专利名称:用于电池电源装置的端板及电池电源的冷却装置的利记博彩app
本申请是申请日为1998年3月24日、申请号为98105133.2、发明名称为用于电池电源装置的端板及电池电源的冷却装置的中国专利申请的第1分案申请。
本发明涉及用于电动车的电动机驱动电源等的电池电源装置的端板及利用空冷对该电池电源装置进行冷却的冷却装置。
作为这种电池电源装置,我们知道有一种对单排电气连接且机械串联连接多个单电池而成的电池模块进行多根并联配置并使其保持在支架盒内、然后对这些电池模块进行电气的串联连接以取出高压电的结构。
本发明者等开发了如下的电池电源装置通过将多根电池模块并联配置在由壳体本体及两端板所构成的支架盒内,使电池模块的端部保持在设于端板的保持孔内,并将电池模块的端部与配置在端板外面的金属制的通路衬片(パスバ-)进行紧固,然后将电池模块之间进行电气的串联连接。
但是,采用这种现有的结构,由于端板与通路衬片不是同一体,故存在着电池模块的支承强度、刚性不足,将电池模块装入支架盒内的作业较烦琐的问题。另外,还存在着将电池模块的正极与负极搞错而装入支架盒内的误插入的问题,和当电池模块与通路衬片紧固时在单电池之间产生扭转的问题。
此外,在上述那样的电池电源装置中,如何对因密集状态地配置在支架盒内的来自电池模块的发热而产生的升温进行抑制是一个重要的课题。
作为这种电池电源装置的电池,虽然使用了镍氢二次电池,但在异常时会从电池罐漏出氢,对于这种漏出氢的安全措施也是一个重要的课题。
我们知道,虽然将电气地串联连接1对电池电源装置的电池电源集合装置搭载在电动车上,构成了供给高压电的结构,但怎样合理地对此时的各电池电源装置进行冷却是一个重要的课题。
为抑制因上述电池电源装置中的电池发热所带来的升温,本发明者等对支架盒进行了钻研,开发了具有沿各电池模块而流动适量的冷却用空气的空气流导向体的冷却装置。
但是,采用这种现有的结构,不仅适当分配相对于各电池模块的空气流是困难的,而且,对于构成各电池模块的串联连接的单电池之间进行均匀冷却也是困难的。即,沿电池模块而流动的空气,在从上游侧流动到下游侧之间,因由单电池所受到的热量而升温,冷却效果逐渐降低,然而为补偿其而均匀冷却从上游侧到下游侧的各单电池的进行每个电池模块单位的风量控制和风速控制是非常困难的。
本发明的主要目的在于,提供一种解决上述现有结构中的缺点并以简单的结构可合理地进行电池模块的电压检测和单电池的异常升温检测的电池电源装置及其所使用的端板。
本发明的又一主要目的在于,提供一种解决上述现有结构中的缺点并对漏出氢具有安全措施、对具有一对电池电源装置的电池电源集合装置可合理冷却的结构较简单的冷却装置。
为达到上述目的,本发明的电池电源装置是,对单排电气连接且机械串联连接多个单电池而成的电池模块进行多根并联配置并使其保持在支架盒内,在位于所述支架盒两端部的各自的端板上,设置将电池模块的端子之间电气连接的通路衬片,其特点在于,端板用树脂板构成,通路衬片通过插入成形而固定在端板上。
本发明的电池电源装置,由于利用具有上述结构并将通路衬片一体装入端板内,故可使电池模块的支承强度、刚性显著提高,并可仅以螺栓等的紧固作业将电池模块与通路衬片结合,结果,将电池模块装入支架盒内的作业就简单容易。
在上述发明中,最好构成如下的结构单电池构成为镍氢二次电池,并且配置在支架盒内的所有电池模块由一侧的端板的通路衬片与另一侧的端板的通路衬片作交替连接、且作为整体而作电气的串联连接,再将电池模块在分别纵横一直线上水平配置成矩阵状并保持在支架盒内。
在本发明的电池电源装置中,做成了通过插入成形而将用来测定单根或多根的电池模块的端子间电压的导线埋设在所述端板内的结构,再在用来测定端子间电压的导线中途配设保险丝,且做成将所述保险丝安装在通过插入成形而固定于端板上的保险丝安装片上的结构,另外,做成将各导线集中在一个部位并可从端板向外部引出的结构,再通过插入成形而将导线埋设在2个端板中仅一侧的端板内,并将各导线与各通路衬片连接,从而可构成对2根电池模块的端子间电压进行测定的结构。
通过做成如上的结构,可提供一种使测定单根或多根的电池模块的端子间电压用的导线内藏于端板的、操作简便、无误配线且结构简单的电池模块的电压检测装置,另外,利用所述保险丝而可获得短路时的安全。
在本发明的电池电源装置中,做成在各单电池上从外部设置当升温时电阻急剧增大的温度传感器、将这些温度传感器串联连接且至少以电池模块单位检测升温异常的结构,另外,将对串联连接各温度传感器的连接线的端部予以保持的保持片做成通过插入成形而固定在端板上的结构,再在各电池模块单位上设置连接线,对保持这些端部的保持片作电气的串联连接,从而构成以多根电池模块单位来检测升温异常的结构,另外,将电气串联连接保持片之间的连接片做成通过插入成形而固定在端板上的结构,再在配置于支架盒内的所有单电池上从外部安装当升温时电阻急剧增大的温度传感器,将这些所有的温度传感器串联连接,从而可构成检测升温异常的结构。
通过做成如上的结构,可至少以电池模块单位来检测单电池的异常升温,根据情况,可用具有仅2根的外部引出线的简单结构来检测属于电池电源装置的所有单电池的异常升温,另外,通过将连接所述保持片与保持片之间的连接片与端板一体构成,可获得结构的简单化和连接作业的容易化。
