专利名称:制作半导体器件和其中所用耐热压敏粘结带的方法
技术领域:
本发明涉及使用附着有耐热压敏粘结带之金属引线框(lead frame)制造半导体器件的方法,并涉及这种方法中所用的耐热压敏粘结带。
在这种包括同时密封多个半导体芯片步骤的QFN过程中,模注冲模只夹紧超出封装图样区以外的树脂密封区外侧部分。因此,在封装图样区内,特别是在它的中心区域,来自保持所述外部引线表面之模注冲模的压力可能是不够的。因而,可能就非常难于防止密封树脂泄漏到所述外引线侧面中去,并且,各QFN接线端等可能会受到所不希望有的树脂的覆盖。
面对这个问题,在QFN过程中,可将压敏粘结带附着于引线框的外部引线侧。根据压敏粘结带的自粘(遮盖)特性,这样的过程获得密封效果,特别在树脂密封步骤中防止树脂泄漏到所述外部引线侧方面能够是有效的。
在这种过程中,根本的困难在于,在操作处理过程中,是在将半导体芯片安装在所述引线框上的步骤之后,或者布线连接步骤之后才附着所述耐热压敏粘结带。于是,按照一种首选的方式,在初期阶段就把耐热压敏粘结带附着在所述引线框的外衬垫表面上,然后在安装半导体芯片的步骤,以及在树脂密封之前安装的布线连接步骤期间都保持它们。于是,所述耐热压敏粘结带不仅应能防止密封树脂的泄漏,还能满足全部所需的特性,如在面对安装半导体芯片过程的高耐热性,并且在粘结步骤中不会妨碍精细复杂的操作。
如果为了防止树脂泄漏而强调更高的粘性,则可以选择普通耐热压敏粘结层。然而,这种普通耐热压敏粘结带可能会因这种压敏粘结层的高弹性之故而妨碍布线连接。在这种情况下,在一系列工艺过程中所需的功能可能就会受到抵触,而难于同时得到满足。
为了解决这些问题,由各位发明人提出的半导体器件的工艺采用耐热压敏粘结带,它具有厚度为10μm或更小些的压敏粘结层(关于本申请的优先权日尚未公开的日本专利申请No.2001-020395)。按照这种工艺,可以实行包括布线连接在内的一系列步骤,而不用树脂密封。
目前,就生产力而言,已使每个引线框所安排的封装数目有所增大。因此,不仅封装本身被做得更细小,而且安排的数目也已增大得可将更多的封装密封在一个密封部分内。因此,上述为减少衬垫而具有相对比较薄的附着层的耐热压敏粘结带,在均衡足够的密封特性和其它特性方面可能就有困难,而且因此就不能适宜地实现防止树脂泄漏这一基本目的。
各发明人就有关耐热压敏粘结带的物理性质、材料、厚度和其它性质做过积极的研究,发现使用包含压敏粘结层的耐热压敏粘结带可以实现上述目的,所述粘结层具有特定的厚度,由丙烯酸类树脂制成,并有适宜的高温记忆弹性模数。根据这种发现,完成了本发明。
具体地说,本发明针对一种制作半导体器件的方法,它至少包括如下步骤把多个半导体芯片放置并粘结在金属引线框的各晶粒座上,所述引线框具有其上附着有耐热压敏粘结带的外垫片侧缘;在所述引线框的每个终端与半导体芯片上每个电极垫片之间布线连接引线;以及把密封体的主体切割成多个分开的半导体器件,其中,所述耐热压敏粘结带包括聚酰亚胺树脂制成的基层和厚度为1-20μm的压敏粘结层,该粘结层由聚丙烯酸酯塑料树脂制成,并且在200℃下具有1.0×105Pa的记忆弹性模数。本发明中通过下述方法特别地确定包括记忆弹性模数在内的物理性质。
