专利名称:磁控管驱动升压变压器的利记博彩app
技术领域:
本发明涉及在微波炉等中利用磁控管高频感应加热,并且特别涉及用于通过开关电源驱动磁控管的升压变压器。
背景技术:
图1为使用作为发明主题的升压变压器的磁控管驱动电源(electricsource)的结构图。在图1中,来自工业电源11的交变电流通过整流电路13整流为直流电流。该直流电流通过整流电路13输出侧的扼流圈(chokecoil)14和滤波电容器15平整,再送至逆变器16的输入侧。该直流电流通过逆变器16中的半导体开关装置的ON/OFF动作转变成期望的高频(20至40KHz)。逆变器16具有两组开关装置,和用于驱动该两组开关装置的驱动电路。例如,该开关装置组中的每一个由多个彼此并联以实现直流电流的高速切换的大功率MOSFET构成。构成该开关装置组的该些大功率MOSFET的漏极连接至升压变压器18的初级绕组181的相对端。构成这两个开关装置组中的一个的这些大功率MOSFET的源极分别连接至构成另一个开关装置组的那些大功率MOSFET的源极。构成该开关装置组的这些MOSFET的栅极连接至开关装置驱动电路。由该些大功率MOSFET构成的开关装置组由逆变器控制电路161驱动,使得流入升压变压器18初级侧的电流在高速下切换ON/OFF。
整流电路13初级侧的电流由CT 17探测。探测的电流输入至逆变器控制电路161中,并作为用于控制逆变器16的输入信号。
来自逆变器16的高频电压输出供给至升压变压器18的初级绕组181,使得在升压变压器18的次级绕组182中与升压变压器18的匝数比成比例地获取高电压。在升压变压器18的次级侧还提供了匝数少的绕组183。绕组183用于加热磁控管12的灯丝121。升压变压器18的次级绕组182设置有用于整流次级线圈182的输出的电压倍增半波整流电路19。电压倍增半波整流电路19具有高压电容器191和两个高压二极管192和193。在正周期中(例如,假定图1中次级绕组182的上端为正),电流流入高压电容器191和高压二极管192,使得图1中的高压电容器的左、右电极被分别充以正电和负电。然后,在负周期中(例如,假定图1中次级绕组182的下端为负),电流流入高压电容器193中,使得倍增后的电压被施加于阳极122与阴极121之间,该倍增后的电压为来自先前充电的高压电容器191的电压和来自次级绕组182的电压之和。
尽管在上面已经描述了使用作为本发明主题的升压变压器的磁控管驱动电源的一个例子,该驱动电源不限于此。可使用任何包括用于提升高频的变压器的驱动电源。
随着对减小微波炉尺寸的需求,必须减小升压变压器的尺寸。因此,此前使用的低频装置已经开始被上述的高频装置所替代。在低频下,有助于减小尺寸、饱和度和成本的金属磁芯(非晶的或硅钢片)用作变压器中的磁芯。在高频下,因为巨大的高频损失,此类金属磁芯还未被使用,并且已经开始被铁氧体磁芯所替代。
图7示出使用铁氧体磁芯的升压变压器的一个例子。在图7中,初级绕组71、次级绕组72和加热器线圈73在彼此相对的U形铁氧体磁芯74和75的公共轴上彼此平行地设置。在通常用于较大电功率的磁控管驱动电源的情况下,主要是使用电压谐振的零伏切换法(zero-volt switchingmethod)(此处称为ZVS法)来减轻施加在大功率半导体器件上的负载。由于升压变压器的耦合系数需要选择在约0.6至约0.85的范围内,因此设置间隙G,从而通过ZVS法获得谐振电压。
然而,在现有技术的使用两个彼此相对的U形铁氧体磁芯74和75的升压变压器的情况下,在升压变压器的初级侧流动的峰值电流需要被增加得更大,以便使磁控管的输出更高。结果,由于铁氧体磁芯在饱和磁感应强度特性上的欠缺,磁感应强度极易饱和。因此,需要增大铁氧体磁芯的尺寸,以抑制磁性饱和。这成为需要减小电源尺寸这一主要目的的障碍。
发明内容
为了解决上述问题,本发明的目的是提供一种升压变压器,其有助于减小电源的尺寸,并且其中尽管高输出也可以防止磁性饱和。
根据本发明的第一方面,提供一种用于向磁控管提供驱动电压的磁控管驱动升压变压器,其包括一棒状铁氧体磁芯;以及初级和次级绕组,它们缠绕在该棒状铁氧体磁芯上,其中该磁控管驱动升压变压器还包括正方形磁芯,其通过一间隙与棒状铁氧体磁芯相对设置,使其从初级和次级绕组的外侧朝向棒状铁氧体磁芯配装。
根据本发明的第二方面,提供一种用于向磁控管提供驱动电压的磁控管驱动升压变压器,其包括一棒状铁氧体磁芯;以及初级和次级绕组,它们缠绕在该棒状铁氧体磁芯上,其中磁控管驱动升压变压器还包括正方形形状的磁芯,其具有一大于该主、次级绕组中的每一个外部尺寸的内径,以及大于并排叠置的主、次级绕组总尺寸的其他内径,该正方形磁芯通过一间隙与该棒状铁氧体磁芯相对设置,使其从主、次级绕组的外侧朝向该棒状铁氧体磁芯配装。
在如本发明的第一或第二方面的根据本发明的升压变压器中,高频损失低的铁氧体磁芯被用作主磁芯,而通过一间隙与该铁氧体磁芯相对设置以防止磁性饱和的正方形磁芯被用于磁路。进而,该正方形磁芯易于生产、尺寸小且结实,并具有机械地保护各个绕组的外侧的作用。
根据本发明的第三方面,提供一种用于向磁控管提供驱动电压的磁控管驱动升压变压器,其包括一棒状铁氧体磁芯;以及主、次级绕组,它们缠绕在该棒状铁氧体磁芯上,并且沿该棒状铁氧体磁芯的轴向并排叠置,其中该磁控管驱动升压变压器还包括一由卷绕多次而成为方环形的长金属薄片形成的金属磁芯,该金属磁芯具有一个大于该初级和次级绕组中的每一个外部尺寸的内径,以及大于并排叠置的主、次级绕组总尺寸的其他内径,该金属磁芯通过一间隙与该棒状铁氧体磁芯相对设置,使其从该主、次级绕组的外侧朝向该棒状铁氧体磁芯配装。
在上面描述的根据本发明的升压变压器中,高频损失低的铁氧体磁芯被用作主磁芯,而尺寸小且比铁氧体磁芯饱和磁感应强度更高的金属磁芯以通过一间隙与该铁氧体磁芯相对设置以防止磁性饱和的方式使用。另外,金属磁芯按这样一种方式形成,即金属薄片沿着涡流的流动方向彼此层叠以抑制涡流的流动,从而提供了对抗高频损失的对策。另外,该金属磁芯的形状类似方环形。进而,该金属磁芯易于生产、尺寸小且结实,并且具有机械地保护各个线圈的外侧的作用。
根据本发明的第四和第五方面,提供一种磁控管驱动升压变压器,其由该第一至第三方面中的任一个所限定,其中该棒状铁氧体磁芯的形状类似长方体。
