专利名称:氧化物磁性材料的制造方法和氧化物磁性材料的利记博彩app
技术领域:
本发明涉及可用于层叠式组合装置和电感器的氧化物磁性材料的制造方法,并涉及该种氧化物磁性材料。
背景技术:
近年来,对于使小型电子装置如手提电话小型化的需求日益增加。在这种形势下,构成电子装置的多个电路集合成单个芯片上的层叠式组合装置,用以安装到一块主基板上。
图7是层叠式组合装置一个例子的透视图,图9是其分解的透视图。如图7和8所示,层叠式组合装置是将许多片陶瓷层3和4层叠而成。包括电感器或电容器的电路元件图案11分别形成在陶瓷层3和4的表面上。电路元件图案经由穿过陶瓷层3和4的通孔12或通过形成在陶瓷层上的导体图案相互连接,从而构成诸如滤波器的电路。
已经提出,在陶瓷层3是磁性陶瓷层而陶瓷层4是介电陶瓷层的情况下,将构成电感器的图案(L图案)形成在各磁性陶瓷层3上,而将构成电容器的图案(C图案)形成在各介电陶瓷层4上(日本专利公报No.S60-106114,日本专利公报No.H6-333743等)。
作为用于这种层叠式组合装置和电感器的磁性材料,至今一般用的是NiCuZn基尖晶石型铁氧体。图9是NiCuZn基尖晶石型铁氧体磁导率的频率特征图。图9中示出了复磁导率的实数部分μ’和虚数部分μ”的归一化值,其中μ’在10兆赫时为1。如图9所示,复磁导率的实数部分μ’在高达100兆赫附近的区域中有较高的值。
作为能适合于较高频率的磁性材料,可以有六角晶系铁氧体。六角晶系铁氧体包括晶体结构彼此相似的一些相,如Z型、Y型、W型和M型相。在这些相中,Z型相显示出较高磁导率,并且在高达千兆赫波段的区域内其磁导率的减少最小。
如图9所示,先有技术的尖晶石铁氧体(如NiCuZn基尖晶石铁氧体)可在高达100兆赫的区域内使用,但在更高频率区域内出现自然共振,使磁导率的实数部分μ’减小,而相反会使它的虚数部分μ”增加(Snoek界限)。此外,在具有Z型结构的现有技术六角晶系铁氧体中,在高达千兆赫波段的区域内磁导率的减少最小,高频特性良好,但其结晶温度高达1300℃。由于作为导体图案材料的Ag和Cu在这么高的温度下会熔化,所以引起了不能在烧结磁性材料的同时对导体图案进行加热的问题。
发明内容
本发明的目的是提供具有六角晶系铁氧体组成、并在高频波段内损耗小的氧化物磁性材料的制造方法;并提供由该制造方法制得的氧化物磁性材料。
本发明的制造方法包括以下步骤;将原料粉末混合,使其具有包含至少一种选自Ba、Sr和Ca的元素A,Co和Cu,Fe,以及O(氧)的六角晶系铁氧体组成;然后在低于1000℃的温度对混合好的粉末进行烧结。
本发明人已发现,在低于1000℃(低于六角晶系铁氧体的结晶温度1300℃)的温度对混合成六角晶系铁氧体组成的原料粉末进行烧结,就能获得磁导率几乎像在1300℃(该氧化物磁性材料的结晶温度)烧结的氧化物磁性材料那么高的氧化物磁性材料,从而完成了本发明。本发明中,烧结温度在850~950℃的范围内更好,在880~920℃的范围内还要好。
根据本发明,由于磁性材料粉末的烧结可在低于1000℃的温度进行,所以其烧结可以在有Ag或Cu等导体同时存在的情况下进行,从而可以以简便的工序制造层叠式组合装置、电感器等。
在本发明一较好的实施方式中,将上述原料粉末混合后,对混合好的粉末进行预烧结,然后将所得的预烧结粉末粉碎,在粉碎后进行实质上的烧结。预烧结温度比实质烧结温度高300℃以上较好。