按照本发明,具有聚酰亚胺树脂基层的耐热压敏粘结带具有高耐热性,另外,它的线性热胀系数与所述金属引线框的热胀系数接近。因此,这种粘结带在热膨胀时难于发生翘曲或剥落。这种粘结带可保持很高的密封效果,因此在密封的步骤可适当防止树脂泄漏。另外,所述聚酰亚胺树脂基层能够提供良好的可加工性以及良好的可操作性。所述压敏粘结层具有适宜的高温记忆弹性模数,因此,即便是在其厚度约为20μm的较大厚度下,它也总能够保持适宜的衬垫效果。在以这种所附着的耐热压敏粘结带粘结的步骤中,可使结合能的损失较小,可以更为可靠的方式很好地实行布线连接。在最新的精细型QFN过程中,特别是具有大量同时密封之封装的大矩阵图样类型,密封材料必须产生充分的封装效果,以在模注步骤适当防止树脂泄漏。就这点而言,压敏粘结层须得有1μm或者更多的适宜厚度。因此,本发明中厚度为1-20μm的丙烯酸压敏粘结层除可提供适宜的记忆弹性模数外,还可提供适宜的厚度。因此,在本发明的制造半导体器件过程中,在采用所述耐热压敏粘结带的密封步骤中,能够适当防止树脂泄漏,而且,在一系列步骤中,所附着的粘结带都不易引起麻烦。
本发明还针对这种制造半导体器件的方法中所用的耐热压敏粘结带,它包括聚酰亚胺树脂制成的基层,以及厚度为1-20μm的压敏粘结层,所述粘结层由丙烯酸类树脂制成,并且在200℃下具有1.0×105Pa的记忆弹性模数。
本发明还针对一种使用本发明耐热压敏粘结带的方法,它包括如下步骤把所述耐热压敏粘结带附着于金属引线框的外垫片侧缘;以及使用引线框以形成包含半导体芯片和密封树脂的半导体器件;其中所述半导体芯片从一侧被密封。其中,所述耐热压敏粘结带包括聚酰亚胺树脂制成的基层,以及厚度为1-20μm的压敏粘结层,所述粘结层由丙烯酸类树脂制成,并且在200℃下具有1.0×105Pa的记忆弹性模数。
按照本发明,如果在200℃下对所述耐热压敏粘结带受热一小时,同时附着于不锈钢板上,则它的粘结强度将优选为5.0N/19[mm宽度]或者更小。在这种情况下,可以确保在密封步骤中防止树脂泄漏所需的粘结强度,而且在密封步骤之后,可以容易地剥离这种粘结带,而不致引起密封树脂的损毁。
如
图1(a)-1(e)所示,本发明制造半导体器件的方法包括如下步骤安装半导体芯片15;以连接线16布线;以密封始终17密封和切割密封体的主体21。
参照图1(a)和1(b),所述安装步骤包括把各半导体芯片15粘结在引线框10的各晶粒座11c上,其中,将耐热压敏粘结带20附着在引线框10的外垫片侧缘(每个图的下面一侧)。
例如,用金属,如铜制成引线框10,并具有成形的QFN接线端图样。可使所述引线框10的各电接触部分涂敷或镀以金属,如银、镍、钯或金。引线框10的厚度通常为100-300μm。但通过局部蚀刻等形成的薄的部分没有这样的厚度。
所述引线框10最好具有多个系统地排列的QFN图样,以便在后面的切割步骤容易被分开。比如参照图2(a)和2(b),所述引线框10的结构具有多个二维矩阵图样,称为矩阵QFN或MAP-QFN,这是一种最佳的引线框结构。就生产力而言,近年来,每个引线框布置的封装数目已经增大。因此,不仅封装表示已经做得更加精细,而且所述的排列数目也已明显地增大,从而可使更多的封装被密封于一个密封部分中。
参照图2(a)和(b),所述引线框10具有多个封装图样区11。在每个区域11中,系统地排列多个QFN封装图案,其中,每个相邻开口11a的周围排列多个接线端部分11b。对于一般的QFN而言,每个封装图案(对应于图2(a)中每个格子区域)包括被布置在开口11a周围的多个接线端部分11b,每个接线端的下面一侧有一个外部引线表面,被安置在所述开口11a中心处的晶粒座11c,以及从开口11a的四角支承晶粒座11c的冲模条11d。
最好至少将耐热压敏粘结带附着在所述封装图样区11的外边,而且附着的区域最好包括要被密封在树脂中的区域外部周界。在侧面边缘附近,所述引线框10通常具有多个引线销孔13,在树脂密封步骤用来定位。因而,最好将所述粘结带20附着在不包含各孔13的区域。沿引线框10的纵长方向布置有多个树脂密封区域。于是,最好将压敏粘结带20附着得使得在所述多个树脂密封区域的上方连续延伸。