根据前述的本发明,形成于该棒状铁氧体磁芯与该金属磁芯之间的间隙具有固定的宽度,使得可以容易地设计耦合系数等。
根据本发明的第六方面,提供一种磁控管驱动升压变压器,其由本发明的第四方面限定,其中形状类似长方体的铁氧体磁芯在其表面中与该金属磁芯相对的一部分上具有凸起,该凸起与该金属磁芯相接触。
根据前述的本发明,不必在该棒状铁氧体磁芯与该金属磁芯之间提供一个单独的垫片,并因此可以省去在该升压变压器中置入该垫片的人力与时间。进而,可以容易地组装该升压变压器,使得该升压变压器的生产成本可以被降低。
根据本发明的第七方面,提供一种用于向磁控管提供驱动电压的磁控管驱动升压变压器,其包括一棒状铁氧体磁芯;以及主、次级绕组,它们缠绕在该棒状铁氧体磁芯上;其中该磁控管驱动升压变压器还包括方环形的磁芯,其具有一个大于该初级和次级绕组中的每一个外部尺寸的内径,以及大于该棒状铁氧体磁芯长度的其他内径,该棒状铁氧体磁芯与该初级和次级绕组一同插入该方环形磁芯中,该方环形磁芯通过该棒状铁氧体磁芯的轴向端部与该金属磁芯之间的间隙与该棒状铁氧体磁芯相对地设置。
在上面描述的根据本发明的升压变压器中,高频损失低的铁氧体磁芯被用作主磁芯,而通过一间隙与该铁氧体磁芯相对设置以防止磁性饱和的正方形磁芯被用于磁路。进而,该正方形磁芯易于生产、尺寸小且结实,并具有机械地保护各个线圈的外侧的作用。
根据本发明的第八方面,提供一种用于向磁控管提供驱动电压的磁控管驱动升压变压器,其包括一棒状铁氧体磁芯;以及初级和次级绕组,它们缠绕在该棒状铁氧体磁芯上;其中该磁控管驱动升压变压器还包括由多个方环形金属薄片沿其厚度方向的叠层形成的金属磁芯,该金属磁芯的形状类似方环形,其具有一个大于该初级和次级绕组的每一个外尺寸的内径,以及大于该棒状铁氧体磁芯长度的其他内径,该棒状铁氧体磁芯与该初级和次级绕组一同插入该金属磁芯中,该金属磁芯通过该棒状铁氧体磁芯的轴向端部与该金属磁芯之间的间隙与该棒状铁氧体磁芯相对设置。
在上面描述的根据本发明的升压变压器中,高频损失低的铁氧体磁芯被用作主磁芯,而尺寸小且不易饱和的金属磁芯以通过一间隙与该铁氧体磁芯相对以防止磁性饱和的方式使用。另外,该金属磁芯按照这样一种方式形成,即多个金属薄片沿涡流的流动方向彼此层叠,从而抑制涡流的流动。另外,该金属磁芯的形状类似方环形。进而,该金属磁芯易于生产且结实,并具有机械地保护各个线圈的外侧的作用。
根据本发明的第九方面,提供一种磁控管驱动升压变压器,由本发明的第七或第八方面所限定,其中该棒状铁氧体磁芯为柱形。
根据上述的本发明,当该棒状铁氧体磁芯为柱形时,该铁氧体磁芯具有简化生产的作用。另外,形成于棒状铁氧体磁芯与金属磁芯之间的间隙具有恒定宽度,使得可以容易地设计耦合系数等。
根据本发明的第十方面,提供一种磁控管驱动升压变压器,由本发明的第一至第九方面中的任一项所限定,其中磁阻通过该棒状铁氧体磁芯与该磁芯之间的该间隙来改变。
根据上述的本发明,可以容易地将升压变压器的耦合系数调节至任何最佳值。
为了解决上述问题,根据本发明的第十一方面,提供一种用于向磁控管提供驱动电压的磁控管驱动升压变压器,其包括一棒状铁氧体磁芯;以及初级和次级绕组,它们缠绕在该棒状铁氧体磁芯上,其中该磁控管驱动升压变压器还包括方环形的氧化铁粉末树脂磁芯,其包括以树脂密封的氧化铁粉末,该方环形氧化铁粉末树脂磁芯从初级和次级绕组的外侧朝向棒状铁氧体磁芯安装,并通过形成于该方环形氧化铁粉末树脂磁芯与该棒状铁氧体磁芯之间的间隙与该棒状铁氧体磁芯相对设置。
根据本发明的第十二方面,提供一种用于向磁控管提供驱动电压的磁控管驱动升压变压器,其包括一棒状铁氧体磁芯;以及初级和次级绕组,它们缠绕在该棒状铁氧体磁芯上,并且沿该棒状铁氧体磁芯的轴向并排叠置,其中该磁控管驱动升压变压器还包括一方环形氧化铁粉末树脂磁芯,其包括以树脂密封的氧化铁粉末,该氧化铁粉末树脂磁芯的形状类似矩形环,其具有一个大于该初级和次级绕组的每一个外部尺寸的内径,以及大于并排叠置的该初级和次级绕组的总尺寸的其他内径,该氧化铁粉末树脂磁芯从初级和次级绕组的外侧朝向该棒状铁氧体磁芯配装,并设置为通过形成于该氧化铁粉末树脂磁芯与该棒状铁氧体磁芯之间的间隙与该棒状铁氧体磁芯相对。
在上述的根据本发明的升压变压器中,采用了高频损失低的以树脂密封的氧化铁粉末磁芯,与铁氧体磁芯相比,其可以被制得成本低、尺寸小,并且与铁氧体磁芯相比,其饱和磁感应强度更高。另外,在该铁氧体磁芯与该氧化铁粉末树脂磁芯之间提供了间隙以防止了磁饱和。进而,该氧化铁粉末树脂磁芯易于生产、尺寸小且结实,并且具有保护各个线圈的外侧的作用。
根据本发明的第十三方面,提供一种磁控管驱动升压变压器,其在本发明的第一或第二方面中限定,其中该棒状铁氧体磁芯的形状类似长方体。
根据上述的本发明,由于形成于该长方体铁氧体磁芯与该方环形氧化铁粉末树脂磁芯之间的间隙具有恒定宽度,因此易于设计耦合系数等。
根据本发明的第十四方面,提供一种用于向磁控管提供驱动电压的磁控管驱动升压变压器,其包括一棒状铁氧体磁芯;以及初级和次级绕组,它们缠绕在该棒状铁氧体磁芯上,并且沿该棒状铁氧体磁芯的轴向并排叠置,其中该磁控管驱动升压变压器还包括方环形的氧化铁粉末树脂磁芯,其包括以树脂密封的氧化铁粉末,该氧化铁粉末树脂磁芯的形状类似矩形环,其具有一个大于该初级和次级绕组的每一个外部尺寸的内径,以及大于棒状铁氧体磁芯长度的其他内径,该方环形氧化铁粉末树脂磁芯配装在该棒状铁氧体磁芯上,并且设置成通过形成于该棒状铁氧体磁芯的轴向端部与该方环形氧化铁粉末树脂磁芯之间的间隙与该棒状铁氧体磁芯相对。
在上述的根据本发明的升压变压器中,采用了高频损失低的以树脂密封的氧化铁粉末磁芯,与铁氧体磁芯相比,其可以被制得成本低、尺寸小,并且与铁氧体磁芯相比,其饱和磁感应强度更高。另外,在该铁氧体磁芯的轴向端部与该氧化铁粉末树脂磁芯之间提供了间隙以防止了磁饱和。进而,该氧化铁粉末树脂磁芯易于生产、尺寸小且结实,并且具有保护各个线圈的外侧的作用。
根据本发明的第十五方面,提供一种磁控管驱动升压变压器,其在本发明的第十四方面中限定,其中该棒状铁氧体磁芯为柱形。
