基溶液的惰性气体,由此在停止发电操作期间利用惰性气体清洗、去除留在燃料重整装置内的残留物质。因此,可以形成具有与原有技术相比无氧含量的惰性气体(二氧化碳)。通过水性氨基溶液吸收和放出二氧化碳具有半永久性的耐久性。结果,能够以低成本、小型结构、简单方式可靠地去除残留物质如可燃烧气体或水分、以及氧,而没有将它们留在燃料重整装置内。
根据第十五项发明的用于操作燃料电池发电系统的方法是第十四项发明的方法,包括在发电操作的过程中,将其中的二氧化碳已由二氧化碳回收装置回收的原料气体供应到燃料重整装置的燃烧炉中。因此,该原料气体可作为用于燃烧炉的燃料再循环。
根据第十六项发明的用于操作燃料电池发电系统的方法是第十四或第十五项发明的方法,包括从通过二氧化碳供应装置供应到燃料重整装置的二氧化碳中回收水分,并在停止发电操作期间将水分返回至二氧化碳回收装置的水性氨基溶液。因此,不需要利用外部的水补充水性氨基溶液。
根据第十七项发明的用于操作燃料电池发电系统的方法是第十至第十六项发明中任意一项的方法,包括在利用惰性气体净化燃料重整装置内部之前利用蒸汽去除在燃料重整装置内的残留物质。因此,惰性气体的量可以减小,氧吸附剂、吸氧溶液或水性氨基溶液的量可以减小。
根据第十八项发明的用于操作燃料电池发电系统的方法是第十七项发明的方法,包括利用蒸汽去除在燃料重整装置内的残留物质,然后仅使空气流入燃料重整装置的燃烧炉以冷却燃料重整装置,然后利用惰性气体净化燃料重整装置的内部。因此,惰性气体的量可以减小,氧吸附剂、吸氧溶液或水性氨基溶液的量可以减小。
根据第十九项发明的用于操作燃料电池发电系统的方法是第十七或第十八项发明的方法,其中,用于去除燃料重整装置内的残留物质的蒸汽具有结合于其中的燃料气体,该燃料气体的含量必须足以防止燃料重整装置内的氧化。因此,能够以低成本、简单方式防止燃料重整装置内的氧化。
根据第二十项发明的用于操作燃料电池发电系统的方法是第十至第十九项发明中任意一项的方法,包括仅启动燃料重整装置的燃烧炉以加热并升高燃料重整装置的温度;在燃料重整装置的温度升高过程中将蒸汽供应至燃料重整装置,该蒸汽含有所需的、足够量的燃料气体以防止燃料重整装置内的氧化;并在燃料重整装置的温度提升完成之后,以根据燃料电池主体的启动所需的量提供燃料气体,从而启动发电操作。因此,迅速升高了燃料重整装置的温度,以低成本、简单方式防止了燃料重整装置内的氧化。
工业适用性本发明提供燃料电池发电系统,该系统能够以低成本、小型结构可靠地去除残留物质如可燃气体或水分、以及氧,而没有将它们留在燃料重整装置内,本发明还提供了用于操作燃料电池发电系统的方法。本发明在工业上可获得非常有益的效果。
权利要求
1.一种装配有燃料重整装置和燃料电池主体的燃料电池发电系统,包括原料气体供应装置,用于将从所述燃料重整装置的加热燃烧炉中放出的炉废气、从所述燃料电池主体的阴极放出的废空气以及来自所述系统外部的空气中的至少一种原料气体供应至所述燃料重整装置中;和惰性气体形成装置,包括可氧化和还原的氧吸附剂,所述氧吸附剂吸附所述原料气体中的氧以从原料气体中去除氧并产生惰性气体。
2.根据权利要求1的燃料电池发电系统,其特征在于用于还原已吸附氧的所述氧吸附剂的吸附剂还原装置。
3.根据权利要求1或2的燃料电池发电系统,其特征在于所述氧吸附剂设置在原料气体供应装置中的位置、在所述燃料重整装置中设置的重整催化剂层和CO转化催化剂层之间的位置、在所述燃料重整装置内所述重整催化剂层的上游位置、以及在所述燃料重整装置中设置的所述重整催化剂层中的位置之中的至少一个位置中。
4.根据权利要求1-3任意一项的燃料电池发电系统,其特征在于,所述氧吸附剂包括铬、锰、铁、钴、镍、铜和锌的至少一种。
5.一种装配有燃料重整装置和燃料电池主体的燃料电池发电系统,包括原料气体供应装置,用于将从燃料重整装置的加热燃烧炉中放出的炉废气、从燃料电池主体的阴极放出的废空气以及来自系统外部的空气中的至少一种原料气体供应至所述燃料重整装置中;和惰性气体形成装置,包括吸氧溶液,所述吸氧溶液吸收所述原料气体中的氧以从所述原料气体中去除氧并产生惰性气体。
6.根据权利要求5的燃料电池发电系统,其特征在于,所述吸氧溶液是Na2SO3溶液。
7.装配有燃料重整装置和燃料电池主体的燃料电池发电系统,包括惰性气体形成装置,该装置包括二氧化碳回收装置,包括水性氨基溶液,向所述水性氨基溶液中输送从所述燃料电池主体的阳极中放出的阳极废气和通过在所述燃料重整装置中的重整所形成的重整气体中的至少一种原料气体,以吸收在所述原料气体中的二氧化碳;和二氧化碳供应装置,适合于加热所述二氧化碳回收装置的所述水性氨基溶液,由此从所述水性氨基溶液中释放出二氧化碳,并将所述二氧化碳供应至所述燃料重整装置中。