在上述引线框10上装有多个半导体芯片15,它们是硅晶片,每个上面都形成半导体集成电路。在引线框10上设有多个安装区,用以固定各半导体芯片15,每一个都被称作晶粒座11c。采用任何方法,比如使用导电糊19、粘结带、黏合剂等方法,可以实现将每个半导体芯片15粘结(固定)于各晶粒座11c上的步骤。在使用导电糊、热固化黏合剂等进行粘结时,通常在150至200℃温度下进行热处理30至90分钟。
参照图1(c),所述布线步骤包括在所述引线框10的每个接线端部分11b(每个内部引线)的端部与每个半导体芯片15的各电极垫片15a之间电连接连接线16。比如,所述连接线16为金线或铝线。通常在120至250℃温度的加热状态下,结合使用超声振荡能量和接触粘结能量,实现所述布线的粘结。在这一步骤中,可使附着于引线框10上的耐热压敏粘结带20的表面是真空吸附的,以便以吸附方式保持在热部件(block)上。
参照图1(d),所述密封步骤包括从一侧将半导体芯片15封入密封树脂17中。实行密封步骤,以保护安装在引线框10上的半导体芯片和连接线16。在密封步骤中,通常将密封树脂17,如环氧树脂模注在冲模内。在这种情况下,参照图3,通常采用由各有许多空腔的上模18a和下模18b组成的冲模单元18实行密封步骤,其中将多个部分同时封入密封树脂17内。譬如,在170-180℃加热温度下实行树脂密封,这当中要进行处理几分钟,然后再实行出模处理几个小时。按照一种优选的方式,在所述出模处理之前,剥离耐热压敏粘结带20。
参照图1(e),所述切割步骤包括把密封体的主体21切割分成各个半导体器件21a。在切割步骤中,通常采用旋转切割刀片,如钻石轮划片机,以切割密封树脂17的每个切点17a。
按照本发明,上述各过程中所用的耐热压敏粘结带20包括聚酰亚胺树脂制成的基层;以及厚度为1-20μm的压敏粘结层,它由丙烯酸类树脂制成,并具有在200℃为1.0×105Pa的记忆弹性模数。预先将所述耐热压敏粘结带20附着于引线框10上,然后再于上述各过程中使之受热。例如,在冲模粘结半导体芯片15的步骤中,通常在大约150℃至大约200℃温度下实行热处理约30-90分钟。在布线连接步骤中,如果用一个引线框形成大量半导体器件,比如在大约120℃至大约250℃温度下,要完成所有半导体器件的粘结,每个引线框可以取1小时或更多。所述树脂密封步骤也须采用使树脂充分熔融的温度。这样的温度可为大约175℃。因此,在这种情况下,所述耐热压敏粘结带必须满足所需的耐热等级。
有如上述那样,由比如铜等金属制成将要把耐热压敏粘结带附着于其上的引线框10,因此它的线胀系数一般为大约1.8×10-5-1.9×10-5/K。如果引线框的线胀系数明显地与拟附着于其上之耐热压敏粘结带20不同,则在粘合状态下使二者受热时,由二者热膨胀之间的差别所引起的变形可能导致所述粘结带的翘曲或剥离。因此,最好是使所述耐热压敏粘结带之基层的线胀系数接近引线框材料的线胀系数。
例如,这种基层的材料是线胀系数为大约1.5×10-5-2.8×10-5/K的聚酰亚胺树脂,它可以具有较高的可加工性以及较高的可操作性。本发明中最好使用这种材料。这里的线胀系数是按照ASTM D696通过热-机分析法(TMA)所确定的值。
这种聚酰亚胺树脂制成的薄膜实例包括Kapton(Du Pont-Toray Co.,Ltd.)、Upilex(商标名)(Ube Industries,Ltd.)和Apical(Kaneka Corporation)等。
就防止断裂或裂缝以及具有良好的可操作性而言,所述耐热压敏粘结带20之基层的厚度最好为10-100μm。
就压敏粘结功能而言,耐热压敏粘结带20之粘结层应该有一定程度的弹性。但若所述粘结层作为整体太软,则在连接线的连接步骤中,会因压敏粘结层的弹力之故,而使附着压敏粘结带的引线框不能被充分固定。结果,可以使加压的接触粘结能量减小,在粘结步骤中可能发生故障。