在本发明的电池电源装置中,分别在电池模块的一端具有成为正极的非圆形状的螺母构件,在另一端具有成为负极的非圆形状的螺母构件,通过对穿过设在通路衬片上的贯通孔而旋入这些螺母构件的螺钉构件进行紧固而构成了将电池模块固定在两端板的通路衬片上的结构,另外,将成为正极的螺母构件的外形与成为负极的螺母构件的外形做成不同的形状,且做成当使两形状重合时,均不被另一方所完全包含的结构,另外,在端板上设置与螺母构件的外形相对应的形状的保持凹部,构成使螺母构件嵌合保持在该保持凹部的结构,此外,将对于成为正极的螺母构件予以嵌合保持的保持凹部的形状和对于成为负极的螺母构件予以嵌合保持的保持凹部的形状做成不同的形状。
通过做成如上的结构,可利用螺钉构件的紧固而简单地将电池模块固定在通路衬片上,另外,通过使非圆形的螺母构件保持在与其嵌合的保持凹部并紧固螺钉构件,可阻止在紧固时的电池模块的共同旋转,结果,可容易地进行紧固作业,并可防止在单电池之间产生扭转,又,通过将成为正极的螺母构件及与其对应的保持凹部的形状和成为负极的螺母构件及与其对应的保持凹部的形状做成不同的形状,从而可解决误插入电池模块的问题。
在本发明的电池电源装置中,可做成支架盒的一侧的端板固定在支架盒本体上,另一侧的端板向电池模块的长度方向可移动地支承在支架盒本体上的结构。
利用如此的结构,即使因热膨胀系数之差而使支架盒与电池模块的相关位置变化,也能始终可靠地支承电池模块。
在本发明的电池电源装置中,支架盒具有与两端板平行的电池模块支承板,在电池模块支承板上设置滑动插入各电池模块的贯通孔,通过将各防振环压入各贯通孔,在电池模块支承板上沿其而组装与各贯通孔对应的一体地具有防振环的防振板,在使各电池模块的长度方向的中间部适当部位插嵌在各防振环的状态下,支承在电池模块支承板上,另外,电池模块在单电池之间的连接部具有绝缘环,且将其中的插嵌于防振环的部位的绝缘环外径做得比其它的绝缘环大,又,电池模块支承板用划分支架盒内的电池模块配设空间的隔壁来构成,该隔壁可做成与支架盒一体形成的结构。
利用如此的结构,可用简单的结构实现对付来自外部的振动保护电池模块的防振结构。
在本发明中,具有多个所述电池电源装置,可构成将电池电源装置之间电气串联连接的电池电源集合装置,另外,在该电池电源装置中,连接电池电源装置之间的连接电缆是挠性的。
采用上述电池电源集合装置,可取出高电压的电力,成为适合于电动车的电动机驱动电源的电力,另外,通过用挠性的连接电缆来连接电池电源装置之间,在两电池电源装置的相关位置变动的情况下,也能可靠地连接两者。
为达到上述目的,本发明是一种用于电池电源装置的端板,对单排电气连接且机械串联连接多个单电池而成的电池模块进行多根并联配置并使其保持在支架盒内,在位于所述支架盒两端部的端板上,设置将电池模块的端子之间电气连接的通路衬片,其特点在于,所述端板用树脂板构成,并且通路衬片通过插入成形而埋设固定在树脂板上,在树脂板的一面,为使通路衬片的电池模块端部连接的部分露出而形成将电池模块的端部嵌合保持的保持凹部,在树脂板的另一面,为使将通路衬片的电池模块端部紧固的螺钉构件接触的部分露出而形成紧固用凹部。
本发明的端板,利用具有上述的结构而使电池模块的支承强度、刚性显著提高,可将电池模块装入支架盒内的作业变得简单容易。
在本发明的端板中,将对成为电池模块正极的一侧端部予以嵌合保持的保持凹部的形状和对成为电池模块负极的一侧的端部予以嵌合保持的保持凹部的形状做成不同的形状,且做成当使两形状重合时均不被另一方所完全包含的结构,另外,功能上有互换性地形成有保持凹部与紧固用凹部,又,位于对成为电池模块正极的一侧端部进行嵌合保持的保持凹部的背面侧的紧固用凹部,可形成为对成为电池模块负极的一侧端部进行嵌合保持的保持凹部的结构,位于成为电池模块负极的一侧端部进行嵌合保持的保持凹部的背面侧的紧固用凹部,可形成为对成为电池模块正极的一侧端部进行嵌合保持的保持凹部的结构。
通过做成这种结构,可解决误插入电池模块的问题,另外,可提供一种在具有左右1对电池电源装置的电池电源集合装置中两电池电源装置能通用的端板。
又,为达到上述目的,本发明是一种对单排电气连接且机械串联连接多个单电池而成的电池模块进行多根并联配置使其保持在支架盒内并在所述支架盒内通过使空气强制性地向一方向流动而对支架盒内的多根电池模块进行冷却的装置,其特点在于,所述空气的流动方向是与电池模块的长度方向正交的方向。
采用本发明的电池电源的冷却装置,由于冷却用空气的流动方向是与各电池模块的长度方向正交的方向,故无需特别设计就可容易地对构成各电池模块的单电池进行均匀的相互冷却,对于因从上游侧流动到下游侧之间产生的空气升温而带来的冷却效果降低的措施,不必要象现有技术那样以电池模块单位来进行,若以电池电源装置整体来进行可较容易地实现。
在上述发明中,单电池是镍氢二次电池,而电池模块配置成水平,构成空气从下方向上方流动的结构,另外,将电池模块在分别纵横一直线上水平配置成矩阵状并保持在支架盒内,又,强制性使空气向一方向流动的装置,最好是配置在支架盒上游侧的强制式风扇。
尤其在使用镍氢二次电池的电池电源装置中,在上游侧配置强制式风扇,在支架盒内,通过强制性使空气从下方向上方流动而对电池模块进行冷却,则在万一从电池模块漏出氢的情况下,也能可靠地防止氢被送向强制式风扇一侧,从而可确保在漏出氢时的安全。
