固体电解电容及其制造方法

文档序号:6968598阅读:287来源:国知局
专利名称:固体电解电容及其制造方法
技术领域
本发明涉及一种在各种电子仪器中使用的固体电解电容及其制造方法。
背景技术
近来,随着电子仪器的小型化、高频化,对电容也要求小型大容量化、低ESR(等价串联电阻)、低ESL(等价串联电感)。之前,作为大容量积层型固体电解电容,周知的有美国专利5,377,073号公报和日本特开平11-274002号公报所记载的芯片型电容。但是,这些现有的固体电解电容,由于为安装在电路板上所必要的电连接用端子和引线要形成电阻、电感分量,成为进一步低ESL化的障碍。
本发明的目的在于提供一种解决以上那样的现有的课题,安装在电路板上的、可以与半导体元件直接连接的、高频响应特性优异的、大容量的固体电解电容及其制造方法。

发明内容
本发明的固体电解电容由1个电容元件或者多个电容元件积层构成,该电容元件包括具有多孔质部的阀金属片、在该阀金属片的一面上形成的电极显出部、在该阀金属片的多孔质部上形成的电介质层、在该电介质层上形成的固体电解质层、在该固体电解质层上形成的集电体层,该电极显出部和集电体层处在阀金属片的同一面上,具有使该电极显出部和集电体层之间电绝缘的绝缘部。
本发明的固体电解电容可以直接安装半导体元件,不需要现有的连接端子和引线,高频响应特性优异。
又,本发明提供上述固体电解电容的制造方法。


图1是本发明实施方式1的固体电解电容的立体图。
图2是本发明实施方式1的固体电解电容的截面图。
图3是本发明实施方式1的固体电解电容的主要部位放大截面图。
图4是本发明实施方式1和6的固体电解电容的主要部位放大截面图。
图5是本发明实施方式2和7的固体电解电容的上面图。
图6是本发明实施方式2和7的固体电解电容的截面图。
图7是本发明实施方式2和7的固体电解电容的另一电极部形状的截面图。
图8是本发明实施方式2和7的固体电解电容的另一电极部形状的截面图。
图9是本发明实施方式3和8的固体电解电容的电容元件的截面图。
图10是本发明实施方式4的铝箔的截面图。
图11是在本发明实施方式4的铝箔上形成了阻膜的状态下的截面图。
图12是将本发明实施方式4的铝箔多孔质化后的阀金属片的截面图。
图13是在将本发明实施方式4的铝箔多孔质化后的阀金属片上形成了电介质层的状态下的截面图。
图14是在本发明实施方式4的阀金属片上形成了绝缘部的状态下的截面图。
图15是在本发明实施方式4的阀金属片上形成了固体电解质层的状态下的截面图。
图16是从本发明实施方式4的阀金属片上除去阻膜的状态下的截面图。
图17是在本发明实施方式4的阀金属片上形成了第1连接端子、第2连接端子的电容元件的截面图。
图18是在本发明实施方式4的电容元件的外周和下面形成了外装的状态下的截面图。
图19是在本发明实施方式4的电容元件的下面的外装上形成了盲孔的状态下的截面图。
图20是从本发明实施方式4的电容元件盲孔引出的电极、和追加形成了为与下面引出的电极绝缘的外装的状态下的截面图。
图21是在本发明实施方式4的电容元件上形成了外部端子后获得的固体电解电容的截面图。
图22是表示本发明实施方式5的固体电解电容的制造方法的钽烧结体的截面图。
图23是在本发明实施方式5的钽烧结体上形成电极部的工序的截面图。
图24是在本发明实施方式5的钽烧结体上形成了电介质覆膜的状态的截面图。
图25是在本发明实施方式5的钽烧结体上形成了绝缘部的状态的截面图。
图26是在本发明实施方式5的钽烧结体上形成了固体电解质层、集电体层的状态的截面图。