根据上述的本发明,当该棒状铁氧体磁芯为柱形时,其具有简化生产的作用。另外,由于形成于该棒状铁氧体磁芯与该金属磁芯之间的间隙具有恒定宽度,因此易于设计耦合系数等。
根据本发明的第十六方面,提供一种磁控管驱动升压变压器,其在第十一至第十五方面的任一个内限定,其中棒状铁氧体磁芯由包含以树脂密封的氧化铁粉末的棒状氧化铁粉末树脂磁芯所替代。
在上述的根据本发明的升压变压器中,当包含以树脂密封的氧化铁粉末的棒状氧化铁粉末树脂磁芯被作为磁芯时,该磁芯可由与方环形氧化铁粉末树脂磁芯相同的材料形成。进而,诸如购买原料、生产和管理的各项工作可更加容易。
根据本发明的第十七方面,提供一种磁控管驱动升压变压器,其在第十三方面中限定,其中在长方体磁芯表面中与该方环形氧化铁粉末树脂磁芯相对的一部分上形成一凸起,使得该凸起与该方环形氧化铁粉末树脂磁芯相接触。
根据本发明的第十八方面,提供一种磁控管驱动升压变压器,其在第十七方面中限定,其中该棒状铁氧体磁芯由包含以树脂密封的氧化铁粉末的棒状氧化铁粉末树脂磁芯所替代。
根据上述的本发明,不必在各磁芯之间单独制备任何垫片,并且可以省略在升压变压器中置入该垫片的人力和时间。进而,可以容易地组装升压变压器,使得该升压变压器的生产成本可以被降低。
根据本发明的第十九方面,提供一种用于向磁控管提供驱动电压的磁控管驱动升压变压器,其包括一初级绕组;以及一次级绕组,其中该磁控管驱动升压变压器还包括两个U形氧化铁粉末树脂磁芯,每一个包含由树脂密封的氧化铁粉末,并且这两个U形氧化铁粉末树脂磁芯通过在这两个U形氧化铁粉末树脂磁芯的U形的前端之间形成的间隙彼此相对设置,且两个U形氧化铁粉末树脂磁芯的相应的一字腿部分彼此对接,由此形成磁芯,而初级和次级绕组围绕该磁芯设置。
根据本发明的第二十方面,提供一种用于向磁控管提供驱动电压的磁控管驱动升压变压器,其包括一初级绕组;以及一次级绕组,其中该磁控管驱动升压变压器还包括两个U形氧化铁粉末树脂磁芯,每一个包含由树脂密封的氧化铁粉末,且这两个U形氧化铁粉末树脂磁芯通过形成于这两个U形氧化铁粉末树脂磁芯的U形的前端之间的间隙彼此相对设置,且这两个U形氧化铁粉末树脂磁芯的相应一字腿部分彼此对接,由此形成磁芯,而初级和次级绕组围绕该磁芯缠绕,使它们沿磁芯的轴向并排叠置。
在上述的根据本发明的升压变压器中,采用以树脂密封的氧化铁粉末的磁芯,其高频损失低、且与铁氧体磁芯相比,其可以被生产得成本更低、尺寸更小,并且与铁氧体磁芯相比,其饱和磁感应强度更高。进而,可以获得易于生产、尺寸小且结实的升压变压器。
图1为使用作为发明主题的升压变压器的磁控管驱动电源的结构图;图2A为示出根据本发明第一实施例的升压变压器的前视图;图2B为示出该升压变压器的平面图;图2C为示出该升压变压器的侧视图;而图2D为示出该升压变压器的透视图;图3A和3B为用于说明在本发明中采用的金属磁芯形成方法的视图;图4A为示出根据本发明的第二实施例的升压变压器的前视图;图4B为示出该升压变压器的平面图;图4C为示出该升压变压器的侧视图;而图4D为示出该升压变压器的透视图;图5A为示出根据本发明的第三实施例的升压变压器的前视图;图5B为示出该升压变压器的平面图;图5C为示出该升压变压器的侧视图;而图5D为示出该升压变压器的透视图;图6A为示出根据本发明第四实施例的升压变压器的前视图;图6B为示出该升压变压器的平面图;图6C为示出该升压变压器的侧视图;而图6D为示出该升压变压器的透视图;图7A为示出根据本发明第五实施例的升压变压器的前视图;图7B为示出该升压变压器的平面图;图7C为示出该升压变压器的侧视图;而图7D为示出该升压变压器的透视图;图8A为示出根据本发明第六实施例的第一示例的升压变压器的透视图;图8B为示出根据第六实施例的第二示例的升压变压器的透视图;图9A为示出根据本发明第七实施例的升压变压器的前视图;图9B为示出该升压变压器的平面图;图9C为示出该升压变压器的侧视图;而图9D为示出该升压变压器的透视图;图10A为示出根据本发明第八实施例的升压变压器的前视图;图10B为示出该升压变压器的平面图;图10C为示出该升压变压器的侧视图;而图10D为示出该升压变压器的透视图;以及图11为示出使用铁氧体磁芯的现有技术升压变压器的视图。
在附图中,附图标记11表示工业电源;12表示磁控管;122表示阳极;121表示阴极;13表示整流电路;14表示扼流圈;15表示滤波电容器;16表示逆变器;161表示逆变器控制电路;17表示CT;18表示升压变压器;181表示初级绕组;182表示次级绕组;183表示灯丝加热器线圈;19表示电压倍增半波整流电路;191表示高压电容器;192、193表示高压二极管;20表示根据第一实施例的升压变压器;21表示初级绕组;22表示次级绕组;23表示加热器线圈;26表示长方体铁氧体磁芯;26a表示凸起部分;27表示金属磁芯;27a表示长金属薄片;56表示柱形铁氧体磁芯;57表示金属磁芯;57a表示方环形金属薄片;220表示根据第一实施例的升压变压器;221表示初级绕组;222表示次级绕组;223表示加热器线圈;226表示长方体铁氧体磁芯;227表示方环形氧化铁粉末树脂磁芯;230表示升压变压器;236表示柱形铁氧体磁芯;237表示氧化铁粉末树脂磁芯;240、240′表示升压变压器;246表示长方体氧化铁粉末树脂磁芯;246′表示柱形氧化铁粉末树脂磁芯;247、247′表示包含以树脂密封的氧化铁粉末的方环形氧化铁粉末树脂磁芯;250表示升压变压器;256表示长方体铁氧体磁芯;256a表示凸起部分;260表示升压变压器;264、265表示U形氧化铁粉末树脂磁芯;而G表示间隙。
具体实施例方式
下面,将参照图2A至10D描述根据本发明的升压变压器。
第一实施例图2A为示出根据本发明的第一实施例的升压变压器的前视图。图2B为示出该升压变压器的平面图。图2C为示出该升压变压器的侧视图。而图2D为示出该升压变压器的透视图。在图2A至2D中,根据本发明第一实施例的升压变压器20具有初级绕组21、次级绕组22和加热器线圈23。初级绕组21的绕组截面积大于次级绕组22的绕组截面积。初级绕组21的匝数小于次级绕组22的匝数。由于加热器线圈23的匝数与次级绕组22的匝数相比极其小,因此加热器线圈23未在图2A至2D中示出。由于加热器线圈23可形成为与升压变压器20独立的一部分,因此加热器线圈23不必作为升压变压器20的主要部分。附图标记26表示棒状铁氧体磁芯。在此实施例中,铁氧体磁芯26形状类似长方体。初级绕组21、次级绕组22和加热器线圈23缠绕在长方体铁氧体磁芯26上,并且沿该磁芯的轴向并排布置。