在上述本发明的电池电源的冷却装置中,为使在支架盒内流动的空气的流速下游侧比上游侧快而在支架盒内配置整流装置,另外,在支架盒内的下游侧部位,为使在支架盒内流动的空气流速向空气流动的方向慢慢变大而做成使通道面积逐渐缩小的结构。
采用这种结构,可使从上游侧向下游侧流动的空气流速逐渐增大,由于可大致与流速的平方根成正比地提高冷却效果,故可补偿因从上游侧流动到下游侧之间产生的空气升温所带来的冷却效果的降低,可对所有的电池模块进行大致均匀的冷却。
在上述本发明的电池电源的冷却装置中,为使暴露于在支架盒内流动的空气中的电池模块的面积成为下游侧比上游侧小而做成了在支架盒内配置遮蔽装置的结构,另外,仅在支架盒内的上游侧部位配置遮蔽装置,并且为使暴露于在支架盒内流动的空气中的电池模块的面积向空气流动的方向慢慢变大,可构成所述遮蔽装置。
采用这种结构,可防止上游侧的电池模块的过冷,从而对电池电源装置整体的电池模块的冷却可有效地利用空气流,并可使下游侧的电池模块比上游侧接触更多的空气,故可补偿因从上游侧流动到下游侧之间产生的空气升温所带来的冷却效果的降低,可对所有的电池模块进行大致均匀的冷却。
并且,通过使上述的整流装置与遮蔽装置组合,可容易实现电池电源装置整体的电池模块的均匀冷却。
在上述本发明的电池电源的冷却装置中,使各电池模块的两端部支承在支架盒的两端板上,在两端板的中间位置的适当部位,将具有滑动插入各电池模块的贯通孔的冷却调整散热板与它们平行且可系脱地组装在支架盒中,可将整流装置用的翅片或/及遮蔽装置用的翅片与冷却调整散热板一体地设置。
采用这种结构,可实现上述电池模块的均匀冷却,并可提供一种结构简单、冷却调整散热板在支架盒上的组装性容易的冷却装置。
为达到上述目的,本发明是一种具有对单排电气连接且机械串联连接多个单电池而成的电池模块进行多根水平地并联配置使其保持在支架盒内的左右1对电池电源装置、在所述支架盒的下方分别形成空气供给室、从强制式风扇通过左右的空气供给室而将空气送到各自的电池电源装置的支架盒的下部开口、利用在各支架盒内上升而从上部开口排出的空气流对电池模块进行冷却的装置,其特点在于,强制式风扇具有与端板平行的方向将空气向各自的电池电源装置供给的2个送风口,所述送风口在接近于各电池电源装置的各自一侧的端板的位置开口,在各空气供给室的底面,形成有从所述一侧的端板侧向另一侧的端板侧使通道截面积逐渐缩小的斜坡。
采用上述发明,可用1台强制式风扇向左右的电池电源装置进行送风,即使在各电池电源装置中从空气供给室向支架盒内进入的空气量,也因设有所述斜坡,且由于从一侧的端板侧向着另一侧的端板侧的方向上的位置而可防止空气量误差。
在上述本发明的电池电源的冷却装置中,在空气供给室的入口部附近,设有将从在接近于一侧的端板的位置开口的送风口送来的空气的流动方向向另一侧的端板侧进行变更的整流导向体,另外,在空气供给室的入口部附近,设有将从送风口送来的空气的流动方向导向上方的风向导向体,此外,在空气供给室的底面的斜坡上,设置将空气的流动方向导向上方的风向导向体,从而可构成对送向位于支架盒的两端板的中间部位的风量予以确保的结构。
采用这种结构,可将从接近于一侧的端板的位置的空气供给室的入口流入的空气利用整流导向体而顺利地导向到另一侧的端板侧,另外,利用在空气供给室的入口部附近设置的风向导向体,来防止空气的过而不入,可确保从所述入口部附近部位的向支架盒内的送风量,又,利用在所述斜坡上设置的风向导向体,可确保向支架盒的位于两端板中间的部位的送风量,结果,可不会偏向特定部位,而是整个区域地均匀地向支架盒内供给冷却用空气。因此,可均匀且有效地进行两电池电源装置内的多个电池模块的冷却。
在上述发明的电池电源的冷却装置中,为使在支架盒内流动的空气的流速下游侧比上游侧快而做成了在支架盒内配置整流装置的结构,另外,在支架盒内的上方部部位,为使在支架盒内流动的空气流速向空气流动的方向慢慢变大而做成了使通道面积逐渐缩小的结构,又,为使暴露于在支架盒内流动的空气中的电池模块的面积成为上方侧比下方侧小而做成了在支架盒内配置遮蔽装置的结构,又,仅在支架盒内的下方部部位配置遮蔽装置,并且为使暴露于在支架盒内流动的空气中的电池模块的面积向空气流动的方向慢慢变大,可构成所述遮蔽装置。
采用这种结构,因所述整流装置和遮蔽装置的作用,可不偏向上下方向地均匀地对各电池电源装置内的多个电池模块进行空冷。
附图的简单说明
图1是表示汽车与电池盒单元关系的示意侧视图。
图2是大致表示电池盒单元的立体图。
图3是表示电池电源集合装置的立体图。
图4的(a)是表示电池模块的主视图,(b)是其左视图,(c)是其右视图。
图5是用假想线表示外装管子的电池模块的立体图。
图6是表示电池模块的主要部分的局部剖切的剖视图。
图7是分解表示电池电源装置的立体图。
图8是表示电池电源装置的剖视图。
图9是表示电池电源装置的主要部分的放大剖视图。
图10是从内面侧看到第1端板的主视图。
图11的(a)是沿图10中A-A线的放大剖视图,(b)是其主视图。
图12是沿图10中B-B线的放大剖视图。
图13是从外面侧看到第2端板的主视图。
图14是沿图13中C-C线的放大剖视图。
图15是表示电池模块的连接状态的原理图。
图16是表示PTC传感器的连接状态的原理图。
图17是电池盒单元的剖视图。