图27是在本发明实施方式5的钽烧结体上除去了阻膜的状态的截面图。
图28是本发明实施方式5的电容元件的截面图。
图29是在本发明实施方式5的电容元件上形成了外装后的固体电解电容的截面图。
图30是本发明实施方式6的固体电解电容的立体图。
图31是本发明实施方式6的固体电解电容的截面图。
图32是本发明实施方式7的固体电解电容的截面图。
图33是本发明实施方式7的固体电解电容的另一例的截面图。
图34是本发明实施方式7的固体电解电容的另一例的截面图。
图35是本发明实施方式9将电容元件积层后的状态的截面图。
图36是由本发明实施方式9获得的固体电解电容的截面图。
图37是本发明实施方式10将电容元件积层后的固体电解电容的截面图。
具体实施例方式
以下参照

本发明的固体电解电容及其制造方法。附图仅为示意图,各要素之间的尺寸关系并没有正确画出。
(实施方式1)在图1~图4中,电容元件1包括在多个电极部2之外的地方多孔质化后的阀金属片3、在该阀金属片3的多孔质化后的表面上设置的电介质层4、在该电介质层4上设置的固体电解质层5、在该固体电解质层5上设置的集电体层6、在上述电极部2和集电体层6之间设置的绝缘部7。在此,电极部2显出的部分称为电极显出部25。电极显出部25和集电体层6处在该阀金属片3的同一面上,电极显出部25和集电体层6由绝缘部7进行电绝缘。
此外,虽然电容元件1具有上述构成就可以了,但优选在上述电极显出部25上形成另外的金属层作为第1连接端子8,在绝缘部7的周围的集电体层6上形成另外的金属层作为第2连接端子9。
在这样构成的电容元件1的外周部上通过模压成形形成由环氧树脂等构成的外装11,形成固体电解电容。
作为上述阀金属片3,在相当于电极部2的部分之外,通过蚀刻铝箔进行多孔质化,通过在反应液中对阳极进行氧化,在其表面以及多孔质化表面上形成电介质层4。
又,作为固体电解质层5,可以使用通过化学氧化共聚和电解共聚形成了聚吡咯和聚噻吩等构成的功能性高分子的导电性高分子层,和含浸在硝酸锰溶液进行热分解后形成的二氧化锰层等。
进一步,作为集电体层6,可以采用单独的碳层或者碳层与银浆料层的积层构造。
又,作为绝缘层7,可以采用印刷性能和挥发性能优异的硅树脂,除此之外也可以采用环氧树脂、氟系树脂。
此外,也可以采用为了提高印刷性能和挥发性能而在上述树脂中包含了必要的添加物的组成物。
作为第1连接端子8和第2连接端子9,可以采用铜、焊锡、银、金、镍等金属,既可以是单独的金属层也可以是这些金属的积层构造。
又,在电极显出部25上形成第1连接端子8时,如图4所示通过在电极显出部上实施形成凹凸部12的粗面加工,可以将第1连接端子8牢固地连接在电极显出部上,提高电连接的可靠性。
以上那样构成的固体电解电容,如图1、图2所示,在上下面上分别设置了多个连接端子8和连接端子9,在其一面上安装半导体部件,而另一面与电路板的焊盘连接。
这时,连接端子8和连接端子9的数量可以和半导体部件的管脚数量相同,也可以比半导体部件的管脚数量多,这时,可以在该固体电解电容的这一面上除了安装半导体部件以外还可以安装芯片电阻、芯片电容、芯片电感等芯片部件,让电路模块化。
又,根据需要,可以在下面的外装内形成第1引出电极22、第2引出电极23,并分别连接在外部端子24上。
该引出电极、外部端子并不一定需要,可以根据电路设计、安装方式采用最适合的构造。
(实施方式2)第2实施方式的基本构成和实施方式1相同,不同点在于在第1连接端子8和第2连接端子9上,为了容易与半导体部件连接,设置了金、焊锡或者锡构成的连接凸块13、14。连接凸块13、14,为了让焊盘间距保持一定,通过设置在形成连接凸块13、14的部分设置了开口部15的绝缘膜16所形成。