按照本发明,为了避免这种结合的故障,确保足够的粘结强度,以防止在密封步骤中的树脂泄漏,或者为了保证与其它方式互不相同的性能,所述压敏粘结层的记忆弹性模数应为1.0×105Pa或更大,最好是5.0×105Pa或更大,厚度为1-20μm,最好是5-15μm。这样的压敏粘结层作为整体能够保持轻度的衬垫性能,使得能够以更可靠的方式适宜地实现布线连接。在密封步骤中,这种具有适宜厚度的压敏粘结层可以给出充分的密封性能。这里的记忆弹性模数是由粘弹性光谱仪在1Hz以及5℃/分钟的温度升高速率条件下确定的剪切记忆弹性模数。
在密封步骤之后的任何阶段,使耐热压敏粘结带被剥离。如果所述压敏粘结带的粘结强度太强,则难以实现这种剥离,而且有些情况下,会因粘结带的剥离应力,可能使模注的树脂被剥离或者使之破裂。因此,宁可不首选为了防止密封树脂溢流而使粘结强度强于所需要者的压敏粘结层。就这一点而言,在200℃下加热1小时,同时附着于不锈钢片上之后,通过根据JIS Z0237测试,所述压敏粘结带的粘结强度最好为5.0N/19[mm宽度]或者更小,2.0N/19[mm宽度]或者更小则尤好。
具有上述物理性质的压敏粘结层的优选示例是丙烯酸压敏粘结层,它能够容易地提供适宜的记忆弹性模数和适宜的粘结强度。例如,这种黏合剂包含通过共聚由至少含有(甲基)丙烯酸烷基酯的单体所形成的丙烯酸共聚物。所述(甲基)丙烯酸烷基酯的例子包括(甲基)丙烯酸甲酯、(甲基)丙烯酸乙酯、(甲基)丙烯酸丁酯、(甲基)丙烯酸异戊酯、(甲基)丙烯酸正己酯、(甲基)丙烯酸(2-乙基己)酯、(甲基)丙烯酸异辛酯、(甲基)丙烯酸异壬酯、(甲基)丙烯酸癸酯和(甲基)丙烯酸十二烷基酯。
具有耐热性的丙烯酸压敏粘结层可包含通过共聚含有酰亚胺基的(甲基)丙烯酸烷基酯和(甲基)丙烯酸烷基酯的单体之混合物所形成的丙烯酸聚合物。
这些丙烯酸压敏黏合剂每一种都包含一种适宜的交联剂。所述交联剂的例子包括异氰酸盐交联剂、环氧交联剂、吖丙啶交联剂和螯合交联剂。交联剂的用量并无特别的限制,但最好使交联剂加入的量能产生足够的交联,用以实现所需弹性模数之目的。比如,按照每100重量份丙烯酸聚合物,这种量最好是0.1到15重量份;1.0到10重量份尤好。
本发明中,通过加入相对较为大量的交联剂,可将在200℃下的记忆弹性模数调整在所希望的区域内。另外,为了调整所述记忆弹性模数之目的,可以改变交联剂的种类,所述单体的种类、交联比率,或者材料的分子量;或者可以增加填充物。
所述丙烯酸黏合剂可以包含任何其它组分。所述任何其它组分的例子包括多种,如增塑剂、填充物、颜料、染料、抗氧化剂,以及抗静电剂等。上述丙烯酸压敏黏合剂具有相对较高的耐热性,并且能够易于提供适宜的记忆弹性模数和适宜的粘结强度,因此,本发明最好采用它。另外,如果需要,可以实行包括对所述压敏粘结层的底层预处理或对基层材料的背面处理在内的再涂敷。
如上所述,本发明方法中所用的耐热压敏粘结带包括基层和丙烯酸压敏粘结层。可在任何情况下将这种耐热压敏粘结带附着于引线框上。可将多种热层合机、热辊、压辊所用的装置和方法用于附着所述耐热压敏粘结带的步骤中。一般地说,使用压辊的方法被广泛用于把所述粘结带附着在引线框中。实例下面的举例特别表明本发明的特点和效果。例1将厚度为25μm聚酰亚胺薄膜(Kapton100H,Du Pont-Toray Co.,Ltd.)用作基层材料。聚酰亚胺薄膜的线胀系数为大约2.6×10-5-2.8×10-5/K,这是通过在100℃至200℃之间10℃/分钟的温度升高速率条件下测试得到的。采用一种丙烯酸共聚物,它包含100重量份丁基异丁烯酸盐酯单体和5重量份甲基丙烯酸单体。对100重量份的这种共聚物加2重量份的环氧交联剂(Tetrad-C,Mitsubishi Gas Chemical Company,Inc.),形成丙烯酸压敏粘结层。