图18是电池盒单元的分解立体图。
实施例图1表示使内燃机与电池驱动电动机组合而作为行驶驱动源的复合式汽车。该复合式汽车以最佳条件使内燃机工作,当因行驶条件而产生输出功率不足时,用电池驱动电动机的输出功率补偿所述的输出功率不足,另外,通过在减速时进行再生电力吸收,与一般的内燃机单独行驶的汽车比较,使每单位燃料的行驶距离飞跃性地增大。
作为电池驱动电动机的电力源,使用镍氢二次电池,容纳于图1、图2所示的电池盒单元1中。该电池盒单元1配置在后部座位2与其后方的后货箱3之间的空间。电池盒单元1具有由树脂成形品构成的外装壳体4;在其内部配置的送风机5;在外装壳体4的内部配置的左右1对电池电源装置6、6。对于各电池电源装置6,系将126个成为镍氢二次电池的单位电池的单电池(有时也称作电池元件(電池セル))7进行电气串联连接,从而可供给大约125V电压的电力。左右的电池电源装置6、6是同样结构,并且两者电气串联连接而构成电池电源集合装置8,可供给大约250V电压的电力。即,对于电池驱动电动机可供给大约250V电压的电力。
图3表示由左右1对电池电源装置6、6构成的电池电源集合装置8。各电池电源装置6,具有对单排电气连接且机械串联连接6个单电池而成的电池模块9进行横3排、纵7排共计21根的并联配置并使其保持在支架盒10内的结构。
如图4、图5及图6所示,电池模块9,系通过金属制的连接环50用点焊S而将各单电池7之间串联连接。另外,在电池模块9的正极端具有底部11a的方形螺母11通过所述连接环50用点焊而与正极端的单电池7连接,在电池模块9的负极端具有底部12a的六角形螺母12通过所述连接环50用点焊而与负极端的单电池7连接。所述方形螺母11的对边之间尺寸与所述六角形螺母12的对边之间尺寸为相同,从而这些螺母11、12不会与后述方形保持凹部30a、六角形保持凹部30b误嵌合。在所述连接部,装设有用来防止同一单电池中正极与负极的短路的树脂制的绝缘环13a、13b。对于该绝缘环13a、13b,具有外径不同的2种,在共计6个绝缘环13a、13b中,用13b表示的2个外径大。
在各单电池7的侧周面粘接有PTC(Positive Temperature Coefficient)传感器14。该PTC传感器14是一种当单电池7内部异常而升温时电阻急剧增大而对其异常进行检测的温度传感器,例如,当达到80℃时,其电阻急剧增大。PTC传感器也称作复式传感器(ポリセンサ)。另外,作为这种温度传感器14,当然可使用除了PTC传感器以外的传感器。6个PTC传感器14用连接线15串联连接,其两端安装由可弯曲的金属板所构成的端子片16。两端子片16、16突出于电池模块9两端地配设。
用具有聚氯乙烯等电气绝缘性与热收缩性的树脂制的外装管17覆盖电池模块9的外周面。PTC传感器14及其连接线15与单电池7一起用外装管17保护,成为所述正极的方形螺母11、成为所述负极的六角形螺母12及所述两端子片16、16露出于外装管17。
所述支架盒10如图3、图7及图8所示,主要包括支架本体18;第1端板19;第2端板20;3块冷却散热板21、21、21及2块防振橡胶板22、22。
支架本体18,是上下面开放的呈长方体盒状的树脂一体成形品。在4块的构成铅垂壁的两端壁23、23及两侧壁24、24的内部形成的空间26,通过与两端壁23、23平行的2块隔壁25、25而大致相等地划分成3个空间26a、26b、26c。在各自的第2端板20侧的第1划分空间26a、中央的第2划分空间26b、第1端板19侧的第3划分空间26c,位于其中央部且与两端壁23、23平行地将冷却散热板21从上方插入而固定在支架本体18中。
在端壁23、23、隔壁25、25及冷却散热板21、21、21上,在同一对应位置上设有横(水平方向)3排纵(铅垂方向)7排共计21个用来贯通电池模块9的贯通孔23a、25a、21a。横3排纵7排的贯通孔23a、25a、21a以纵横相等间距设置,并形成比电池模块9的外径大的直径。
在支架本体18的一端部,利用4个角的螺钉孔70而将第1端板19用紧固螺钉固定在端壁23上。27是在支架本体18的端壁23周围形成的凸缘部,是用来以嵌合状态容纳第1端板19的。在支架本体18的另一端部,可与端壁23分离、连接地保持有第2端板20。即,以在形成于支架本体18的另一端部的凸缘部27上可移动的状态嵌合、保持有第2端板20。
如图7~图12所示,第1端板19用树脂板构成,并且,通路衬片28利用插入成形而埋设固定在树脂板内,在树脂板的内面29,设有成为电池模块9正极端的对方形螺母11进行嵌合保持的方形的保持凹部30a及成为电池模块9负极端的对六角形螺母12进行嵌合保持的六角形的保持凹部30b。所述保持凹部30a、30b,设置在与所述贯通孔23a、25a、21a对应的位置,整体设置横3排、纵7排共计21个。并且,如图10所示,以相邻的2个中的一个是正极侧的方形的保持凹部30a、另一个是负极侧的六角形的保持凹部30b的关系,交替设置2种保持凹部30a、30b。各保持凹部30a、30b由于形成与所述电池模块9的电极端的螺母11、12相嵌合的形状,故方形螺母11只能保持在方形的保持凹部30a内,对搞错地保持在方形的保持凹部30a内的情况可防患于未然。