通过这样在片状的固体电解电容的同一面内交叉配置连接端子8和连接端子9,可以实现低ESR化和低ESL化,其结果获得高频响应特性优异的固体电解电容。
图6所示的固体电解电容为片状固体电解电容,在两面上都设置了连接凸块13、14。
此外,也可以只在上面设置连接凸块13、14,如图2所示在下面用外装11将其覆盖,可以在布线密度高的电路板上以绝缘的状态实施安装。
进一步,采用图7、图8说明电极部的另一形状。
图7所示的固体电解电容,在阀金属片3中电极部2的截面积比阀金属片3的电极显出部25的面积小。让电极部2的截面形状做成上述那样,可以增大电容的容量。电极部2的截面积的控制通过控制阀金属片的蚀刻条件实现。
又,图8所示的电极部2,阀金属片3内的电极部2以任意的深度形成。这样的构造,可以进一步增大电容的容量。
这样的本实施方式的固体电解电容,通过在连接端子8和连接端子9上分别设置连接凸块13、14,容易在其上安装半导体部件以及容易安装在电路板上,同时由于可以获得更小型化的更大容量的电容,可以实现部件的小型化和安装的高效化。
(实施方式3)采用图9说明第3实施方式。如图9所示,本实施方式的电容元件1包括将钽粉末形成为片状、将其烧结后形成的阀金属片3、通过在形成了阀金属片3的电极显出部25的部分上形成阻膜的方式不让反应液浸入而电极显出部25以外的部分上通过阳极氧化形成的电介质层、在电介质层上形成的导电性高分子或者二氧化锰等的固体电解质层、在固体电解质层上形成碳和银浆料的集电体层、在电极显出部25的周围设置的绝缘部7、与设置在绝缘部7内的电极部2连接的第1连接端子8、与设置在绝缘部7的周围的集电体层连接的第2连接端子9。
在这样构成的电容元件上形成图1所示的外装11后,完成固体电解电容。
以上那样采用阀金属粉末烧结片,与通过蚀刻多孔质化的铝箔相比较,可以获得更大容量的固体电解电容。
此外,在形成阀金属片3时,形成电极部2的方法中如上所述采用了阻膜等防止电介质层的形成,也可以采用预先在阀金属片3上设置贯通孔的方法。这时,在贯通孔内形成没有电介质层的壁面,在该孔内压入同种阀金属粉末,形成电极部2。作为另外的电极部2的形成方法,也可以在上述贯通孔内壁实施电镀设置金属层。
(实施方式4)采用图10~图21说明第4实施方式。
首先准备图10所示的铝箔17。然后如图11所示,在铝箔17的两面上在形成电极部的位置上形成耐药品性的光阻和掩膜带等阻膜18,使阻膜18硬化。
然后,如图12所示,对形成了阻膜18的铝箔17进行化学蚀刻,使没有形成阻膜18的部分多孔质化。这样,制作出在阻膜18形成部分上形成了电极部2的阀金属片3。
然后,如图13所示,在留下阻膜18的状态下使阀金属片体3在反应液中进行阳极氧化,在电极部2之外的多孔质化后部分的表面上形成电介质层4。
然后,如图14所示,在阻膜18的周围为了防止电极部2和这之后要形成的集电体层6之间的短路通过印刷等方式形成绝缘部7。
然后,如图15所示,将形成了绝缘部7的阀金属片浸渍在包含吡咯的溶液中,然后浸渍在氧化剂溶液中通过化学氧化共聚在电介质层4上形成薄薄的聚吡咯层。
进一步将形成了薄聚吡咯层的阀金属片浸渍在包含吡咯的溶液中,以聚吡咯层作为阳极侧,以溶液中的电极作为阴极侧,通过电解共聚,在上述薄聚吡咯层上形成充分厚的聚吡咯层,形成固体电解电容5。
之后,在固体电解电容5上形成碳层以及银浆料层等的集电体层6,然后如图16所示,除去阻膜18。
