专利名称:可重写锗-锑-碲合金光信息介质的利记博彩app
技术领域:
本发明涉及一种以激光束来高速记录的可重写光信息介质,所述介质包括承载堆积层的衬底,该堆积层依次包括第一绝缘层,含有由Ge,Sb,Te组成的合金的相变材料的记录层,第二绝缘层和金属镜面层。
本发明还涉及这种光记录介质在高存储密度和高数据速率应用中的应用。
基于相变原理的光信息或数据存储是很有吸引力的,因为它既有简单的与只读系统可兼容性又具有直接重写(DOW)和高存储密度的可能性。相变光记录包括应用聚焦激光束在薄晶体膜中形成亚微米尺寸的非晶记录标记。在记录信息期间,介质相对于根据要被记录的信息而被调制的聚焦激光束被移动。由于这一原因,在相变记录层中发生淬火而在记录层中的暴露区域引起非晶信息位的生成而在未暴露区域保持晶态。写入的非晶标记的擦除通过用同一激光束加热而再结晶来实现。非晶标记代表数据位,其可由低能量的聚焦激光束经衬底而被再现。非晶标记相对于晶态记录层的反射差分产生一个随后被探测器根据编码记录的数字信息转换为调制光电流的调制激光束。
在高速相变光记录中的一个主要问题是所需要的擦除(再结晶)速度。在高密度记录和高数据速率应用如盘状DVD-RAM和光带中尤其需要高结晶速度,这里完全结晶时间(完全擦除时间CET)必须被缩短到小于50ns。如果结晶速度不能足够高到与介质相对于激光束的线速度相匹配,来自原来的记录的旧有数据(非晶标记)在DOW期间不能被完全移去(再结晶)。这将导致高噪音电平。
在开头一段提到的这种类型的光信息介质公开于美国专利US5,191,565中。已知相变类型介质包括承载堆积层的盘状衬底,该堆积层依次由第一绝缘层,相变Ge-Sb-Te合金的记录层,第二绝缘层和金属反射层组成。这种堆积层可被称为IPIM结构,其中M代表反射或镜面层,I代表绝缘层,P代表相变记录层。所述专利揭示了在三元成分图(图5)中围绕化学计量的化合物GeSb2Te4的50ns的脉冲时间(pulse time)的轨迹,在这一脉冲时间Ge-Sb-Te成分开始结晶。这一时间不等于完全擦除时间CET,而是更短。完全擦除时间CET定义为在结晶环境中写入的非晶标记完全结晶所用的擦除脉冲的最小持续时间。为了完全擦除非晶标记,必须有两个过程,即,形核和晶粒(微晶)长大。在所述专利中提到的时间是形核时间,即第一微晶能被观察到的时间。完全擦除,即,非晶标记的完全结晶,需要附加一些10或更多纳秒的时间。所述专利指出在三元相图中GeTe-Sb2Te3连线上的成分结晶更迅速,如化学计量的化合物GeSb2Te4(原子百分比的Ge14.3Sb28.6Te57.1)表明其形核时间为40ns。本申请人进行的实验表明这一化合物的CET值为53ns。
本发明的一个目的是提供一种尤其适合于高速度光记录的具有50ns或更短CET值的可重写光信息介质,如DVD-RAM和光带。在全文范围内高速记录可理解为意味着介质相对于激光束的线速度至少为7.2m/s,六倍于致密盘标准的速度。介质的抖动将处于恒定的低水平。
根据本发明的这些目标可通过在开头一段描述的光信息介质来实现,其特征在于记录层包括成分限定在原子百分比的三元成分图Ge-Sb-Te中的一个区域的合金,所述区域是具有如下顶点(vertrices)的五边形Ge14.2Sb25.8Te60.0(P)Ge12.7Sb27.3Te60.0(Q)Ge13.4Sb29.2Te57.4(R)Ge15.1Sb27.8Te57.1(S)Ge13.2Sb26.4Te60.4(T)-具有70到(70+λ/2n)nm的厚度的第一绝缘层,其中λ是激光束的波长,n是该层的折射率;-具有10到35nm的厚度的记录层;-具有10到50nm的厚度的第二绝缘层;-具有60到160nm的厚度的金属镜面层。
另人惊奇的是,在三角形三元Ge-Sb-Te成分图(见
图1)中的五角区域PQRST内的合金表现出50ns或更短的甚至45ns以下的CET。这些合金的成分位于连接成分GeTe与Sb2Te3的连线的左侧,表现出比这一连线上的伪二元化合物GeSb2Te4更短的CET值。它与上述指出远离GeTe-Sb2Te3连线将导致形核时间从GeSb2Te4的40ns朝着位于连线左侧的合金的50ns或更多增加的US专利形成对比。区域PQRST外侧CET值大于50ns。