附图标记27表示本发明中采用的金属磁芯。如图3A所示,金属磁芯27按这样一种方式形成,即非晶的、硅钢等的长金属薄片27a卷绕多次(约10次至约40次)而成为方环形,同时薄片27a的各层彼此电绝缘。另外,金属磁芯27的形状为方环形,该方环形的一个内部尺寸(图2C中的金属磁芯27的左右方向)大于初级绕组21、次级绕组22和加热器线圈23的每一个外部尺寸,而其另一个内部尺寸(图2C中的金属磁芯27的上下方向)大于并排堆叠的三个线圈(初级绕组21、次级绕组22和加热器线圈23)的总尺寸。
进而,如图2D所示,将金属磁芯27从主、次和加热器线圈21、22和23的外侧朝向铁氧体磁芯26配装,并且通过由设置于金属磁芯27与棒状铁氧体磁芯26之间垫片(未示出)所限定的间隙G与铁氧体磁芯26相对地布置。铁氧体磁芯26与金属磁芯27之间的间隙选择为约0.3mm至约0.8mm。
在此结构中,高频损失低的铁氧体磁芯被用作主磁芯,而尺寸小且不易饱和的金属磁芯被设置在初级绕组、次级绕组和加热器线圈21、22和23的外侧,使其通过间隙与铁氧体磁芯相对,以抑制磁性饱和。进而,同仅具有铁氧体磁芯的现有技术的升压变压器(图11)相比,这种升压变压器20极有助于减小尺寸。也就是说,在现有技术的升压变压器中,设置在初级绕组、次级绕组和加热器线圈21、22和23外侧的铁氧体磁芯部分74a和75a形成为具有与主铁氧体磁芯部分基本相同的截面积,使得铁氧体磁芯部分74a和75a从初级绕组、次级绕组和加热器线圈21、22和23明显地凸出。相反,在根据本发明第一实施例的升压变压器20中,金属磁芯的截面积可选择为明显小于铁氧体磁芯部分的截面积,使得金属磁芯不会明显地从初级绕组、次级绕组和加热器线圈21、22和23中凸出(见图2C)。
另外,作为金属磁芯在高频下的缺陷的高频损失可如下地减小。如图3A所示,金属磁芯由卷绕10至40次的长金属薄片27a形成,使得涡流的流动方向被调整至穿过如此多次卷绕的金属薄片各层的方向。进而,涡流仅可以在一个金属薄片的截面内流动。另外,一个金属薄片的截面的电阻很大。由此,涡流几乎无法在金属磁芯内流动。于是,当上述结构的金属磁芯如上地设置时,即使在高频下也可以仅减小高频损失。进而,可以获得兼具铁氧体磁芯的优点和金属磁芯的优点的升压变压器。
另外,由于升压变压器的铁氧体磁芯形状类似长方体,铁氧体磁芯26和金属磁芯27的各个相对部分彼此平行。进而,形成于铁氧体磁芯26与金属磁芯27之间的间隙G具有恒定宽度,使得耦合系数等可以容易地设计。
尽管可以构想到方环形金属磁芯由U形金属磁芯替代,但是与U形金属磁芯相比,方环形金属磁芯更易于生产,并且由于方环形金属磁芯部分地包封各个线圈而与外界隔开,因此在机械地保护各个线圈的方面还具有二级效果。
尽管本实施例已经示出了初级绕组21、次级绕组22和加热器线圈23缠绕在棒状铁氧体磁芯上并且沿磁芯的轴向并排堆置的情况,本发明并不限于此,而是可以应用于三个线圈同心设置在该棒状铁氧体磁芯上从而第二线圈缠绕在第一线圈上而第三线圈缠绕在第二线圈上的情况。
第二实施例图4A为示出根据本发明的第二实施例的升压变压器的前视图。图4B为示出该升压变压器的平面图。图4C为示出该升压变压器的侧视图。而图4D为示出该升压变压器的透视图。在图4A至4D中,与图2A至2D类似,根据本发明的第二实施例的升压变压器40具有初级绕组21、次级绕组22和加热器线圈23。也就是说,初级绕组21的绕组截面积大于次级绕组22的绕组截面积。初级绕组21的匝数小于次级绕组22的匝数。由于加热器线圈23的匝数与次级绕组22的匝数相比过小,因此加热器线圈23未在图4A至4D中示出。附图标记26表示形状类似长方体的棒状铁氧体磁芯。初级绕组21、次级绕组22和加热器线圈23缠绕在长方体铁氧体磁芯26上,并且沿该磁芯的轴向并排布置。附图标记27表示与图2A至2D中相同的金属磁芯。也就是说,如图3A所示,金属磁芯27按这样一种方式形成,即长金属薄片27a卷绕约10次至约40次而成为方环形。此外,金属磁芯27的形状为方环形,该方环形的一个内部尺寸(图4C中的金属磁芯27的左右方向)大于初级绕组21、次级绕组22和加热器线圈23的每一外部尺寸,而其另一内部尺寸(图4C中的金属磁芯27的上下方向)大于该并排堆置的三个线圈(即初级绕组21、次级绕组22和加热器线圈23)的总尺寸。
在根据本发明第二实施例的升压变压器中,在长方体铁氧体磁芯26表面中与金属磁芯27相对的一部分上形成凸起26a。凸起26a的高度基本与图2A至2D所示的间隙G相同。由于长方体铁氧体磁芯26与金属磁芯27之间的间隙G可以通过凸起26a来确保,因此不再需要使用图2A至2D中使用的垫片。进而,不必单独地提供垫片,而且可以省去在升压变压器中置入垫片的步骤。进而,可以容易地组装该升压变压器。
凸起26a形成为使得在磁通路通过的方向上的截面积选择得较小。也就是说,利用微小的磁通量就可造成磁感应强度饱和,并且防止了磁短路的形成。
尽管图4A至4D示出了在长方体铁氧体磁芯26的侧面的中央部分内形成凸起26a的情况,但本发明还可应用于在长方体铁氧体磁芯26的侧面上、在相对端部分别形成一对凸起26a使得该对凸起26a在两个点处与金属磁芯27接触的情况。在此情况下,组装的稳定性更佳。
第三实施例图5A为示出根据本发明的第三实施例的升压变压器的前视图。图5B为示出该升压变压器的平面图。图5C为示出该升压变压器的侧视图。而图5D为示出该升压变压器的透视图。在图5A至5D中,与图2A至2D类似,根据本发明的第三实施例的升压变压器50具有初级绕组21、次级绕组22和加热器线圈23。也就是说,初级绕组21的绕组截面积大于次级绕组22的绕组截面积。初级绕组21的匝数小于次级绕组22的匝数。由于加热器线圈23的匝数与次级绕组22的匝数相比过小,因此加热器线圈23未在图5A至5D中示出。
