专利名称:导电性膏的制造方法和印刷电路板的制造方法
技术领域:
本发明涉及导电性膏以及印刷电路板(印刷布线板)的制造方法。该导电性膏在多层布线板中适合作为连接各层间的布线图形的通孔充填用膏。
在印刷电路板中,替代成为阻碍布线高密度化的要因的镀敷通孔,提出使用了导电性膏的内通孔连接方案(例如特开平6-268345号公报)。按照这种连接,能够高效率地提供高密度印刷电路板。
该高密度的印刷电路板按照以下方法制作。首先,借助于在两面粘贴具有脱模性的脱模性薄膜(高分子薄膜)的被压缩性,在多孔的预成型板(绝缘基板)设置贯通孔。其次,在贯通孔内充填导电性膏,剥离薄膜。接着,在预成型板的两面粘贴金属箔,通过加热与加压,使绝缘基板两面的金属箔由通孔导体(固化的导电性膏)进行电连接。而且,为了形成电路,选择性地蚀刻金属箔。
以下,参考附图具体地说明该制造方法。
首先,如图6A所示那样,准备在两面粘贴了脱模性薄膜11的多孔的预成型板12。多孔的预成型板12例如是使芳香族聚酰胺纤维的无纺织物含浸环氧树脂的复合材料。
其次,如图6B所示那样,在预成型板12的规定位置照射激光等能量束形成贯通孔13。接着如图6C所示那样,在印刷机(省略图示)的台上,从脱模性薄膜11上向预成型板12涂敷导电性膏14,充填到贯通孔13的内部。此时,脱模性薄膜11作为预成型板12的防污染膜而发挥功能。
又,如图6D所示,剥离脱模性薄膜11,象图6E所示那样,在预成型板12的两面粘贴例如作为铜箔的金属箔15。在此状态下,一边加热薄板12一边从两侧加压进行压缩。这样,象图6F所示那样,将预成型板12与金属箔15粘接在一起,同时通过压缩预成型板12,通过充填了导电性膏14的贯通孔13将两面的金属箔进行电连接(通孔连接)。与此同时,预成型板12所含有的环氧树脂以及导电性膏14固化。
然后,象图6G所示那样,选择性地蚀刻两面的金属箔15,形成布线图形16。这样,便制作出印刷电路板。
但是,上述的制造方法,存在以下的课题。
如图7A所示那样,预成型板12多用采用叠层加工法使其含浸在热固性树脂中的无纺织物17,加热前处于半固化状态(例如特开平7-106760号公报)。通常,在预成型板12的表面存在起因于表面露出的无纺织物、和在表面附近存在的无纺织物17的凹部18。该凹部18作为脱模性薄膜11与预成型板12之间的空隙而残存。
在该状态下将导电性膏14充填到贯通孔13并压缩预成型板12时,如图7B所示那样,导电性膏14进入凹部18,在邻接的通孔之间有时发生短路部分20,或使布线之间的绝缘可靠性降低。
尤其是高密度印刷电路板,由于也高密度地形成通孔,因此容易产生通孔之间的短路。
对于高密度印刷电路板,为了得到布线层之间的良好的电气导通,如图7A所示那样,可以使用使空隙19分散存在于内部的被压缩性的预成型板12。但是,在该空隙19中有时流入导电性膏14,因此与凹部18一样,空隙19也伴随布线图形的高密度化而成为导致短路的原因。
为了解决这些问题,可以考虑使预成型板12的表面平滑,以抑制凹部18。又,也可以考虑减少预成型板12中的空隙19。但是,由于这样的预成型板缺乏被压缩性,因此不能充分地压缩充填到贯通孔内的导电性膏。所以,确保配电层之间的良好的电导通是困难的。
在此,所谓变形度,就用激光衍射法测定的平均粒径而言,是指变形后的导电体粒子的平均粒径R2除以变形前的导电体粒子的平均粒径R1所得到的值(R2/R1)。
如果使用本发明的导电性膏,则容易确保良好的层间连接。因此,即使适用于被压缩性缺乏的预成型板也能容易得到低的基板电阻值。
本发明也提供印刷电路板的制造方法。该制造方法包括根据本发明制造导电性膏的工序、在至少使一方的面粘贴脱模性薄膜的预成型板上形成贯通孔的工序、向该贯通孔充填上述导电性膏的工序、将上述预成型板与上述脱模性薄膜以及上述导电性膏一起压缩的压缩工序、以及在该压缩工序后使上述脱模性薄膜从上述预成型板剥离的工序。