本发明中,六角晶系铁氧体的元素摩尔比即混合成的原料粉末的组成比,较好是A∶Co+Cu∶Fe∶O=1~6∶1~6∶30~38∶57~60。
本发明的制造方法的一个限定性部分包括以下步骤;将原料粉末混合,使其具有包含选自Ba、Sr和Ca的至少一种元素A,Co和Cu,Fe,以及O的六角晶系组成,所述六角晶系铁氧体组成的元素摩尔比是A∶Co+Cu∶Fe∶O=1~6∶1~6∶30~38∶57~60;在混合后对原料粉末进行预烧结;将所得的预烧结粉末进行粉碎;在低于1000℃的温度下对粉碎后的粉末进行烧结,其中预烧结的温度比烧结温度高300℃以上。
本发明的磁性材料是由上述本发明制造方法制成的氧化物磁性材料。
本发明的磁性材料的特征在于,在1千兆赫的磁导率的实数部分μ’比它的虚数部分大。因此,在本发明的氧化物磁性材料中,在超过Snoek界限的高频波段中的损耗得以抑制。
此外,本发明的磁性材料的特征还在于,在此磁性材料中,包含混合状态下的直径各为10微米或更大的颗粒和直径各为1微米或更小的颗粒。直径各为1微米或更小的颗粒的量在10体积%以上较好。而且,直径大于1微米的颗粒的平均直径在10微米以上较好。在本发明中,可用电子显微镜观察来测量磁性材料粉末颗粒的直径。
本发明中,用Cu作为代替Co的元素。用Cu代替Co在20~80原子%的范围为好。
本发明磁性材料的一个限定性部分的特征在于,所述的磁性材料包含混合状态下的直径各为10微米或更大的颗粒和直径各为1微米或更小的颗粒。
图1是显示本发明一实施例中所得烧结体剖视图的扫描电子显微镜照片(×1000的放大倍数);图2是显示比较例中所得烧结体剖视图的扫描电子显微镜拍摄的照片(×1000的放大倍数);图3是显示另一比较例中所得烧结体剖视图的扫描电子显微镜拍摄的照片(×1000的放大倍数);图4是本发明氧化物磁性材料的简图;图5是显示本发明一实施例中所得氧化物磁性材料的频率特征曲线图;图6是显示磁导率和烧结温度之间关系的曲线图;图7是层叠式组合装置一个例子的透视图;图8是层叠式组合装置一个例子的分解透视图;图9是显示一种先有技术磁性材料(NiCuZn基铁氧体)磁导率的频率特征曲线图;图10是烧结温度为900℃和预烧结温度在900~1300℃的范围内变化所得各氧化物磁性材料的磁导率曲线图。
具体实施例方式
下面,结合一些实施例更具体地描述本发明,但这些实施例并不用来限制本发明的范围。
实施例1对均为高纯的BaO、CoO、CuO和Fe2O3称重,使BaO、CoO、CuO和Fe2O3分别为18、6、6和70摩尔%,并使用罐子和磨球都由氧化锆制的的球磨机混合并粉碎24小时。之后,在1300℃对混合好的粉末进行2小时预烧结,再使用罐子和磨球都由氧化锆制的球磨机将所得预烧结的粉末粉碎24小时。
将由上述方法得到的氧化物磁性材料粉末的一半与PVA(聚乙烯醇)基粘合剂以及有机溶剂一起置入球磨机中,湿态混合24小时。PVA基粘合剂和有机溶剂的加入量相对于100重量份的磁性材料粉末,分别为4重量份和50重量份。然后,将湿混合的粉末干燥并筛分,模压成外径8毫米、内径4毫米、高度2毫米的环状坯体。在900℃对此模压成的环状坯体烧结2小时。用阻抗分析仪测量所得环状试样的磁导率。