在根据本发明的第三实施例的升压变压器中使用柱状铁氧体磁芯56。初级绕组21、次级绕组22和加热器线圈23缠绕在柱状铁氧体磁芯56上,并且沿该磁芯的轴向并排堆置。
另外,如图3B所示,升压变压器的金属磁芯57按这样一种方式形成,即多个方环形金属薄片57a(10至40个金属薄片)通过电绝缘粘合剂沿其厚度方向彼此层叠。另外,方环形金属磁芯57的一个内部尺寸(图5C中的金属磁芯57的左右方向)大于初级绕组21、次级绕组22和加热器线圈23的每一个外部尺寸,而其另一内部尺寸(图5C中的金属磁芯57的上下方向)大于柱状铁氧体磁芯56的长度。如图5D所示,金属磁芯57配装到柱状铁氧体磁芯56中,并通过间隙G相对柱状铁氧体磁芯56的轴向端部设置。
在此结构中,高频损失低的铁氧体磁芯被用作主磁芯,而尺寸小且不易饱和的金属磁芯被设置在初级绕组、次级绕组和加热器线圈21、22和23和铁氧体磁芯56的外侧,使其通过间隙与铁氧体磁芯相对以抑制磁性饱和。由此,同仅具有铁氧体磁芯74和75的现有技术的升压变压器(图11)相比,这种升压变压器50极有助于减小尺寸。也就是说,在根据本发明的第三实施例的升压变压器50中,金属磁芯的截面积可选择为明显小于铁氧体磁芯部分的截面积,使得金属磁芯不会明显地从初级绕组、次级绕组和加热器线圈21、22和23中凸出(见图5C)。
另外,作为金属磁芯57在高频上的缺陷的高频损失可如下地减小。如图3B所示,金属磁芯57由10至40个长金属薄片27a层叠形成。涡流的流动方向被调整至穿过由叠置形成的多个金属薄片层的方向。进而,涡流仅可以在一个金属薄片的截面内流动。另外,一个金属薄片的截面的电阻很大。进而,涡流几乎无法在金属磁芯内流动。
于是,当上述结构的金属磁芯57如上地设置时,即使在高频下也可以仅减小高频损失。进而,可以获得兼具铁氧体磁芯的优点和金属磁芯的优点的升压变压器。
另外,由于升压变压器的铁氧体磁芯为柱状,柱状铁氧体磁芯可以比长方体铁氧体磁芯更容易制得,并且铁氧体磁芯56和金属磁芯57的各个相对部分彼此平行。由此,在铁氧体磁芯56与金属磁芯57之间形成间隙G,并且通过磁通量的间隙G具有固定的宽度,使得耦合系数等可以容易地加以设计。
另外,由于方环形金属磁芯57部分地包封铁氧体磁芯56以及各个线圈21、22和23而使之与外界隔开,因此方环形金属磁芯57具有机械地保护铁氧体磁芯56以及各个线圈21、22和23的作用。
尽管图3A或3B中所示的金属磁芯27或57在高频损失等发面表现得很好,但不是一定要采用金属磁芯,而任何高频损失低的材料都可被采用。例如,在图2A至2D、图4A至4D和图5A至5D中当然可以采用由铁氧体等形成的方环形磁芯。
第四实施例图6A为示出根据本发明的第四实施例的升压变压器的前视图。图6B为示出该升压变压器的平面图。图6C为示出该升压变压器的侧视图。而图6D为示出该升压变压器的透视图。在图6A至6D中,根据本发明的第四实施例的升压变压器220具有初级绕组221、次级绕组222和加热器线圈223。初级绕组221的绕组截面积大于次级绕组222的绕组截面积。初级绕组221的匝数小于次级绕组222的匝数。由于加热器线圈223的匝数与次级绕组22的匝数相比过小,因此加热器线圈223未在图6A至6D中示出。由于加热器线圈223可形成为与升压变压器220相独立的一部分,因此加热器线圈223不必作为升压变压器220的主要部分。附图记226表示棒状铁氧体磁芯。在此实施例中,铁氧体磁芯226形状类似长方体。初级绕组221、次级绕组222和加热器线圈223缠绕在长方体铁氧体磁芯226上,并且沿该磁芯的轴向并排布置。
附图标记227表示本发明中采用的并且包括密封在树脂中的氧化铁粉末的方环形氧化铁粉末树脂磁芯。氧化铁粉末树脂磁芯227的形状类似矩形环,该矩形环的一个内部尺寸(图6C中的氧化铁粉末树脂磁芯227的左右方向)大于初级绕组221、次级绕组222和加热器线圈223的每一个外部尺寸,而其另一内部尺寸(图6C中的氧化铁粉末树脂磁芯227的上下方向)大于该并排堆置的三个线圈(初级绕组221、次级绕组222和加热器线圈223)的总尺寸。
作为此处使用的氧化铁粉末,优选使用粒度不大于约0.5mm的并且每个都被高度电绝缘膜(氧化膜)涂覆的颗粒粉末。优选使用的数值的示例包括耐热达到约100℃的温度的PPS(聚亚苯基硫醚)、PET(聚对苯二甲酸乙二醇酯)和PP(聚丙稀)。当占重量约70%或更多的氧化铁与这些树脂中的一种混合时,可以获得与铁氧体相比更优的饱和磁感应强度特性和导磁率。
如上所述,在采用粒度不大于0.5mm的颗粒粉末时可获得在磁导率和饱和磁感应强度方面比铁氧体更高的磁路。进而,即使是在设备应用于大功率情况下时,也可以实现尺寸的减小。另外,由于采用了每个都涂覆以氧化膜的氧化铁颗粒粉末,很难形成其中流动着由高频产生的涡流的闭合回路。由此,高频损失可减小至与铁氧体相同的情况。在此方式下,氧化铁粉末树脂磁芯可同时兼具铁氧体磁芯的优点和纯铁的高饱和磁感应强度的优点。
由此,如图6D所示,将氧化铁粉末树脂磁芯227从初级绕组、次级绕组和加热器线圈221、222和223的外侧朝向铁氧体磁芯226配装,并且通过设置于氧化铁粉末树脂磁芯227与棒状铁氧体磁芯226之间的垫圈限定的间隙G与铁氧体磁芯226相对地布置。铁氧体磁芯226与氧化铁粉末树脂磁芯227之间的间隙选择为约0.3mm至约0.8mm。
在此结构中,高频损失低的铁氧体磁芯226被用作主磁芯,而尺寸小且不易饱和的氧化铁粉末树脂磁芯227被设置在初级绕组、次级绕组和加热器线圈221、222和223的外侧,从而通过间隙G与铁氧体磁芯226相对以抑制磁性饱和。由此与只有铁氧体磁芯的现有技术升压变压器(图11)相比,这种升压变压器220极大地有助于减小尺寸。也就是说,在根据本发明的第四实施例的升压变压器220中,氧化铁粉末树脂磁芯的截面积可选择为明显小于铁氧体磁芯部分的截面积,使得氧化铁粉末树脂磁芯不会明显地从初级绕组、次级绕组和加热器线圈221、222和223凸出(见图6C)。另外,氧化铁粉末树脂磁芯227的高频损失很低。
此外,由于升压变压器的铁氧体磁芯226形状类似于长方体,铁氧体磁芯226和氧化铁粉末树脂磁芯227的相应的相对部分彼此平行。由此,在铁氧体磁芯226和氧化铁粉末树脂磁芯227之间的间隙G具有恒定宽度,使得耦合系数等可以容易地加以设计。