在第1端板19的外面31,在与所述保持凹部30a、30b对应的位置,形成有共计21个紧固用凹部32a、32b。该紧固用凹部32a、32b的形状有方形和六角形2种,方形的紧固用凹部32a是与所述方形的保持凹部30a完全相同的形状,六角形的紧固用凹部32b是与所述六角形的保持凹部30b完全相同的形状。并且,如图10所示,分别在方形的保持凹部30a的背面设置六角形的紧固用凹部32b,在六角形的保持凹部30b的背面设置方形的紧固用凹部32a。做成这种结构是因为,作为构成图3所示的电池电源集合装置8的左右1对电池电源装置6、6的各自的第1端板19、19可共用相同的构件。用于左侧的电池电源装置6的第1端板19,可以上面所述的状态组装在支架本体18上,而用于右侧的电池电源装置6的第1端板19,相反地使用内外面,即,将相当于所述紧固用凹部32a、32b的一面作为保持凹部30a、30b来使用地组装在支架本体18上。
在电池模块9的端子之间电气连接的金属制的通路衬片28,通过插入成形而埋设固定于第1端板19的树脂板厚度方向的中央。并且,在用所述保持凹部30a、30b及紧固用凹部32a、32b围住的部分,通路衬片28向外部露出,在该露出的部分的中心,设有贯通孔33。
电池模块9端部的螺母11、12,以与所述保持凹部30a、30b嵌合保持的状态从紧固用凹部32a、32b侧通过所述贯通孔33而与插入后的螺栓34旋合,通过紧固螺栓34,所述螺母11、12可电气且机械地与通路衬片28结合。成为电池模块9正极的方形螺母11,由于正确地与正极侧的方形的保持凹部30a嵌合保持,故电池模块9的正极就可靠地与通路衬片28的正极侧部分连接。同样,成为电池模块9负极的六角形螺母12,由于正确地与负极侧的六角形的保持凹部30b嵌合保持,故电池模块9的负极就可靠地与通路衬片28的负极侧部分连接。另外,由于所述螺母11、12可利用保持凹部30a、30b而被阻止旋转,故可顺利地进行螺栓34的紧固作业。
如图8、图13及图14所示,第2端板20与第1端板19一样,用树脂板构成,并且通路衬片28通过插入成形而埋设固定在树脂板内,在其内面29具有保持凹部30a、30b,在其外面31具有紧固用凹部32a、32b。而且,与第1端板19的情况一样,各电池模块9的端部的螺母11、12通过螺栓34而与通路衬片28电气且机械地结合。另外,当然可在与第1端板19的方形的保持凹部30a相对的部位,配置第2端板20的六角形的保持凹部30b,在与第1端板19的六角形的保持凹部30b相对的部位,配置第2端板20的方形的保持凹部30a。
并联配置在电池电源装置6内的21根电池模块9,通过所述第1端板19的通路衬片28及第2端板20的通路衬片28而被电气地串联连接。埋设固定在第1端板19内的通路衬片28,有11块,用图10中(1)、(3)、(5)、(7)、(9)、(11)、(13)、(15)、(17)、(19)、(21)所示,埋设固定在第2端板20内的通路衬片28,有11块,用图13中(2)、(4)、(6)、(8)、(10)、(12)、(14)、(16)、(18)、(20)、(22)所示,而它们与各电池模块9的连接关系表示于图15。
用(1)与(22)表示的通路衬片,严格来讲,与其说是通路衬片,还不如将前者称为负极端子衬片、后者称为正极端子衬片适当,且本发明未含有通路衬片的概念,但为便于说明本实施例而称作通路衬片进行如下说明。用(2)~(21)表示的通路衬片,具有在电气串联中与邻接的电池模块9正极的接点及与负极的接点,且对所述邻接的电池模块9进行电气的串联连接。如图15所示,用(2)所示的通路衬片,具有正极接点2a与负极接点2b,用(21)表示的通路衬片,具有正极接点21a与负极接点21b。图15中,用1ab表示的接点在电池电源集合装置8的整体中成为负极端子,在此与电池驱动电动机连接的动力电缆35的连接端环35a(参照图7)连接。另外,在图15中,用22ab表示的接点成为一个电池电源装置6的正极端子,在此与另一个电池电源装置6的负极端子连接的连接电缆36(参照图3)的连接端部连接。在所述两接点1ab、22ab之间的电压大约为125V。另外,所示连接电缆36具有可挠性,即使产生随着电池模块9的热伸缩的第2端板20的移动,也能可靠地在两电池电源装置6、6之间进行电气连接。
如图7、图10、图12及图15所示,第1端板19,通过插入成形而将用来测定2根电池模块9、9单位的端子间电压的导线37埋设在树脂板内。如图15中单点划线所示,在各自的用所述(1)、(3)、(5)、(7)、(9)、(11)、(13)、(15)、(17)、(19)、(21)表示的通路衬片28上连接导线37,且构成可对例如(1)与(3)的通路衬片之间的电压V1-3和(19)与(21)的通路衬片之间的电压V19-21进行测定的结构。所述电压V1-3表示在(1)的通路衬片与(3)的通路衬片之间电气串联连接的2根电池模块9、9即12个单电池7之间的电压,图15所示的电压V3-5、V5-7……V19-21也表示同样的2根电池模块9、9之间的电压。在测定这些电压、检测到其异常情况时,由于在属于对应的2根电池模块9、9的12个单电池7内的至少1个中就产生一些异常,故所述对应可限定在较狭窄的范围内来进行。