作为上述预成型板,含有补强纤维和树脂,在其表面上存在不存在补强纤维的树脂层,在压缩工序之前,树脂层的厚度在1μm以上30μm以下的预成型板较为适宜。
图2是表示用SEM观察经过变形的导电体粒子的另一例的状态的图。
图3是表示用SEM观察经过变形的导电体粒子的又一例的状态的图。
图4是表示用SEM观察经过变形之前的导电体粒子的一例的状态的图。
图5A~图5F分别是为了表示本发明的印刷电路板的制造方法的一例的剖面图。
图6A~图6G分别是为了表示以往的印刷电路板的制造方法的剖面图。
图7A、图7B是为了表示根据以往的方法制作的印刷电路板的短路的图,图7A是表示在印刷电路板上的凹部和空隙的存在的图,图7B是表示起因于凹部的短路的图。
实施发明的形态在使用激光的激光衍射法中,在将粒子投影的状态下测定其粒径。因此,当使粒子扁平化时,即使体积相同所测定的粒径也增大。在本发明中,作为变形的尺度使用上述变形度,其值在1.01~1.5,最好在1.02~1.30,对导电体粒子施加应力使粒子扁平化。通过扁平化使导电体粒子之间的接触面积增加,其结果基板的电阻值降低。
通过该变形,导电体粒子的比表面积以0.05m2/g~1.5m2/g为宜。伴随比表面积的增大,导电性膏的粘度上升。导电性膏,如果其粘度过高,则不容易充填到贯通孔中,在脱模性薄膜的剥离时,贯通孔两端的膏也有时发生与薄膜一起被剥离的现象(所谓的“膏剥离”)。从这一观点出发,使比表面积不足1.0m2/g更好。
使导电体粒子变形,以使用激光衍射法测定的平均粒径在0.2μm~20μm为宜。当平均粒径不足0.2μm时,使比表面积在1.5m2/g以下是困难的。因此,膏的粘度过高、而且以高浓度使导电体粒子分散也是困难的。另一方面,在平均粒径超过20μm时,在一个通孔内所充填的导电体粒子数减少。当导电体粒子数减少时,导电体粒子的接触面积减少,不能得到充分低的基板电阻值。
又,比表面积不足0.05m2/g的导电体粒子,由于平均粒径大,因此基于与上述同样的理由难实现低的基板电阻。
在导电性膏中,除了导电体粒子以外,至少含有以热固性树脂为主成分的粘合剂。导电性膏中混合导电体粒子30~70体积%、粘合剂70~30体积%为宜。在采用该混合比的场合,导电性膏的理想的粘度在1000Pa·s以下。
导电体粒子含有从金、铂、银、钯、铜、镍、锡、铅、铟、锌以及铬中选择的至少1种、尤其是从金、铂、银、钯、铜、镍、锡、铅以及铟中选择的至少1种为宜。导电体粒子例如是下述(I)~(IV)的任何一种即可。(I)金、铂、银、钯、铜、镍、锡、铅或铟;(II)从金、铂、银、钯、铜、镍、锡、铅、铟、锌以及铬中选择的任意组合的合金粒子。(III)以导电性或非导电性粒子为核、用从金、铂、银、钯、铜、镍、锡、铅以及铟中选择的至少1种金属包覆的粒子。(IV)以导电性或非导电性粒子为核、用从金、铂、银、钯、铜、镍、锡、铅、铟、锌以及铬中选择的任意组合的合金包覆的粒子。
以下,就导电体粒子的变形处理进行说明。
对于导电体粒子的变形,施加机械应力即可,对于使用的装置等没有限制,使用球磨机、喷磨机等磨机即可。在使用磨机时,变形度可以根据陶瓷球的直径和投入量、球磨机的旋转速度、处理时间等各种条件来控制。
导电体粒子的变形处理,一边将粒子与氧和水分隔离开一边进行为宜,这是因为导电体粒子的表面存在的氧和水分成为提高导电性膏的粘度的要因的缘故。可以认为,氧和水分引起的粘度上升是由于粒子表面的粘合剂树脂的吸附量的增加以及水分子导致的粘合剂树脂的交联反应所致。
因此,导电体粒子例如在非水系溶剂、具体地讲在有机溶剂中变形为宜。作为有机溶剂,例如可以使用乙醇等醇。根据需要,有机溶剂喷吹氮等非氧化性气体以降低溶解氧为好。有机溶剂中的溶解氧以1mg/L为宜。又,与溶剂接触的磨机内的气氛保持在非氧化性气氛为宜。作为非氧化性气氛,与减压气氛一起,可以列举出氮气氛、惰性气体气氛等非氧化性气体气氛。为了抑制氧和水的吸附,使导电体粒子的变形尽量在短时间内结束为宜。