然后,如图17所示,在电极显出部25以及集电体层6上通过蒸发、溅射、电镀等方法形成金、银、铜、镍等电极材料中的任一种,分别在电极显出部25上形成第1连接端子8、在集电体层6上形成第2连接端子9,完成电容元件1。
然后如图18所示,在电容元件1的外周和下面采用作为电绝缘膜的环氧树脂等形成外装11。
然后如图19所示,为形成引出电极,通过电镀、或者激光加工形成盲孔21。
然后如图20所示,从盲孔21通过蒸发、溅射、电镀等方法形成与连接端子8和连接端子9电连接的引出电极22、23。
然后如图21所示,为提高电绝缘,防止外部应力以及提高可靠性,在电容元件1的下面通过用环氧树脂射出成形进一步重叠形成外装11,同时形成与在外周部上形成的引出电极的端子22、23电连接的外部端子24,作为固体电解电容的成品。
依据由以上本实施方式的固体电解电容的制造方法,只是在已经确立的采用铝箔的功能性高分子固体电解电容的制造过程中增加很少的改进,就可以获得富有高可靠性的固体电解电容。
(实施方式5)采用图22~图29说明第5实施方式。
首先如图22将钽粉末与粘接剂混炼后形成片状,经过脱粘接剂处理后,以给定温度烧结形成片状的多孔质化后的钽烧结体19。
然后如图23所示,浸渍在形成电极部2的位置上的环氧树脂等树脂材料20,并且在形成电极显出部25的位置上通过印刷等形成阻膜18,并使其硬化。
然后,如图24所示,在反应液中进行阳极氧化,在电极部2之外的多孔质化后部分的表面上形成电介质层4。
然后,如图25所示,在阻膜18的周围为了形成绝缘部7,通过印刷等方式形成树脂层,以后和实施方式4相同,在电介质层4上形成聚吡咯的固体电解电容5。
之后,如图26所示,在固体电解电容5上形成碳层、银浆料层等构成的集电体层6。
然后如图27所示,除去阻膜18,如图28所示,在由绝缘层7绝缘分离的状态下在电极部2的外表面(电极显出部25)以及集电体层6的外表面上通过蒸发、溅射、电镀等方法形成金、银、铜、镍等电极材料中的任一种,分别在电极显出部25上形成第1连接端子8、在集电体层6上形成第2连接端子9,完成电容元件。
最后如图29所示,通过用环氧树脂射出成形,形成外装11,作为固体电解电容的成品。
如上所述,如果采用片状的钽烧结体19,和实施方式4中所示的采用铝箔的固体电解电容相比较,可以制作出大容量的固体电解电容。
(实施方式6)采用图30~图31说明第6实施方式。
在图30~图31中,电容元件1包括将设置的多个电极部2以外部分多孔质化的阀金属片3、在该阀金属片3的多孔质化部分的表面上设置的电介质层4、在该电介质层4上设置的固体电解质层5、在该固体电解质层5上设置的集电体层6、在上述电极部2表面的电极显出部25和集电体层6之间设置的绝缘部7。
此外,虽然该电容元件1具有上述构成就可以了,但最好是在上述电极显出部25上形成另外的金属层作为第1连接端子8,在绝缘部7的周围的集电体层6上形成另外的金属层作为第2连接端子9。将这样构成的电容元件1用2个积层,将电容元件1的第1连接端子8之间、电容元件1的第2连接端子9之间采用焊锡等层间连接材料10进行连接,在该积层体的外周部通过模压成形形成环氧树脂等的外装11,形成固体电解电容。上述电容元件1的构成以及所使用的材料和实施方式1的情况相同。
以上构成的固体电解电容,如图30、图31所示,在上下面上设置多个连接端子8、连接端子9,在其一面上安装半导体部件,另一面连接在电路板的焊盘上。
这时,连接端子8、连接端子9的数量可以和半导体部件的连接管脚的数量一致,也可以多于该数量。