另外,由于氧化铁粉末树脂磁芯227的形状类似矩形环,因此易于生产氧化铁粉末树脂磁芯227。方环形氧化铁粉末树脂磁芯227还具有机械地保护各个线圈的作用,这是因为方环形氧化铁粉末树脂磁芯227部分地包封初级绕组、次级绕组和加热器线圈221、222和223而与外部隔开。
尽管本实施例示出了初级绕组221、次级绕组222和加热器线圈223缠绕在棒状铁氧体磁芯上并且沿磁芯的轴向并排堆置的情况,本发明并不限于此,而是可以应用于三个线圈同心设置在该棒状铁氧体磁芯上使得第二线圈缠绕在第一线圈上而第三线圈缠绕在第二线圈上的情况。
第五实施例图7A为示出根据本发明的第五实施例的升压变压器的前视图。图7B为示出该升压变压器的平面图。图7C为示出该升压变压器的侧视图。而图7D为示出该升压变压器的透视图。在图7A至7D中,与图6A至6D相似,根据本发明的第五实施例的升压变压器230具有初级绕组221、次级绕组222和加热器线圈223。也就是说,初级绕组221的绕组截面积大于次级绕组222的绕组截面积。初级绕组221的匝数小于次级绕组222的匝数。由于加热器线圈223的匝数与次级绕组22的匝数相比过小,因此加热器线圈223未在图7A至7D中示出。
在根据本发明的第五实施例的升压变压器中使用柱状铁氧体磁芯236。初级绕组221、次级绕组222和加热器线圈223缠绕在柱状铁氧体磁芯236上,并且沿该磁芯的轴向并排堆置。
还使用了形状类似矩形环的氧化铁粉末树脂磁芯237。也就是说,氧化铁粉末树脂磁芯237的形状类似矩形环,该矩形环的一个内部尺寸(图7C中的氧化铁粉末树脂磁芯237的左右方向)大于初级绕组221、次级绕组222和加热器线圈223的每一个外部尺寸,而其另一个内部尺寸(图7C中的氧化铁粉末树脂磁芯237的上下方向)大于柱状铁氧体磁芯236的长度。如图7D所示,柱状铁氧体磁芯236插入氧化铁粉末树脂磁芯237的内表面中,使得氧化铁粉末树脂磁芯237设置为通过间隙G与圆柱状铁氧体磁芯236的轴向端部相对。
在此结构中,高频损失低的铁氧体磁芯236被用作主磁芯,而尺寸小且不易饱和的氧化铁粉末树脂磁芯237被设置在初级绕组、次级绕组和加热器线圈221、222和223和铁氧体磁芯236的外侧,使其通过间隙G与铁氧体磁芯236相对,以抑制磁性饱和。进而,同仅具有铁氧体磁芯74和75的现有技术的升压变压器(图11)相比,这种升压变压器230极有助于减小尺寸。另外,氧化铁粉末树脂磁芯227的高频损失很低。因此,当具有上述结构的氧化铁粉末树脂磁芯237被如上地设置时,即使是在高频下也可以仅减小高频损失。由此,可以获得兼具铁氧体磁芯236的优点和氧化铁粉末树脂磁芯237的优点的升压变压器。
另外,由于升压变压器的铁氧体磁芯236为柱状,柱状铁氧体磁芯226可以容易地制得。另外,由于铁氧体磁芯236和氧化铁粉末树脂磁芯237的各个相对部分彼此平行,因此形成于铁氧体磁芯236与氧化铁粉末树脂磁芯237之间的间隙G具有恒定的宽度。进而,耦合系数等可以容易地设计。
另外,方环形氧化铁粉末树脂磁芯237还具有机械地保护铁氧体磁芯236和各个线圈221、222和223的作用,这是因为方环形氧化铁粉末树脂磁芯237部分地包封铁氧体磁芯236和各个线圈221、222和223而与外部隔开。
第六实施例图8A和图8B示出了根据本发明第六实施例的升压变压器的示例。图8A为示出第六实施例的第一示例的透视图。图8B为示出第六实施例的第二示例的透视图。
在图8A中,根据第六实施例的第一示例的升压变压器240具有初级绕组221、次级绕组222和加热器线圈223。附图标记247表示包含用树脂密的氧化铁粉末的方环形氧化铁粉末树脂磁芯。线圈221、222和223以及方环形氧化铁粉末树脂磁芯247与图6A至6D中的对应部件等价。也就是说,初级绕组221的绕组截面积大于次级绕组222的绕组截面积。初级绕组221的匝数小于次级绕组222的匝数。加热器线圈223的匝数比次级绕组22的匝数小得多。氧化铁粉末树脂磁芯247的形状类似矩形环,该矩形环的一个内部尺寸大于初级绕组、次级绕组和加热器线圈221、222和223的每一个外部尺寸,而其另一个内部尺寸大于该并排堆置的三个线圈(即主、次和加热器线圈221、222和223)的总尺寸。
附图标记246表示在第六实施例的第一示例中采用的棒状氧化铁粉末树脂磁芯。该棒状氧化铁粉末树脂磁芯246形状类似长方体。初级绕组221、次级绕组222和加热器线圈223缠绕在该长方体氧化铁粉末树脂磁芯246上,并且沿该磁芯的轴向并排堆置。方环形氧化铁粉末树脂磁芯247从初级绕组、次级绕组和加热器线圈221、222和223的外侧朝向氧化铁粉末树脂磁芯246配装,并且通过由设置于方环形氧化铁粉末树脂磁芯247与棒状氧化铁粉末树脂磁芯246之间垫片所限定的间隙G与棒状氧化铁粉末树脂磁芯246相对地设置。氧化铁粉末树脂磁芯246与氧化铁粉末树脂磁芯247之间的间隙选择为约0.3mm至约0.8mm的范围内。
在此结构中,高频损失低、成本和尺寸小且比铁氧体磁芯更难饱和的氧化铁粉末树脂磁芯构成了主磁芯246和辅助磁芯(方环形磁芯)247。进而,同仅具有铁氧体磁芯的现有技术的升压变压器(图11)相比,升压变压器240极有助于减小尺寸。
另外,由于氧化铁粉末树脂磁芯246形状类似长方体,氧化铁粉末树脂磁芯246与氧化铁粉末树脂磁芯247的各个相对部分彼此平行。进而,形成于氧化铁粉末树脂磁芯246与氧化铁粉末树脂磁芯247之间的间隙G具有恒定宽度,使得耦合系数等可以容易地设计。
另外,由于氧化铁粉末树脂磁芯247的形状类似矩形环,因此氧化铁粉末树脂磁芯247容易制得。氧化铁粉末树脂磁芯247还具有机械地保护各个线圈的二次作用,这是因为方环形氧化铁粉末树脂磁芯237部分地包封铁氧体磁芯236和各个线圈而使之与外部隔开。