图5是显示磁导率测量结果的曲线图。图5中,以NiCuZn基尖晶石铁氧体的初始磁导率(在10兆赫的磁导率实数部分μ’)作为1,将磁导率的值进行了归一化。如图5所示,在按照本发明获得的氧化物磁性材料中,磁导率的实数部分μ’在高达1千兆赫的区域内具有高的值。而且,从图中可知磁导率的虚数部分μ”在高达1千兆赫的区域内几乎没有增加。因此可知,本实施例中的氧化物磁性材料可在千兆赫波段内使用。
由X-射线衍射分析的结果可知,所得烧结体中的磁性材料是Y型结构(Ba2CocuFe12O22)和Z型结构(Ba3CoCuFe24O41)的六角晶系铁氧体。
另外,用扫描电子显微镜(SEM)观察所得烧结体的剖面。图1显示了此时用扫描电子显微镜拍摄的照片(×1000的放大倍数)。从图1的照片可见,直径各为1微米或更小的细粒以混合状态存在于直径大约为30微米的平坦颗粒中。直径各为1微米或更小的颗粒的量约为15体积%。
为了进行比较,以1000℃、1100℃、1200℃和1300℃为烧结温度对环状坯体进行烧结,获得烧结体。在各烧结温度都保持2小时。以和上述相同的方式用阻抗分析仪测量所得烧结体的磁导率。
图6是显示各烧结体在1千兆赫的磁导率的实数部分的曲线图。注意μ’的值是用和图5相同的方式归一化的数值。
从图6可知,本发明900℃烧结的烧结体显示出和1300℃烧结的大约相同的磁导率数值。
以和上述相同的方式用SEM观察1100℃和1300℃烧结的烧结体。
图2是1100℃烧结的烧结体剖视图,图3是1300℃烧结的烧结体剖视图。照片的放大倍数都为×1000。从图2和图3可知,在1100℃和1300℃烧结的烧结体中都看不到直径各为1微米或更小的细粒的存在。从这个事实可知,在本发明的氧化物磁性材料中,良好的高频特性是由于直径各为1微米或更小的颗粒以混合状态存在而获得的。
图4是图1的SEM照片中所示状态的简图。由图4可知,在本发明的氧化物磁性材料中,高频时的磁损耗是由于直径各为1微米或更小的颗粒1和直径大于1的颗粒的共同存在而减小的。
在上述所得氧化物磁性材料粉末其余的一半中加入PVA基粘合剂和有机溶剂,使PVA基粘合剂的含量为5重量%,然后将其在球磨机中混合,制成浆料。用刮刀将浆料形成许多所需厚度的生坯基片。再用印刷方法将银浆印刷在各块生坯基片上,形成所需的无源电路。将许多块这种生坯基片层叠起来,用液压机压紧,然后在900℃下进行烧结,制成层叠式电感器。证实了所得的电感器具有良好的高频特性。
实施例2用和实施例1相同的工序制成氧化物磁性原料粉末,不同的是以900℃、1000℃、1100℃、1200℃或1300℃对混合好的粉末进行预烧结。将所得粉末分别成形为环状坯体,然后与实施例1中的工序相同,在900℃烧结2小时,获得环状试样。预烧结和实施例1相同,都是保持2小时。
用阻抗分析仪测量所得环状试样的磁导率。
图10是显示磁导率测量结果的曲线图。图10中,以NiCuZn基尖晶石铁氧体的初始磁导率作为1将磁导率数值归一化。
从图1O可见,在1200以上的温度进行预烧结,磁导率的实数部分增加。因此可知,预烧结温度比随后的烧结温度高300℃以上为好。
用扫描电子显微镜观察各试样的剖面,测量直径大于1微米的颗粒的平均直径。测量结果示于表1。
表1
从表1可知,在1200或1300℃预烧结时,直径大于1微米的颗粒的平均直径在10微米以上。由此可知,直径大于1微米的颗粒的平均直径在10微米以上为好。
此外,还测量了各试样中直径各为1微米或更小的颗粒占所有颗粒的体积比。测量结果示于表2。
表2