当比半导体部件的连接管脚数量多时,可以在该固体电解电容的这一面上除了安装半导体部件以外还可以安装芯片电阻、芯片电容、芯片电感等芯片部件,使电路模块化。
通过这样积层固体电解电容的构成,可以实现大容量化,同时通过交叉配置连接端子8和连接端子9,可以实现低ESR化和低ESL化,其结果获得高频响应特性优异的固体电解电容。
(实施方式7)图5表示实施方式7中的固体电解电容的上面图,图32表示其截面图,图33表示另一例的截面图,图34表示又一例的截面图。
在实施方式7中,基本构成和实施方式6相同,不同点在于在第1连接端子8和第2连接端子9上,为了容易与半导体部件连接,设置了金、焊锡或者锡构成的连接凸块13、14。连接凸块13、14,为了使焊盘间距保持一定,通过设置在形成连接凸块13、14的部分设置了开口部15的绝缘膜16所形成。
图32表示将电容元件1用2个积层后的固体电解电容,图33表示将电容元件1用3个积层后的固体电解电容,其任一个均在两面设置了连接凸块13、14。
在图33中,作为连接电极部2的层间连接材料10,采用焊锡、导电性粘接剂、异方导电性片中的任一种,作为连接集电体层的层间连接层,采用导电性粘接剂。
另一方面,图34表示将电容元件1用3个积层后的固体电解电容,并且只在上面设置了连接凸块13、14,下面用外装11将其覆盖,可以在布线图形密度高的电路板上以绝缘的状态实施安装。
这样的本实施方式的固体电解电容,通过在连接端子8、连接端子9上分别设置连接凸块13、14,容易在其上安装半导体部件以及容易安装在电路板上。
(实施方式8)图9表示第8实施方式的电容元件的主要部位的截面图。
在本实施方式的电容元件1中,将钽粉末形成为片状、将其烧结后作为阀金属片3。通过不让反应液浸入作为该阀金属片3的电极部2,在电极部2以外的部分上通过阳极氧化形成的电介质层4。
在电介质层4上形成导电性高分子或者二氧化锰等的固体电解质层5、在固体电解质层5上形成碳和银浆料的集电体层6、在电极部2表面的电极显出部25的周围设置绝缘部7、在绝缘部7内设置与电极显出部25连接的第1连接端子8、在绝缘部7的周围设置与集电体层连接的第2连接端子9。
到此为止与实施方式3相同。
这样构成的电容元件1,可以根据需要,和实施方式6同样积层,在形成外装后,构成固体电解电容。
以上那样采用阀金属粉末,是因为与以铝箔作为阀金属片3的电容元件1相比较,可以获得更大容量的固体电解电容。
(实施方式9)在第9实施方式中,首先采用实施方式4的图10~图21所示的方法完成1张电容元件1。
然后,如图35所示,通过第1连接端子8之间和第2连接端子9之间对准位置,并用层间连接材料10将2个电容元件1电连接和机械连接,获得2个电容元件1的积层体。
最后,如图36所示,在电容元件1的积层体周围,为提高电绝缘、耐湿性,防止外部应力破坏,提高可靠性,通过用环氧树脂等进行射出成形,形成外装11,作为固体电解电容的成品。
依据以上本实施方式的固体电解电容的制造方法,只是在已经确立的采用铝箔的功能性高分子固体电解电容的制造过程中进行改进,就可以获得富有高可靠性的固体电解电容。
(实施方式10)在第10实施方式中,首先采用实施方式5的图22~图29所示的方法完成1张电容元件1。
然后,如图37所示,通过使第1连接端子8之间和第2连接端子9之间对准位置,并用层间连接材料10将2个这样构成的电容元件1电连接和机械连接,最后在外周部通过用环氧树脂等进行射出成形,形成外装11,作为固体电解电容的成品。