在图8B中,根据第六实施例的第二示例的升压变压器240′具有初级绕组221、次级绕组222和加热器线圈223。附图标记247′表示包含由树脂密封的氧化铁粉末的方环形氧化铁粉末树脂磁芯。线圈221、222和223以及方环形氧化铁粉末树脂磁芯247′与图7A至7D中的对应部件等价。也就是说,初级绕组221的绕组截面积大于次级绕组222的绕组截面积。附图标记246′表示在第六实施例的第二示例中采用的柱状氧化铁粉末树脂磁芯。初级绕组221、次级绕组222和加热器线圈223缠绕在柱状氧化铁粉末树脂磁芯246′上,并且沿该磁芯的轴向并排堆置。初级绕组、次级绕组和加热器线圈221、222和223以及氧化铁粉末树脂磁芯246′由方环形氧化铁粉末树脂磁芯247′所覆盖,从而包封在方环形氧化铁粉末树脂磁芯247′内。在氧化铁粉末树脂磁芯246′与方环形氧化铁粉末树脂磁芯247′之间确保了间隙G。氧化铁粉末树脂磁芯246′与247′之间的间隙G选择为在约0.3mm至约0.8mm的范围内。
在此结构中,高频损失低、成本和尺寸小且比铁氧体磁芯更难饱和的氧化铁粉末树脂磁芯构成了主磁芯246′和辅助磁芯(方环形磁芯)247′。进而,同仅具有铁氧体磁芯的现有技术的升压变压器(图11)相比,升压变压器240′极有助于减小尺寸。
另外,由于氧化铁粉末树脂磁芯246′与247′的各个相对部分彼此平行,因此形成于氧化铁粉末树脂磁芯246′与247′之间的间隙G具有恒定宽度。进而,使得耦合系数等可以容易地设计。
另外,由于氧化铁粉末树脂磁芯247′的形状类似矩形环,因此氧化铁粉末树脂磁芯247′容易制得。氧化铁粉末树脂磁芯247′还具有机械地保护各个线圈的二次作用,这是因为树脂磁芯237′部分地包封各个线圈和氧化铁粉末树脂磁芯246′而使之与外部隔开。
第七实施例图9A为示出根据本发明的第七实施例的升压变压器的前视图。图9B为示出该升压变压器的平面图。图9C为示出该升压变压器的侧视图。而图9D为示出该升压变压器的透视图。在图9A至9D中,与图6A至6D类似,根据本发明的第七实施例的升压变压器250具有初级绕组221、次级绕组222和加热器线圈223。附图标记256表示形状类似长方体的铁氧体磁芯。初级绕组221、次级绕组222和加热器线圈223缠绕在长方体铁氧体磁芯256上,并且沿该磁芯的轴向并排堆置。附图标记227表示与图6A至6D中相同的氧化铁粉末树脂磁芯。也就是说,氧化铁粉末树脂磁芯227的形状类似矩形环,该矩形环的一个内部尺寸(图9C中的氧化铁粉末树脂磁芯227的左右方向)大于初级绕组、次级绕组和加热器线圈221、222和223的每一个外部尺寸,而其另一个内部尺寸(图9C中的氧化铁粉末树脂磁芯227的上下方向)大于该并排堆置的三个线圈(即初级绕组、次级绕组和加热器线圈221、222和223)的总尺寸。
根据本发明的第七实施例,在长方体铁氧体磁芯256表面中与氧化铁粉末树脂磁芯227相对的一部分上形成凸起256a。该凸起256a的高度基本与图6A至6D所示的间隙G相同。由于在长方体铁氧体磁芯256与氧化铁粉末树脂磁芯227之间要确保的间隙G可以通过凸起256a来保证,而不再需要使用图6A至6D中使用的垫片。由此,不必单独地设置垫片,而且可以省去在升压变压器中置入该垫片的人力和时间。进而,可以容易地组装该升压变压器,并且该升压变压器成本可被降低。
凸起256a形成为使得在磁通路通过的方向上的截面积被选择为较小。也就是说,利用微小的磁通量就可造成磁感应强度饱和,并且防止了磁短路的形成。
尽管图9A至9D示出了在长方体铁氧体磁芯256的侧面的中央部分形成凸起256a的情况,本发明还可应用于在长方体铁氧体磁芯256侧面上相对的端部分别形成一对凸起,使得该对凸起在两个点处与金属磁芯227接触的情况。在此情况下,组装的稳定性更佳。
尽管本实施例已经示出于凸起256a应用于图6A至6D中所示的长方体铁氧体磁芯226的情况,本发明还可完好地应用于凸起256a于图8A所示的棒状氧化铁粉末树脂磁芯中采用情况。
第八实施例图10A为示出根据本发明第八实施例的升压变压器的前视图。图10B为示出该升压变压器的平面图。图10C为示出该升压变压器的侧视图。而图10D为示出该升压变压器的透视图。在图10A至10D中,根据本发明第八实施例的升压变压器260具有初级绕组221、次级绕组222和加热器线圈223,以及U形氧化铁粉末树脂磁芯264和265,U形氧化铁粉末树脂磁芯264和265中的每一个都包含由树脂密封的氧化铁粉末。线圈221、222和223是与图6A至6D中的对应部件相同的部件。也就是说,初级绕组221的绕组截面积大于次级绕组222的绕组截面积。初级绕组221的匝数小于次级绕组222的匝数。加热器线圈223的匝数比次级绕组22的匝数小得多。如图10A至10D中所示,U形氧化铁粉末树脂磁芯264和265设置为通过形成于U形氧化铁粉末树脂磁芯264与265的U形状前端之间的间隙G彼此相对。U形氧化铁粉末树脂磁芯264和265的各个一字腿部分彼此对接,而形成了一个磁芯,初级绕组、次级绕组和加热器线圈221、222和223围绕该磁芯在该磁芯的轴向并排堆置。U形氧化铁粉末树脂磁芯264与265之间的间隙G选择在约0.3mm至约0.8mm的范围内。
在此结构下,与铁氧体磁芯相比,由高频损失低、成本和尺寸小、且不易饱和的氧化铁粉末树脂磁芯264和265形成升压变压器的全部磁芯部分。由此,与仅具有铁氧体磁芯的现有技术的升压变压器(图11)相比,升压变压器260极有利于尺寸减小。
本发明是基于日本专利申请No.2002-067067和No.2002-067068,其在此引入作为参考。虽然仅本发明特定实施例在此具体描述,但是不言自明,可对它们进行很多改动而不脱离本发明的实质和范围。
发明优点如上所述,在根据本发明的升压变压器中,高频损失低的铁氧体磁芯被用作主磁芯,而尺寸小且饱和磁感应强度比铁氧体磁芯高的金属磁芯被采用,使得其通过间隙与该铁氧体磁芯相对,以抑制磁性饱和。另外,金属磁芯按这样一种方式形成,即沿涡流的流动方向将金属薄片彼此层叠,从而防止涡流的流动。另外,金属磁芯的形状类似方环形。进而,该金属磁芯易于生产、尺寸小且坚硬,并且具有保护各个线圈的外侧的作用。
另外,由于在长方体铁氧体磁芯表面中与金属磁芯相对的一部分上形成凸起,因此就不必单独制备垫片,并且可以省去在升压变压器中置入任何垫片的人力和时间。进而,可容易地组装该升压变压器。
另外,由于形成于棒状铁氧体磁芯与金属磁芯之间的间隙可被适当地选择,因此可以轻松地调整升压变压器的耦合系数至最佳值。