根据本发明人研究的结果,为了减低膏粘度,导电体粒子表面的吸附水在1000ppm以下为宜。又,导电体粒子表面的氧浓度在1.0重量%以下为宜。
为了减低导电体粒子表面的氧浓度和吸附水浓度,补充导电体粒子的干燥处理为好。干燥处理使用上述列举的非氧化性气氛为好。干燥处理时的理想的气氛温度为50℃~200℃。无论在变形处理的前后,如果需要干燥处理,则在变形处理的前后实施即可。
变形前的导电体粒子没有特别的限制,如果是大致的球形即可。在此,所谓大致球形,严密地讲是指粒子的最长径与最短径之比在1~2.0、最好在1~1.5的粒子,是包括理想的球形的概念。
在变形后的导电体粒子的比表面积过高的场合,在变形之前使导电体粒子的表面平滑化也可以。根据上述的变形处理,由于导电体粒子相互接触,因此其表面可以某种程度地被平滑化。但是,在该平滑化尚不充分的场合,例如使用混捏机和行星混合机等粉体分散机预先进行导电体粒子的平滑化处理为好。关于平滑化处理,在非水系溶剂中、非氧化性气体气氛中等的非氧化气氛中进行为宜。
象上述说明那样,对于导电体粒子,在变形处理的前后适当地实施干燥处理、平滑化处理等为好。又,在变形处理后,为了分离凝聚的粒子,进行粉碎处理也可以。导电体粒子例如经过干燥、变形、(再)干燥、粉碎等各种处理被制造出来。在这一连串的处理期间导电体粒子接触的气相保持为非氧化性气氛(例如氮气氛)为宜。
如果使用本发明的导电性膏,为了避免布线之间的短路而限制预成型板的被压缩性时仍然可以得到布线层之间的电阻充分小的印刷电路板。这是由于导电性粒子的扁平化而增大粒子之间的接触面积的缘故。在以前熟知的导电体粒子中,有采用电解法制造的所谓的鳞片状导电体粒子,该导电体粒子由于具有起因于其制造方法的枝晶状的形状,故比表面积过大。因此,导电性膏的粘度变高,容易导致向贯通孔充填导电性膏时的充填不足、以及在剥离脱模性薄膜时被薄膜带走导电性膏的缺陷等。
参考图5A~图5F,就印刷电路板的制造方法的理想的一例加以说明。
图5A所示的预成型板2,例如作为芳族聚酰胺纤维的补强纤维7集中于薄板的内部而配置。在薄板的两面形成实质上只由树脂成分构成的树脂层8。由于该树脂层没有纤维,因此在该预成型板2的表面不容易产生诱发短路的凹部。树脂层的厚度优选为1~30μm,尤其优选5~15μm。该薄板2的表面粗糙度Ra最好在10μm以下。又,预成型板2的整个厚度没有特别的限制,但最好为50~150μm。
对于该预成型板2,在减少表面的凹部的同时减少内部空隙,或者将它们完全消除都可以。在限制被压缩性时,若使用以往的球形的导电体粒子则不能充分地确保电导通。但是,本发明的导电体粒子即使预成型板的压缩率较低,仍能实现低的基板电阻值。
图5B~图5F所示的工序与图6C~图6G所示的工序基本相同。在预成型板2上在脱模性薄膜1粘贴在其两面的状态下形成贯通孔3(图5B)。向贯通孔3充填导电性膏4(图5C)。脱模性薄膜1被剥离(图5D)、预成型板2在其两面配置金属箔5的状态下被压缩(图5E),金属箔5进行图形化,形成布线图形6(图5F)。
用扫描电子显微镜(SEM)观察适用变形处理得到的铜粒子的状态示于
图1~图3。这些粒子是使大致球形的铜粒子(图4)变形,以使变形度分别为1.20、1.02、1.11而得到的粒子。图4的铜粒子是将通过湿式反应而析出的铜经过平滑化处理后,筛分调整粒度而得到的。
这些铜粒子均呈椭圆形(俯视图为椭圆形金币)乃至柿种子形。
这些铜粒子是将大致球形的铜粒子与乙醇一起投入球磨机内由陶瓷球使其变形而得到的。适宜地改变球磨机的旋转速度和转动时间以调整变形度。又,在变形处理中球磨机内的气氛由氮气置换。