各导线37如图10所示,配设在第1端板19的树脂板内,并集中在第1端板19的一侧边的规定部位,汇总向外部引出。而且如图7所示,各导线37由带状树脂片38固定并被引导到电压测定部。
如图10、图11所示,在各导线37与通路衬片28的连接部安装有保险丝39,以防止导线37中流过过电流。该保险丝39通过后期安装而安装在与通路衬片28一体设置的导线连接用的延长片(保险丝安装片)40上。虽然所述延长片40的中央部表、背面,通过开口部41、42而露出在外部,但在将该延长片40的一部分经后加工冲裁而做成断开状态后,再做成为安装保险丝39的结构,以导通断开部(图11(b)中用假想线表示断开部)的两侧。所述开口部41、42然后进行树脂成型39a。
所述导线37仅设在第1端板19上,不设置在第2端板20上。
对于第1端板19,如图7、图10及图12所示,对将6个所述PTC传感器14串联连接的连接线15的端子片16进行连接用的保持片43,通过插入成形而固定在树脂板上。
保持片43在露出设于第1端板19上的贯通开口部44的部分具有螺纹孔45。并且如图12所示,将所述端子片16插入所述贯通开口部44后弯曲,接着用螺钉46将端子片16与保持片43电气且机械地连接。
保持片43在两端部具有2个螺纹孔45、45,有着将所述连接线15的相邻之间的端子片16、16进行电气连接的作为通路衬片的作用。只有图10、图16中用P表示的保持片仅具有单独的螺纹孔45,仅发挥作为负极端子的作用。
对于第2端板20,如图13所示,上述同样的保持片43也通过插入成形固定在树脂板上。该第2端板20的保持片43在两端部也具有2个螺纹孔45、45,有着作为通路衬片的作用。只有图13、图16中用Q表示的保持片仅具有单独的螺纹孔45,仅发挥作为正极端子的作用。
图16表示通过第1端板19及第2端板20的保持片43而将配置于电池电源装置6的与126个所有单电池7连接的PTC传感器14进行电气串联连接的状态。由于是和利用通路衬片28对图15所示的电池模块9进行电气串联连接的情况相同,故详细说明省略。
在作为用P表示的负极端子的保持片43与用Q表示的正极端子的保持片43上分别连接外部引出线47、48(参照图3),并与电阻测定装置49连接。当即使是所述126个单电池7内的1个产生异常升温时,与所述单电池7连接的PTC传感器14的电阻值飞跃地增大,结果,电阻测定装置49检测出其异常情况。因此,可通过将外部引出线47、48的数量限于最少2根的简单结构,对电池电源装置6的所有单电池7的异常升温进行检测。另外,对于构成电池电源集合装置8的另一个电池电源装置6,也具有同样的结构。
在电池电源装置6的支架盒10上,如图3、图7、图8及图9所示,21根的电池模块9的两端固定、支承在第1端板19、及第2端板20上。另外,各电池模块9,在从其长度方向的两端分别约1/3长度位置的2个部位通过防振环51、51而支承在所述隔壁25、25的贯通孔25a内。该防振环51与防振橡胶板22一体形成,并突出其表面。具有21个防振环51的防振橡胶板22,通过将所有的防振环51压入隔壁25的贯通孔25a并沿隔壁25的一面进行安装。
如已所述那样,支架盒10通过2块隔壁25、25而被划分成3个空间,即,从第2端板20向第1端板19依次地划分成第1划分空间26a、第2划分空间26b、第3划分空间26c,而在各自的划分空间26a、26b、26c的中央部,从上方插入冷却调整散热板21而固定在支架本体18内。图8、图17表示在冷却调整散热板21上形成的冷却调节翅片52(包括第1层翅片52a、第2层翅片52b、第3层翅片52c、第4层翅片52d、第5层翅片52e、第6层翅片52f、第7层翅片52g、第8层翅片52h)与滑动插入冷却调整散热板21的贯通孔21a的各电池模块9的关系。众所周知,对于电池电源装置6,为防止因电池发热而带来的异常升温,需要对电池进行冷却用的装置。在本实施例中,将支架盒10的下方开口部作为空气导入部53,将上方开口部作为空气导出部54,通过从下方(上游侧)向上方(下游侧)流动的空气流,对纵7排横3排水平配置的各电池模块9进行冷却。
用划分成位于中央的第2划分空间26b的例子来说明电池模块9的空冷结构,则如图7、图8所示,从冷却调整散热板21的板本体部21b向两方向突出的各冷却调节翅片52延伸到接近隔壁25、25的位置,构成为可对所述空气流的流动方向及流速进行调节的结构。如图17所示,在最下层(有时也称作第1层)的3个贯通孔21a(在图17中从第1层到第7层的贯通孔表示成①~⑦)的各自的下边附近设置截面呈圆弧状的第1层翅片52a,以尽量控制空气直接与第1层电池模块9接触的比例。
在各自的第1层的3个贯通孔①与其上面的第2层的3个贯通孔②、第2层的3个贯通孔②与其上面的第3层的3个贯通孔③、第3层的3个贯通孔③与其上面的第4层的3个贯通孔④中对应的贯通孔之间的上下中间位置,设置截面形状具有断开部的呈扁平H字状的第2层翅片52b、第3层翅片52c、第4层翅片52d。第2层翅片52b在截面呈H字状部的两侧形成断开部t、t,第3层翅片52c在截面呈H字状部的中央形成断开部t1,第4层翅片52d在截面呈H字状部的中央形成大宽度的断开部t2,使得空气直接与第2层的电池模块9接触的比例比第1层的电池模块9增加,进而使得空气直接与第3层的电池模块9接触的比例比第2层的电池模块9增加,进而使得空气直接与第4层的电池模块9接触的比例比第3层的电池模块9增加。