另外,在根据本发明的升压变压器中,采用了由树脂密封的氧化铁粉末的磁芯,其高频损失低,且可以制得成本和尺寸更小,并且比铁氧体磁芯的饱和磁感应强度更高。另外,间隙设置成防止磁性饱和。进而,可以获得容易制造、尺寸小、成本低并且结实的升压变压器。
权利要求
1.一种用于向磁控管提供驱动电压的磁控管驱动升压变压器,其包括棒状铁氧体磁芯;初级和次级绕组,它们缠绕在所述棒状铁氧体磁芯上;以及方环形磁芯,其设置为通过间隙与所述棒状铁氧体磁芯相对,使其从所述初级和次级绕组的外侧朝向所述棒状铁氧体磁芯配装。
2.如权利要求1所述的磁控管驱动升压变压器,其中,所述方环形磁芯具有一个大于所述初级和次级绕组的每一个外尺寸的内径,以及大于并排堆置的所述初级和次级绕组的总尺寸的其他内径。
3.如权利要求2所述的磁控管驱动升压变压器,其中,所述初级和次级绕组沿所述棒状铁氧体磁芯的轴向并排堆置;以及其中所述方环形磁芯由金属制成,并且由卷绕多次成为方环形的长金属薄片形成。
4.如权利要求1或2所述的磁控管驱动升压变压器,其中,所述棒状铁氧体磁芯的形状类似长方体。
5.如权利要求3所述的磁控管驱动升压变压器,其中,所述棒状铁氧体磁芯的形状类似长方体。
6.如权利要求5所述的磁控管驱动升压变压器,其中,所述铁氧体磁芯在其表面与所述金属磁芯相对的一部分上具有一凸起;以及所述凸起与所述金属磁芯相接触。
7.一种用于向磁控管提供驱动电压的磁控管驱动升压变压器,其包括棒状铁氧体磁芯;初级和次级绕组,它们缠绕在所述棒状铁氧体磁芯上;以及方环形磁芯,其具有一个大于所述初级和次级绕组的每一个外部尺寸的内径,以及大于所述棒状铁氧体磁芯长度的其他内径,其中,所述棒状铁氧体磁芯与所述初级和次级绕组一同插入所述方环形磁芯中,以及所述方环形磁芯通过所述棒状铁氧体磁芯的轴向端部与所述金属磁芯之间的间隙与所述棒状铁氧体磁芯相对地布置。
8.如权利要求7所述的磁控管驱动升压变压器,其中,所述方环形磁芯由金属制成,并且由多个方环形金属薄片沿其厚度方向的叠层形成。
9.如权利要求7或8所述的磁控管驱动升压变压器,其中,所述棒状铁氧体磁芯为柱状。
10.如权利要求1至9中任一项所述的磁控管驱动升压变压器,其中,磁阻通过所述棒状铁氧体磁芯与所述磁芯之间的所述间隙来改变。
11.一种用于向磁控管提供驱动电压的磁控管驱动升压变压器,其包括棒状铁氧体磁芯;初级和次级绕组,它们缠绕在所述棒状铁氧体磁芯上;以及方环形氧化铁粉末树脂磁芯,包括以树脂密封的氧化铁粉末;其中,所述方环形氧化铁粉末树脂磁芯从所述初级和次级绕组的外侧朝向所述棒状铁氧体磁芯配装,并且设置为通过形成于所述方环形氧化铁粉末树脂磁芯与所述棒状铁氧体磁芯之间的间隙与所述棒状铁氧体磁芯相对。
12.如权利要求11所述的磁控管驱动升压变压器,其中,所述初级和次级绕组沿所述棒状铁氧体磁芯的轴向并排堆置;以及所述方环形氧化铁粉末树脂磁芯具有一个大于所述初级和次级绕组的每一个外部尺寸的内径,以及大于并排堆置的所述初级和次级绕组的总尺寸的其他内径。
13.如权利要求11或12所述的磁控管驱动升压变压器,其中,所述棒状铁氧体磁芯的形状类似长方体。
14.一种用于向磁控管提供驱动电压的磁控管驱动升压变压器,其包括棒状铁氧体磁芯;初级和次级绕组,它们缠绕在所述棒状铁氧体磁芯上,并且沿所述棒状铁氧体磁芯的轴向并排堆置;以及方环形氧化铁粉末树脂磁芯,其包括以树脂密封的氧化铁粉末;其中,所述氧化铁粉末树脂磁芯具有一个大于所述初级和次级绕组的每一个外部尺寸的内径,以及大于所述棒状铁氧体磁芯长度的其他内径,配装到所述棒状铁氧体磁芯上,并设置为通过形成于所述棒状铁氧体磁芯的轴向端部与所述矩形环氧化铁粉末树脂磁芯之间的间隙与所述棒状铁氧体磁芯相对。
15.如权利要求14所述的磁控管驱动升压变压器,其中所述棒状铁氧体磁芯为柱状。
16.如权利要求11至15中任一项所述的磁控管驱动升压变压器,其中,所述棒状铁氧体磁芯由包含以树脂密封的氧化铁粉末的棒状氧化铁粉末树脂磁芯所替代。
17.如权利要求13所述的磁控管驱动升压变压器,其中,在所述长方体磁芯表面的与所述方环形氧化铁粉末树脂磁芯相对的一部分上形成一凸起,使所述凸起与所述方环形氧化铁粉末树脂磁芯相接触。
18.如权利要求17所述的磁控管驱动升压变压器,其中,所述棒状铁氧体磁芯由包含以树脂密封的氧化铁粉末的棒状氧化铁粉末树脂磁芯所替代。
19.一种用于向磁控管提供驱动电压的磁控管驱动升压变压器,其包括初级绕组;次级绕组;以及两个U形氧化铁粉末树脂磁芯,每一个包含由树脂密封的氧化铁粉末,并且所述两个U形氧化铁粉末树脂磁芯通过形成于所述两个U形氧化铁粉末树脂磁芯的U形的前端之间的间隙彼此相对设置;其中,磁芯由彼此对接的所述两个U形氧化铁粉末树脂磁芯的相应的一字腿部分形成,并且该磁芯设置有所述初级和次级绕组。
20.一种用于向磁控管提供驱动电压的磁控管驱动升压变压器,其包括初级绕组;次级绕组;以及两个U形氧化铁粉末树脂磁芯,每一个包含由树脂密封的氧化铁粉末,并且所述两个U形氧化铁粉末树脂磁芯通过形成于所述两个U形氧化铁粉末树脂磁芯的U形的前端之间的间隙彼此相对设置;其中,磁芯由彼此对接的两个U形氧化铁粉末树脂磁芯的相应的一字腿部分形成,并且该磁芯设置有所述初级绕组和次级绕组,使得后者沿所述磁芯的轴向并排堆置。
全文摘要
本发明公开了一种用于微波炉的升压变压器,其高频损失低、不易饱和、尺寸小且易于生产。该升压变压器包括一棒状铁氧体磁芯;以及,初级绕组、次级绕组和加热器线圈,它们缠绕在该棒状铁氧体磁芯上,并且沿该棒状铁氧体磁芯的轴向并排叠置。其还包括由长金属薄片卷绕多次成为方环形而形成的金属磁芯,该方环形具有一大于该初级绕组、次级绕组和加热器线圈中的每一个外尺寸的内径,以及大于并排叠置的该三个线圈的总尺寸的另一内径,该金属磁芯设置为通过间隙与所述棒状铁氧体磁芯相对,使其从初级绕组、次级绕组和加热器线圈的外侧朝向所述棒状铁氧体磁芯配装。
文档编号H01F3/00GK1533681SQ0380001
公开日2004年9月29日 申请日期2003年1月15日 优先权日2002年3月12日
发明者三原诚, 安井健治, 北泉武, 治 申请人:松下电器产业株式会社