使变形的一部分铜粒子分散在水中,采用使用了日机装公司制造的“显微跟踪仪(マイクロトラツク)HRA、型号9320-100”(激光波长780nm、激光输出功率3mW)的激光衍射法测定变形度。在导电性膏的调制中使用了经过变形的铜粒子的剩余部分。
对于这样得到的铜粒子添加粘合剂,由3辊辊压机混练得到导电性膏。具体地讲,在由相对于65体积%的铜粒子为双酚F型环氧树脂(日本环氧树脂公司制造的“エピコ-ト(Ep807”)10体积%和二聚酸二缩水甘油酸酯型环氧树脂(日本环氧树脂公司制造的“エピコ-ト871)20体积%构成的环氧树脂主剂中,添加胺加合物型固化剂(味之素公司制造的アミキュアMY-24)5体积%。
又,用于粘合剂的热固性树脂不限于双酚F型环氧树脂等,双酚A型环氧树脂、双酚AD型环氧树脂等的缩水甘油醚型的环氧树脂、脂环式环氧树脂、缩水甘油胺型环氧树脂、缩水甘油酸酯型环氧树脂等含有2个以上环氧基的环氧树脂等也可以。
环氧基1个的环氧化合物作为反应稀释剂使其包含在上述环氧树脂主剂中也可以。再者,除了上述环氧树脂以外,以聚酰亚胺树脂、氰酸酯树脂、苯酚甲阶酚醛树脂等作为粘合剂的主剂使用来形成导电性膏也可以。
上述说明的导电性膏是所谓的无溶剂型,但为了调整印刷特性,根据需要再添加丁基溶纤剂(ブチルセルソルブ)、乙基溶纤剂、丁基卡必醇、乙基卡必醇、丁基卡必醇乙酸酯、乙基卡必醇乙酸酯、α-萜品醇等的溶剂以及分散剂等添加剂也可以。
准备上述导电性膏和预成型板。该预成型板如图5A所示,使补强纤维(芳族聚酰胺纤维)集中于薄板的内部,在薄板两侧的表面分别形成厚度约为5μm的由环氧树脂构成的树脂层。
又,使预成型板增强的纤维不只限于芳族聚酰胺纤维,使用PBO(聚对亚苯基苯并二噁唑)纤维、PBI(聚苯并咪唑)纤维、PTFE(聚四氟乙烯)纤维、PBZT(聚对亚苯基苯并二噻唑)纤维、全芳香族聚酯纤维等的有机纤维、或者玻璃纤维等无机纤维也可以。又,作为树脂,代替环氧树脂使用聚酰亚胺树脂、酚醛树脂、氟树脂、不饱和聚酯树脂、PPE(聚亚苯基醚)树脂、氰酸酯树脂等的热固性树脂或热塑性树脂也可以。
以后按照图5B~图5F所示的顺序制作印刷电路板。脱模性薄膜1是在厚度约20μm的PET(聚对苯二甲酸乙二醇酯)高分子薄膜的一面上形成硅氧烷系脱模层的叠层体。作为金属箔5使用铜箔。作为压缩条件为压制温度200℃、压力50kg/cm2、压缩时间60分钟。
除了图1~图3所示的导电体粒子以外,使用适宜调整变形度的导电体粒子制作印刷电路板,测定基板的电阻值(试料1~8)。又,原样地直接使用未进行变形处理的球形导电粒子(试料9和10)。试料9使用了未进行平滑化处理的球状的导电体粒子;试料10使用了进行过平滑化处理的球形的导电体粒子。
对于这样得到的各导电体粒子以及印刷电路板,测定导电体粒子的变形度、比表面积、平均粒径、以及印刷电路板的膏粘度和基板电阻值。
变形度以及平均粒径均采用上述的激光衍射法测定。又,比表面积采用使用了BET-1点法的比表面积测定计进行测定。此时,作为吸附气体使用氮。膏的粘度使用E型粘度计在常温、0.5rpm的条件下进行测定。
所谓基板电阻值,是指孔径100μm的500个通孔导体的串联电阻值,是包括布线电阻0.7Ω在内的值。
又,测定试料1~7的吸附水浓度的结果,无论哪一种导电体粒子,吸附水浓度都在1000ppm以下。吸附水浓度是使用卡尔-费歇尔(Karl-fischer)水分计测定加热到400℃时的水分量来确定的。可以认为,对于试料8,由于处理时间较长,因此吸附水浓度升高。
又,测定试料1~8的氧浓度的结果,无论哪一种导电体粒子,氧浓度都在1.0重量%以下。氧浓度是通过用红外吸收法将在坩埚内加热、产生的二氧化碳定量来确定的(根据日本工业标准(JIS)Z2613)。测定结果示于表1。
表1