在第4层的3个贯通孔④与其上面的第5层的3个贯通孔⑤之间,设置2个截面呈纵向长的椭圆形(图17所示的椭圆形为了轻量化而截面形状呈中空的,但也可是无中空部的椭圆形)的翅片与2个截面呈纵向长的半椭圆形(中空的、无中空部的都可)的翅片的由横向并排4个翅片所构成的第5层翅片52e。位于中央侧的2个截面呈纵向长的椭圆形的翅片分别位于其周围左右上下4个贯通孔④、④、⑤、⑤的中央点,位于两端侧的2个截面呈纵向长的半椭圆形的翅片在对应的上下贯通孔④、⑤的上下中间位于外侧方,并与所述板本体部21b的侧边相接。在第5层的3个贯通孔⑤与其上面的第6层的3个贯通孔⑥之间以及第6层的3个贯通孔⑥与其上面的第7层的3个贯通孔⑦之间,也设置由与第5层翅片52e大致同样形状且处于同一相关位置的4个翅片所构成的第6层翅片52f及第7层翅片52g。再在最上层(有时也称作第7层)的3个贯通孔⑦的上方位置,设置由将第7层翅片52g的各翅片的上半部分切去后形状的翅片且与第7层翅片52g处于同一相关位置的4个翅片所构成的第8层翅片52h。并且,将第6层翅片52f的各翅片的截面积做得比第5层翅片52e的各翅片的截面积大,将第7层翅片52g的各翅片的截面积做得比第6层翅片52f的各翅片的截面积大。如此,通过越向上侧将冷却调节翅片52e、52f、52g的截面积越做得大,则在电池模块9与冷却调节翅片52之间形成的空气流的通道越向上越缩小,在第5层的电池模块9的周围流动的空气流速比第4层的电池模块9的周围流动的空气流速大,在第6层的电池模块9的周围流动的空气流速比第5层的电池模块9的周围流动的空气流速大,在第7层的电池模块9的周围流动的空气流速比第6层的电池模块9的周围流动的空气流速大。这就是利用当使空气流速增大时,冷却效果与其平方根成正比地增大的结构。
以第2划分空间26b作为例子对电池模块9的空冷结构进行了上述的说明,另外的在第1划分空间26a、第3划分空间26c中的空冷结构也同样构成。并且在任何一个中,在与从下方流动到上方的空气流正交的方向上多层并联配置的多个电池模块9内,对于属于下层侧一组的电池模块9(图17所示的场合是从第1层到第4层配置的电池模块9),由对直接与电池模块9接触的空气量进行调节的遮蔽型的翅片52a~52d来遮住电池模块9的下边,并且,做成随着从最下层(第1层)向上层(第2层、第3层、第4层)而使与电池模块9接触的空气量慢慢增大的结构。由此,通过使与电池模块9接触的空气量增大,以防止最下层的电池模块9的过冷却,并且随着朝向上层来补偿因电池发热而慢慢产生升温的空气的冷却效果降低,从而大致均匀地对各层(第1层~第4层)的电池模块9进行冷却。
对属于下层侧一组的电池模块9进行冷却的空气如图17所示,其过半的空气在左右电池模块9之间形成的通道55、55及电池模块9与侧壁24之间形成的通道56、56中上升,一部分进入电池模块9侧后,再向所述通道55、56合流,到达第5层的电池模块9的下方。然后将所述空气流用来冷却属于上层侧一组的电池模块9(图17所示的场合是从第5层到第7层配置的电池模块9),由于对属于下层侧一组的第4层电池模块9进行了冷却,故空气温度相当高,冷却效果降低。为补偿它,使空气流的截面积缩小,提高电池模块9周围的空气流流速,对属于上层侧一组的电池模块9进行冷却。在所述各通道55、55、56、56的上方,位于第5层、第6层、第7层的各电池模块9的斜下及第7层的电池模块9的斜上方地配设将与电池模块9之间的间隔做小而提高空气流流速用的通道缩小型的翅片52e~52h,并且,为了随着朝向上层(第5层、第6层、第7层)而将所述间隔依次做小,以补偿因上升而慢慢升温的空气的冷却效果降低,将电池模块9周围的空气流流速提高,从而可大致均匀地冷却各层(第5层~第7层)的电池模块9。
这样,构成了大致均匀地对从最下层至最上层的所有的电池模块9进行冷却的结构。另外,在本实施例中,对下侧4层的电池模块9用遮蔽型的翅片52a~52d,对上侧3层的电池模块9用通道缩小型的翅片52e~52h,构成了可大致均匀地冷却所有的电池模块9的结构,当然,也可对例如下侧3层的电池模块9用遮蔽型的翅片,对应于中间第4层电池模块9不设置翅片,对上侧3层的电池模块9用通道缩小型的翅片,从而对空气流进行调整。
由于在本实施例中使用的电池是镍氢二次电池,故必须谋求在异常时对于从电池罐漏出氢的安全。所述空气经具有多叶片风扇的送风机5的压送而被送到电池电源装置6内,为使所述氢不被送到所述送风机5及驱动其的电动机57的内部或其附近,这种考虑特别重要。因此,在本实施例中,如图8、图17及图18所示,将送风机5、电动机57配置在所述支架盒10的侧面下部,使其送风口58位于支架盒10的下方,由送风机5压送的空气,在通过形成于所述外装壳体4下部的空气供给室59而到达支架盒10下端的空气导入部53后,在支架盒10中从下向上流动而对电池模块9进行冷却,然后离开支架盒10的空气导出部54后,通过形成于所述外装壳体4上方的空气排出室60,从形成于所述外装壳体4上部侧端的排出口61向外装壳体4的外部排出。通过采用这种结构,万一从支架盒10内的电池模块9漏出氢,也可防止氢被送向送风机5一侧。