从表1的结果可知,在任何情况下,直径各为1微米或更小颗粒的量在10体积%以上。
在上述实施例中,虽然是将本发明的氧化物磁性材料与粘合剂混合然后成形,但磁性材料粉末可与树脂等混合,然后成形为磁性体。
此外,也可在本发明的氧化物磁性材料中加入诸如硼硅酸盐玻璃的玻璃组分或诸如Bi2O3的低熔点氧化物。
根据本发明的制造方法,可制成氧化物磁性材料,它是六角晶系铁氧体,在低的烧结温度制成时在高频波段中损耗很小。因此,可提供在千兆赫波段中的损耗小、并能在Ag、Cu等导体共存条件下烧结的氧化物磁性材料,所以,本发明的氧化物磁性材料适合用于层叠式组合装置、层叠式电感器、LC(液晶)滤波器、RF(射频)组件等。
权利要求
1.氧化物磁性材料的制造方法,它包括以下步骤将原料粉末混合,使其具有包含选自Ba、Sr和Ca的至少一种元素A,Co和Cu,Fe,以及O的六角晶系铁氧体组成;在低于100℃的温度对混合好的粉末进行烧结。
2.如权利要求1所述的氧化物磁性材料的制造方法,其特征在于,将上述原料粉末混合后,对混合好的粉末进行预烧结,然后将所得的预烧结粉末粉碎,在粉碎后进行所述的烧结。
3.如权利要求2所述的氧化物磁性材料的制造方法,其特征在于,所述的预烧结温度比所述烧结温度高300℃以上。
4.如权利要求1~3中任何一项所述的氧化物磁性材料的制造方法,其特征在于,所述的六角晶系铁氧体组成中的元素摩尔比是A∶Co+Cu∶Fe∶O=1~6∶1~6∶30~38∶57~60。
5.如权利要求1所述的氧化物磁性材料的制造方法,其特征在于,它包括以下步骤将原料粉末混合,使其具有包含选自Ba、Sr和Ca的至少一种元素A,Co和Cu,Fe,以及O的六角晶系组成,所述的六角晶系铁氧体组成中的元素摩尔比是A∶Co+Cu∶Fe∶O=1~6∶1~6∶30~38∶57~60;在混合后对原料粉末进行预烧结,并将所得的预烧结粉末进行粉碎;在低于1000℃的温度对粉碎后的粉末进行烧结,其中预烧结的温度比烧结温度高300℃以上。
6.磁性材料,其特征在于,它由权利要求1~5中任何一项所述的氧化物磁性材料的制造方法制成。
7.如权利要求6所述的氧化物磁性材料,其特征在于,它在1千兆赫的复磁导率的实数部分比它的虚数部分大。
8.如权利要求6或7所述的氧化物磁性材料,其特征在于,它包含混合状态的直径各为10微米或更大的颗粒和直径各为1微米或更小的颗粒。
9.如权利要求6~8中任何一项所述的氧化物磁性材料,其特征在于,所述的直径各为1微米或更小的颗粒的含量在10体积%以上。
10.氧化物磁性材料,它包括混合状态的直径各为10微米或更大的颗粒和直径各为1微米或更小的颗粒。
11.如权利要求10所述的氧化物磁性材料,其特征在于,它在1千兆赫的复磁导率的实数部分比它的虚数部分大。
12.如权利要求10所述的氧化物磁性材料,其特征在于,所述的直径各为1微米或更小的颗粒的含量在10体积%以上。
全文摘要
氧化物磁性材料的制造方法,包括以下步骤;将原料粉末混合,使其具有包含选自Ba、Sr和Ca的至少一种元素A,Co和Cu,Fe,以及O的六角晶系铁氧体的组成,在低于1000℃的温度对所述混合好的粉末进行烧结。
文档编号H01F1/36GK1433996SQ03102918
公开日2003年8月6日 申请日期2003年1月21日 优先权日2002年1月21日
发明者梅本卓史, 吉川秀树, 蔵本庆一, 平野均 申请人:三洋电机株式会社