8.根据权利要求7的燃料电池发电系统,进一步包括原料气体循环装置,用于将已由所述二氧化碳回收装置从中将二氧化碳回收走的所述原料气体供应至所述燃料重整装置的所述燃烧炉。
9.根据权利要求7或8的燃料电池发电系统,进一步包括水分回收装置,用于将从所述二氧化碳回收的水分馈送到所述燃料重整装置中;和水分循环装置,用于将由所述水分回收装置回收的所述水分返回至所述二氧化碳回收装置的所述水性氨基溶液。
10.一种用于操作根据权利要求1-4任意一项的燃料电池发电系统的方法,其特征在于通过所述惰性气体形成装置形成所述惰性气体,并且在停止发电操作的过程中、利用用于惰性气体清洗的所述惰性气体、去除留在所述燃料重整装置内的残留物质。
11.根据权利要求10的用于操作燃料电池发电系统的方法,其特征在于利用由在所述燃料重整装置中的重整所形成的重整气体或由所述燃料电池主体的阳极放出的阳极废气对所述惰性气体形成装置的所述氧吸附剂进行还原,由此进行所述惰性气体形成装置的所述氧吸附剂的再生。
12.根据权利要求11的用于操作燃料电池发电系统的方法,其特征在于在进行发电操作的过程中进行所述再生。
13.一种用于操作根据权利要求5或6的燃料电池发电系统的方法,其特征在于由所述惰性气体形成装置形成所述惰性气体,在停止发电操作期间利用用于惰性气体清洗的所述惰性气体、去除留在所述燃料重整装置内的残留物质。
14.一种用于操作权利要求7至9任意一项的燃料电池发电系统的方法,其特征在于在发电操作的过程中通过所述惰性气体形成装置的所述二氧化碳回收装置回收所述原料气体中的二氧化碳;和启动所述惰性气体形成装置的所述二氧化碳供应装置以形成来自所述水性氨基溶液的惰性气体,由此在停止发电操作期间利用惰性气体清洗,去除留在所述燃料重整装置内的残留物质。
15.根据权利要求14的用于操作燃料电池发电系统的方法,其特征在于在发电操作的过程中,将其中的二氧化碳已由所述二氧化碳回收装置回收的所述原料气体供应到所述燃料重整装置的所述燃烧炉中。
16.根据权利要求14或15的用于操作燃料电池发电系统的方法,其特征在于从通过所述二氧化碳供应装置供应到所述燃料重整装置的所述二氧化碳中回收水分,并在停止发电操作期间将所述水分返回至所述二氧化碳回收装置的所述水性氨基溶液。
17.根据权利要求10至16任意一项用于操作燃料电池发电系统的方法,其特征在于在利用所述惰性气体净化所述燃料重整装置内部之前利用所述蒸汽去除在所述燃料重整装置内的所述残留物质。
18.根据权利要求17的用于操作燃料电池发电系统的方法,其特征在于利用蒸汽去除在所述燃料重整装置内的所述残留物质;然后仅使空气流过所述燃料重整装置的所述燃烧炉以冷却所述燃料重整装置;和然后利用所述惰性气体净化所述燃料重整装置的所述内部。
19.根据权利要求17或18的用于操作燃料电池发电系统的方法,其特征在于用于去除所述燃料重整装置内的所述残留物质的所述蒸汽具有结合于其中的燃料气体,所述燃料气体的含量必须足以防止在所述燃料重整装置内的氧化。
20.根据权利要求10-19项中任意一项的用于操作燃料电池发电系统的方法,其特征在于仅启动所述燃料重整装置的所述燃烧炉以加热并升高所述燃料重整装置的温度;在所述燃料重整装置的温度升高过程中将蒸汽供应至所述燃料重整装置,所述蒸汽含有所需的、足够量的燃料气体以防止在所述燃料重整装置内的氧化;和在所述燃料重整装置的温度提升完成之后,以根据所述燃料电池主体的启动所需的量提供所述燃料气体,从而启动发电操作。
全文摘要
一种装配有燃料重整装置(60)和燃料电池主体(4)的燃料电池发电系统,包括阀(30a、32)、管线(30b、31)、冷凝器(34)、泵(35)等,用于将从燃料重整装置(60)的加热燃烧炉(10)中放出的炉废气(25)供应到燃料重整装置(60);和惰性气体形成装置(5A),包括可氧化和还原的氧吸附剂(28),所述氧吸附剂设置在管线(30b、31)中,吸收在炉废气(25)中的氧以从炉废气(25)中去除氧并形成惰性气体(40)。燃料电池发电系统能够以简单方式、低成本和小型结构可靠地去除残留物质,而没有将这些物质留在燃料重整装置(60)中。
文档编号H01M8/06GK1650459SQ0380949
公开日2005年8月3日 申请日期2003年4月25日 优先权日2002年5月2日
发明者大本节男, 石桥直彦, 藤川圭司, 吉田博久, 近藤正实, 野岛繁, 安武聪信, 渡边悟, 米村将直 申请人:三菱重工业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1