在用以形成耐热压敏粘结带的基层材料上形成厚度为10μm之丙烯酸压敏粘结层的压敏粘结。这种压敏粘结带具有在200℃下为9.0×105Pa的记忆弹性模数,这是在剪切记忆弹性模式下由具有7.9mmφ样品尺寸的平行板通过在1Hz以及5℃/分钟的温度升高速率条件下以ARES(Rheometric Scientific F.E.Ltd.)检测而得到的。在附着于不锈钢片的情况下,于200℃下对所述耐热压敏粘结带加热1小时。然后按照JISZ0237测试该粘结带的粘结强度。所测得的粘结强度是0.3N/19[mm宽度]。
将耐热压敏粘结带附着在铜引线框的外衬垫侧上,所述引线框的各接线端部分被镀以银,并具有16脚侧型QFN的4×4矩阵。利用环氧树脂苯酚基银糊并通过在180℃下处理大约1小时的固定,将各半导体芯片粘结到引线框的各个晶粒座部分。
然后使引线框真空吸附所述耐热压敏粘结带一侧,以便被固定在200℃下加热的热部件上。还由弯绕的嵌位片保持引线框的周缘部分。然后在下面的条件下,在115kHz的接线器(UTC-300Bisuper,Shinkawa Ltd.)内,以25μmφ的金线(GMG-25,Tanaka Precious Metals)使各半导体芯片经过布线结合。历时大约1小时,以完成所述的结合。
第一粘结压力 80g第一粘结中的超声波强度 550mW第一粘结作用时间 10ms第二粘结压力 80g第二粘结中的超声波强度 550mW第一粘结作用时间 8ms这之后利用模注机(Model-Y-series,TOWA Corporation),将半导体芯片密封在环氧密封树脂(HC-300,Nitto Denko Corporation)。在下述条件下实行模注在175℃下预热3秒钟,注入时间12秒钟,处理时间90秒钟。然后剥离压敏粘结带。出模之后,为了充分处理之目的,再在175℃下实行约3小时的处理,用钻石轮划片机把密封体的主体切割成每一个QFN型半导体器件。
所得各QFN不会有树脂溢流,而且包括连接引线在内的各个步骤都可以被顺利地实施,而没有麻烦。例2除了耐热压敏粘结带的压敏粘结层厚度为15μm以外,采用例1的过程形成各QFN型半导体器件。所得QFN没有树脂溢流,并且包括连接引线在内的各个步骤都可以被顺利地实施,而没有麻烦。例3除了环氧交联剂的加入量为0.5重量份以外,采用例1的过程形成耐热压敏粘结带。所得压敏粘结带在200℃下的记忆弹性模数为2.0×105Pa,并在200℃下的热处理之后,其粘结强度约为2.5N/19[mm宽度]。所述粘结带的压敏粘结层厚度约为5μm。然后将所述耐热压敏粘结带附着在有如例1所用的铜引线框的外衬垫侧上,并在下面所述的条件下粘结各半导体芯片。然后从耐热压敏粘结带一侧真空吸附,以便在200℃下被固定在热部件上。另外还由弯绕的嵌位片保持引线框的周缘部分。然后在下面的条件下,在60kHz的接线器(MB-2000,Nippon Avionics Co.,Ltd.)内,以25μmφ的金线(GLD-25,Tanaka Precious Metals)使各半导体芯片经过布线结合。历时大约1小时,以完成所述的结合。
第一粘结压力 30g第一粘结中的超声波强度 25mW第一粘结作用时间 100ms第二粘结压力 200g第二粘结中的超声波强度 50mW第二粘结作用时间 50ms这之后利用模注机(Model-Y-series,TOWA Corporation),将半导体芯片密封在环氧密封树脂(HC-300,Nitto Denko Corporation)。在下述条件下实行模注在175℃下预热40秒钟,注入时间11.5秒钟,处理时间120秒钟。然后剥离压敏粘结带。出模之后,为了充分处理之目的,再在175℃下实行约3小时的处理,用钻石轮划片机把密封体的主体切割成每一个QFN型半导体器件。