如上所述,通过采用片状的钽烧结体19,和实施方式9中所示的采用铝箔的固体电解电容相比较,可以制作出大容量的固体电解电容。
产业上利用的可能性如上所述,本发明的固体电解电容,可以将半导体部件直接连接在固体电解电容的表面上,制造出高频响应性能优异的模块。进一步,本发明的固体电解电容,可以获得小型大容量的固体电解电容。
权利要求
1.一种固体电解电容,其特征在于包括具有多孔质部的阀金属片、在所述阀金属片的一面上形成的电极显出部、在所述阀金属片的多孔质部上形成的电介质层、在所述电介质层上形成的固体电解质层、在所述固体电解质层上形成的集电体层、让所述电极显出部和所述集电体层之间电绝缘的绝缘部,所述电极显出部和所述集电体层处在所述阀金属片的同一面上。
2.根据权利要求1所述的固体电解电容,其特征在于所述阀金属片是铝箔和阀金属粉末的烧结体中的任何一种。
3.根据权利要求1所述的固体电解电容,其特征在于所述电极显出部是阀金属粉末的烧结体和在烧结体的贯通孔中形成的导电体中的任一个的外表面。
4.根据权利要求1所述的固体电解电容,其特征在于所述固体电解质层至少是导电性高分子和二氧化锰中的任何一种。
5.根据权利要求1所述的固体电解电容,其特征在于进一步包括与所述电极显出部连接的第1连接端子、与所述集电体层连接的第2连接端子。
6.根据权利要求1所述的固体电解电容,其特征在于在所述阀金属片的两面上形成所述电极显出部、所述电介质层、所述固体电解质层、所述集电体层、所述绝缘部。
7.根据权利要求6所述的固体电解电容,其特征在于形成了与所述电极显出部连接的第1连接端子、与所述集电体层连接的第2连接端子。
8.根据权利要求7所述的固体电解电容,其特征在于在所述阀金属片的两面上形成所述第1连接端子、所述第2连接端子。
9.根据权利要求5、8中任一权利要求所述的固体电解电容,其特征在于所述第1连接端子是在所述电极显出部上形成另外的金属层和在所述电极显出部的粗化面上形成另外的金属层中的任何一种。
10.根据权利要求5、8中任一权利要求所述的固体电解电容,其特征在于所述第2连接端子是在所述集电体层上形成的金属层。
11.根据权利要求5、8中任一权利要求所述的固体电解电容,其特征在于所述第2连接端子是在所述集电体层上形成的、设置了所述绝缘部的开口部的金属层。
12.根据权利要求5、8中任一权利要求所述的固体电解电容,其特征在于所述第1连接端子和所述第2连接端子是连接凸块。
13.根据权利要求1所述的固体电解电容,其特征在于在所述阀金属片中电极部截面积的大小比所述电极显出部的面积小。
14.根据权利要求1所述的固体电解电容,其特征在于还具有外装。
15.一种固体电解电容的制造方法,其特征在于包括在形成电极显出部的部分的阀金属片表面上形成阻膜的工序、在所述阀金属片上形成多孔质部的工序、在所述多孔质部上形成电介质层的工序、在所述阻膜的周围形成绝缘部的工序,在所述电介质层上形成固体电解质层的工序、在所述固体电解质层上形成集电体层的工序。
16.一种固体电解电容的制造方法,其特征在于包括将阀金属粉末烧结成阀金属片的工序、在成为电极显出部的部分之外的所述阀金属片上形成电介质层的工序、在所述电极显出部的周围形成绝缘部的工序,在所述电介质层上形成固体电解质层的工序、在所述固体电解质层上形成集电体层的工序。
17.根据权利要求16所述的固体电解电容的制造方法,其特征在于进一步包括设置贯通孔的工序、在所述贯通孔上形成电极部的工序。