如表1所示,通过使用变形度在1.50以下的扁平状的导电体粒子,基板电阻值变得非常低(3Ω以下,试料1~7为2.42~2.78Ω)。可以认为,以往的大致球形的导电体粒子基本上依靠点接触确保电导通,与此相比,扁平状的导电体粒子粒子之间的面接触有助于电阻值的降低。
可以认为,经过变形处理的导电体粒子是由外部应力使其塑性变形的,但在其晶格残留应力。在晶体内部积蓄的内应力使在加热和加压时的原子的重新排列容易。可以认为,在上述的举例中,在导电体粒子中积蓄的内应力成为使粒子之间凝聚更容易且更牢固的要因。
根据本发明,能够提供一种导电性膏含有例如平均粒径在0.2~20μm、更好是在0.5μm以上、例如为6~20μm,比表面积在0.05~1.5m2/g、更好是在0.2m2/g以上、最好是不足1.0m2/g的扁平状导电体粒子,以及以热固性树脂为主成分的粘合剂,导电体粒子的含有率在30~70体积%、粘合剂的含有率在70~30体积%,并且其粘度在1000Pa·s以下。
又,本发明根据其另一个侧面,是一种导电体膏的制造方法,包括使导电体粒子变形,以使其比表面积在0.05~1.5m2/g、更好是在0.2m2/g以上、不足1.0m2/g的工序。
正如以上说明的那样,根据本发明能够提供容易确保电导通的导电性膏。如果使用该导电性膏,即使使用被压缩性缺乏的预成型板,也能够保证布线层间的电阻较低。
权利要求
1.一种导电性膏的制造方法,该制造方法包括对导电体粒子施加应力,使上述导电体粒子变形以使变形度为1.01~1.5的工序;将经过变形的导电体粒子和以热固性树脂为主成分的粘合剂混合的工序,在此,所谓变形度,就用激光衍射法测定的平均粒径而言,是指其变形后的导电体粒子的平均粒径除以变形前的导电体粒子的平均粒径所得到的值。
2.根据权利要求1所记载的导电性膏的制造方法,其中,使导电体粒子变形,以使其比表面积成为0.05m2/g~1.5m2/g。
3.根据权利要求1所记载的导电性膏的制造方法,其中,使导电体粒子变形,以使其由激光衍射法测定的平均粒径成为0.2μm~20μm。
4.根据权利要求1所记载的导电性膏的制造方法,其中,将上述导电体粒子和上述粘合剂混合,以使导电体粒子成为30~70体积%、以热固性树脂为主成分的粘合剂成为70~30体积%。
5.一种导电性膏的制造方法,其中,导电体粒子含有从金、铂、银、钯、铜、镍、锡、铅、铟、锌以及铬中选择的至少1种。
6.根据权利要求1所记载的导电性膏的制造方法,在有机溶剂中对导电体粒子施加应力。
7.根据权利要求1所记载的导电性膏的制造方法,还包括在非氧化气氛中使导电体粒子干燥的工序。
8.一种印刷电路板的制造方法,该制造方法包括根据权利要求1所记载的方法制造导电性膏的工序;在至少在一个面上粘贴了脱模性薄膜的预成型板上形成贯通孔的工序;向上述贯通孔充填上述导电性膏的工序;将上述预成型板与上述脱模性薄膜以及上述导电性膏一起压缩的压缩工序;在上述压缩工序之后,将上述脱模性薄膜从上述预成型板剥离的工序。
9.根据权利要求8所记载的印刷电路板的制造方法,其中,预成型板包含补强纤维和树脂,在上述预成型板的表面存在不含有上述补强纤维的树脂层,在压缩工序之前上述树脂层的厚度为1μm以上30μm以下。
全文摘要
本发明提供一种导电性膏的制造方法,该制造方法包括对导电体粒子施加应力,在变形度为1.01~1.5的前提下使导电体粒子变形的工序;以及将变形的导电体粒子和以热固性树脂为主成分的粘合剂混合的工序。在此,所谓变形度,就用激光衍射法测定的平均粒径而言,是指变形后的导电体粒子的平均粒径除以变形前的导电体粒子的平均粒径所得到的值。将该导电性膏适用于限制了被压缩性的预成型板,能够抑制通孔间的短路和绝缘性的降低。
文档编号H01B1/22GK1465075SQ02802563
公开日2003年12月31日 申请日期2002年8月8日 优先权日2001年7月31日
发明者铃木武, 留河悟, 富田佳宏, 杉田勇一郎, 山根茂 申请人:松下电器产业株式会社