所得各QFN不会有树脂溢流,而且包括连接引线在内的各个步骤都可以被顺利地实施,而没有麻烦。比较例1除了粘结带的基层为高密度聚乙烯薄膜(厚度为25μm,线胀系数为15×10-5K)以外,采用例1的过程,用以研究。在安装半导体芯片步骤中的热固化时,在粘结带中产生明显的皱褶和局部剥离。在模注步骤,粘结带不能从根本上抑制树脂的溢流。比较例2除了压敏粘结带包含聚酯基层材料和50μm厚的硅基压敏黏合剂的压敏粘结层,从而在200℃下加热之后的粘结强度为7N/19[mm宽度]以外,采用例1的过程,用以研究。结果,由于粘结带的衬垫缓冲之故,在第二次粘结时,大部分布线不能得到充分地粘结,并在粘结步骤频繁发生粘结的损毁。在密封步骤之后剥离粘结带时,引线框因应力而变形,并且部分密封树脂也被剥离。比较例3除了采用在200℃下记忆弹性模数为1.1×104Pa的硅基压敏黏合剂,以形成厚度为30μm的压敏粘结层以外,采用例1的过程,用以研究。在粘结步骤,由于粘结带的衬垫缓冲之故,大部分布线不能得到充分的粘结,并且频繁发生粘结的损毁。
权利要求
1.一种制作半导体器件的方法,包括如下步骤把多个半导体芯片放置并粘结在金属引线框的各晶粒座上,所述引线框具有其上附着有耐热压敏粘结带的外垫片侧缘;在所述引线框的每个终端与半导体芯片上每个电极垫片之间布线连接引线;把密封体的主体切割成多个分开的半导体器件;把密封体的主体切割成分开的各个半导体器件,其中,所述耐热压敏粘结带包括聚酰亚胺树脂制成的基层和厚度为1-20μm的压敏粘结层,该粘结层由丙烯酸类树脂制成,并且在200℃下具有1.0×105Pa的记忆弹性模数。
2.如权利要求1所述的方法,其中,若在200℃下对所述耐热压敏粘结带加热1小时,同时附着于不锈钢板上,它的粘结强度将至多为5.0N/19[mm宽度]。
3.一种权利要求1方法中所用的耐热压敏粘结带,它包括聚酰亚胺树脂制成的基层;和厚度为1-20μm的压敏粘结层,该粘结层由丙烯酸类树脂制成,并且在200℃下具有1.0×105Pa的记忆弹性模数。
4.如权利要求3所述的粘结带,其中,若在200℃下对所述耐热压敏粘结带加热1小时,同时附着于不锈钢板上,它的粘结强度将至多为5.0N/19[mm宽度]。
5.一种使用耐热压敏粘结带的方法,包括如下步骤将所述耐热压敏粘结带附着于金属引线框的外垫片侧缘上;用所述引线框形成半导体器件,所述器件包括半导体芯片和密封树脂,所述各半导体芯片从一侧被密封在所述密封树脂中,其中所述耐热压敏粘结带包括聚酰亚胺树脂制成的基层;和厚度为1-20μm的压敏粘结层,该粘结层由丙烯酸类树脂制成,并且在200℃下具有1.0×105Pa的记忆弹性模数。
6.如权利要求5所述的方法,其中,若在200℃下对所述耐热压敏粘结带加热1小时,同时附着于不锈钢板上,它的粘结强度将至多为5.0N/19[mm宽度]。
全文摘要
本发明的制作半导体器件方法包括如下步骤把多个半导体芯片放置并粘结在金属引线框的各晶粒座上,所述引线框具有其上附着耐热压敏粘结带的外垫片侧缘;在所述引线框的每个终端与半导体芯片上每个电极垫片之间布线连接引线,从一侧将各半导体芯片密封在密封树脂中;把密封体的主体切割成多个分开的半导体器件。本发明中的耐热压敏粘结带包括聚酰亚胺树脂制成的基层和厚度为1-20μm的压敏粘结层,该粘结层由丙烯酸类树脂制成,并且在200℃下具有1.0×10
文档编号H01L21/60GK1469445SQ0314235
公开日2004年1月21日 申请日期2003年6月10日 优先权日2002年6月10日
发明者高野均, 人, 细川和人, 村田秋桐, 桐, 大岛俊幸, 幸 申请人:日东电工株式会社