图18表示用1台送风机5将冷却用空气压送到左右的电池电源装置6、6的结构。所述送风机5具有左右1对多叶片风扇及送风口58、58,从空气吸入口62吸入车室内的空气,再从1对送风口58、58将空气均匀地送到左右的空气供给室59、59。
各空气供给室59用所述外装壳体4的底板部4a、竖立在底板部4a的图18的前侧位置的前面壁4b、支架盒10的下面所围成的空间来构成,在与所述送风口58相对的入口63,将来自送风口58的空气导向里侧且侧面的数根弯曲状的整流导向体64a、64b、64c竖立设置在所述底板部4a上。所述入口63设在外装壳体4的宽度方向的中央侧,且配置成位于支架盒10的第1划分空间26a的下方。所述底板部4a在空气供给室59内,具有向外侧面一侧,即向第2划分空间26b、第3划分空间26c一侧慢慢成为高位置的斜坡65,并且,形成为具有向里侧慢慢成为高位置的斜坡66。另外,在斜坡65的第2划分空间26b与第3划分空间26c的边界部下方位置,设置将空气导向上方的高度较低的风向导向体67(参照图8)。
从所述入口63吸入的空气,通过在3块整流导向体64a、64b、64c的各中间所形成的2个空气通道而导向里侧与第2、第3划分空间26b、26c,同时其一部分导向第1划分空间26a内。为设法使此时的空气流在所述空气通道过而不入,导向第1划分空间26a内的空气量足够,则在第2端板20侧的空气通道的入口部附近设置将空气导向上方的风向导向体68。从所述2个空气通道出来的空气,其一部分导向第2划分空间26b内,剩余部分导向第3划分空间26c的下方。此时,为了导向第2划分空间26b内的空气量足够,设置所述风向导向体67。导向第3划分空间26c下方的空气被导向到第3划分空间26c内。
如上所述,通过设置整流导向体64a、64b、64c、风向导向体67、68、斜坡65、66,可使进入到各划分空间26a、26b、26c的空气量大致均匀,同时可防止进入于各划分空间的面前侧与里侧的空气量呈不均匀状态。另外,由于配置在第2划分空间26b内的2个单电池7处于电池模块9的中央位置,容易受到配置在第1、第3划分空间26a、26c的单电池7的发热的影响,所以,与所述单电池7比较,往往更必须空气流的冷却。
因此,最好设置所述风向导向体67,以便导向第2划分空间26b内的空气量稍大于导向其它划分空间26a、26c的空气量。
如图18、图8所示,在所述外装壳体4的底板部4a上具有支架盒安装座部71,这里,左右的支架盒10用螺栓、螺母73安装固定在其脚部72上。另外,在外装壳体4的周缘部,具有安装于汽车本体上的法兰部74。
在上述实施例中,如图15所示,电池电源装置6内的所有电池模块9始终电气串联连接,但为谋求在维修作业时等的安全,最好设置将所述串联连接暂时切断用的安全插头75。因此,如图15中假想线所示,使例如(17)的通路衬片28露出在设于第1端板19上的开口部,在后加工将在N表示的部位予以切断,再设置将17a、17b表示的部位与可开闭的安全插头75用导线76、77予以连接的回路即可。
采用本发明,可提供一种显著使电池模块的支承强度、刚性提高,同时可简单且无误插入地将电池模块组装在支架盒内的电池电源装置及其所使用的端板。
另外采用本发明,在将电池模块与通路衬片紧固时,可解决在构成电池模块的单电池之间产生扭转的缺点,此外,可获得以简单的结构合理地进行电池模块的电压检测和单电池的异常升温检测等效果。
又,采用本发明,可均匀地对多根并联配置于支架盒内的电池模块进行冷却,也可对构成电池模块的单电池相互之间进行均匀的冷却。
尤其采用本发明,可解决冷却用空气相对上游侧在下游侧升温而降低冷却效果的缺点,且相对于处在任何上游侧、下游侧的电池模块都可均匀冷却,并可防止上游侧的电池模块的过冷却,从而有效利用空气流。
另外,采用本发明,可确保有关氢的安全性,同时可对使用镍氢二次电池的电池电源进行冷却。
又,在对于具有1对电池电源装置的电池电源集合装置的冷却中,只使用1台的强制式风扇就可对所有的电池模块进行均匀冷却。
权利要求
1.一种电池电源装置,对单排电气连接且机械串联连接多个单电池而成的电池模块进行多根并联配置并使其保持在支架盒内,在位于所述支架盒两端部的各自的端板上,设置将电池模块的端子之间电气连接的通路衬片,其特征在于,端板用树脂板构成,通路衬片通过插入成形而固定在端板上,将测定单根或多根的电池模块的端子之间电压用的导线通过插入成形而埋设在端板内,在测定所述端子之间电压用的导线中途配设保险丝,在通过插入成形而固定于端板的保险丝安装片上,安装有所述保险丝。
全文摘要
一种电池电源装置,对单排电气连接且机械串联连接多个单电池7而成的电池模块9进行多根并联配置并使其保持在支架盒10内,在位于所述支架盒10两端部的各自的端板19、20上,设置将电池模块9的端子之间电气连接的通路衬片28,端板19、20用树脂板构成,通路衬片28通过插入成形而固定在端板19、20上。可对该装置在构成各电池模块9的串联连接的单电池7之间进行均匀冷却。
文档编号H01M10/50GK1295950SQ0010468
公开日2001年5月23日 申请日期1998年3月24日 优先权日1997年3月24日
发明者高津克已, 小林贵树, 丸川修平, 江藤丰彦, 渡边功, 深尾泰祥, 垣野学, 乾究, 金丸邦郎 申请人:松下电器产业株式会社, 丰田自动车株式会社