18.一种固体电解电容,其特征在于将多个电容元件积层构成,多个电容元件包括具有多孔质部的阀金属片、在所述阀金属片的一面上形成的电极显出部、在所述阀金属片的多孔质部上形成的电介质层、在所述电介质层上形成的固体电解质层、在所述固体电解质层上形成的集电体层、使所述电极显出部和所述集电体层之间电绝缘的绝缘部,并且所述电极显出部和所述集电体层处在所述阀金属片的同一面上。
19.根据权利要求18所述的固体电解电容,其特征在于将所述多个电容元件的所述电极显出部之间、以及集电体层之间电连接。
20.根据权利要求18所述的固体电解电容,其特征在于所述阀金属片是铝箔和阀金属粉末的烧结体中的任何一种。
21.根据权利要求18所述的固体电解电容,其特征在于所述电极显出部是阀金属粉末的烧结体和在烧结体的贯通孔中形成的导电体中的任一个的外表面。
22.根据权利要求18所述的固体电解电容,其特征在于所述固体电解质是导电性高分子。
23.根据权利要求18所述的固体电解电容,其特征在于形成有与所述电极显出部连接的第1连接端子、与所述集电体层连接的第2连接端子。
24.根据权利要求23所述的固体电解电容,其特征在于所述第1连接端子和所述第2连接端子在所述电容元件的两面上形成。
25.根据权利要求23所述的固体电解电容,其特征在于所述第1连接端子是在所述电极显出部上形成另外的金属层和在所述电极显出部的粗化面上形成另外的金属层中的任何一种。
26.根据权利要求23所述的固体电解电容,其特征在于所述第2连接端子是在所述集电体层上形成的金属层。
27.根据权利要求23所述的固体电解电容,其特征在于所述第2连接端子是在所述集电体层上形成的、设置了所述绝缘部的开口部的金属层。
28.根据权利要求23所述的固体电解电容,其特征在于所述第1连接端子和所述第2连接端子是连接凸块。
29.根据权利要求19所述的固体电解电容,其特征在于所述多个电容元件的电极显出部之间、以及集电体层之间电连接的材料是焊锡、导电性粘接剂、异方导电性粘接剂、导电性高分子中的任何一种。
30.根据权利要求18、29中任一权利要求所述的固体电解电容,其特征在于还具有外装。
31.一种固体电解电容的制造方法,其特征在于包括在形成电极显出部的阀金属片上的部分形成阻膜的工序、在所述阀金属片上形成多孔质部的工序、在所述多孔质部上形成电介质层的工序、在所述阻膜的周围形成绝缘部的工序,在所述电介质层上形成固体电解质层的工序、形成在所述固体电解质层上设置了集电体层的电容元件的工序、将所述电容元件多个积层、让所述电极显出部之间、所述集电体层之间电连接的工序。
32.根据权利要求31所述的固体电解电容的制造方法,其特征在于所述阀金属片是铝箔和阀金属粉末的烧结体中的任何一种。
33.根据权利要求32所述的固体电解电容的制造方法,其特征在于进一步包括在所述阀金属片中设置贯通孔的工序和在所述贯通孔上形成电极部的工序。
全文摘要
本发明的固体电解电容,包括多孔质化的阀金属片、在该多孔质部上形成的电介质层、在该电介质层上形成的固体电解质层、在该固体电解质层上形成的集电体层和电极显出部、使电极显出部和集电体层之间电绝缘的绝缘部,电极显出部和集电体层处在阀金属片的同一面上。上述构成的电容元件可以积层。依据本发明,可以获得小型大容量的、高频响应特性优异的固体电解电容。
文档编号H01G9/012GK1460274SQ02800775
公开日2003年12月3日 申请日期2002年3月22日 优先权日2001年3月23日
发明者木村涼, 三木胜政, 御堂勇治, 藤井达雄, 益见英树 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1