特别有用的合金具有成分(GeSb2Te4)1-x-Tex其中,摩尔分数X满足0.01≤X≤0.37。
这些成分位于三元成分图中的GeSb2Te4与Te的连线上,而在五角区域PQSRT内。图1中的顶点T相应于X=0.37(Ge13.2Sb26.4Te60.4)的成分。
根据本发明的进一步改进的介质中,值X满足0.02≤X≤0.35。以这些X值可获得45ns以下的CET值。
满足这一公式的成分示例有CET值为42ns的Ge14.05Sb28.15Te57.80(X≈0.10)和CET值为43ns的Ge13.75Sb27.40Te58.85(X≈0.22)。
第一绝缘层,即位于衬底和相变记录层之间的层,保护记录层不受潮和衬底不受热损坏,并优化光对比度。为减小抖动,第一绝缘层的厚度优选为至少70nm。考虑到光对比度,这一层的厚度可限制到(70+λ/2n)nm,其中λ是激光束的波长,n是第一绝缘层的折射率;上述Ge-Sb-Te合金的CET值依据记录层的层厚度来确定。如果该层厚度增加到10nm,CET迅速降低,如果进一步增加层厚度,该值达到50ns或更少。当记录层厚度大于25nm时,CET基本上与厚度无关。在35nm以上介质的循环性能受负面影响。介质的循环性能由大量DOW-循环,如105次后的光对比度的相对变化来衡量。每次循环中写入的非晶位通过经激光束加热的再结晶而被擦除,而新的非晶标记被写入。在理想情况下,光对比度在循环后保持不变。循环性能实际是固定的,直到记录层的厚度达到35nm。考虑对CET和循环性能的综合要求的结果,记录层的厚度应在10到35nm之间,优选在20到35nm之间,更优选的是在25到35nm之间。具有厚度为25到35nm之间的记录层的介质在第一个105的DOW-循环期间具有恒定的抖动。
发现第二绝缘层,即位于记录层和金属镜面层之间的层的较佳厚度范围在10到50nm之间,优选在20到40nm之间。当这一层太薄时,记录层和金属镜面层之间的热绝缘被负面影响。结果记录层的冷却速率提高,这将导致慢的结晶过程和差的循环性能。冷却速率通过提高第二绝缘层的厚度而被降低。
CET值对金属镜面层的厚度不敏感,只要所述厚度处于20到200nm的范围内。但是如果金属镜面层厚度薄于60nm,因为冷却速率太慢而使循环性能被负面影响。如果金属镜面层厚度为160nm或更厚,循环性能进一步恶化,由于提高的热传导使记录和擦除的功率必须很高。金属镜面层的优选厚度在80到120nm之间。
第一和第二绝缘层可由ZnS和SiO2的混合物制成,例如(ZnS)80(SiO2)20。另一种情况是,例如SiO2,TiO2,ZnS,AlN,Si3N4和Ta2O5。优选地使用碳化物如SiC,WC,TaC,ZrC或TiC。这些材料都有比ZnS-SiO2混合物更高的结晶速度和更好的循环性能。
对于金属镜面层,它可由金属如Al,Ti,Au,Ag,Cu,Pt,Pd,Ni,Cr,Mo,W和Ta,包括这些金属的合金制得。适当的合金的示例为AlTl,AlCr和AlTa。
反射层和绝缘层可通过蒸汽淀积或喷射来提供。
信息介质的衬底至少对于激光波长是可穿透的,并且由例如聚碳酸脂,聚甲基丙烯酸甲脂(PMMA),非晶聚烯烃或玻璃制成。在典型的示例中,衬底为盘状并具有120nm的直径和0.6或1.2mm的厚度。
另一种情况是,衬底为合成树脂可弯曲带,其由例如聚酯薄膜制成。在这种方式中,得到的光带用在光带记录机中,这种光带记录机是建立在例如快速旋转多边形的基础上的。在这种装置中,反射的激光束横向扫描带表面。
记录层一侧的盘状衬底的表面优选地提供有被光学扫描的伺服道。该伺服道通常由螺旋形凹槽构成并且是在喷射模压或压制期间通过模子形成于衬底中的。此凹槽可以选择的另一种情况是在复制过程中形成于合成树脂层中,如独立形成在衬底上的丙烯酸酯UV光处理层中。在高密度记录中,这种凹槽具有例如0.6-0.8μm的间距和0.5μm的宽度。
光学上,堆积层的最外层通过防护层例如UV光处理聚甲烯丙烯酸酯而与环境实现屏蔽。
高密度记录和擦除可通过使用如675nm或更短的波长(红色到蓝色)的短波长激光来实现。
相变记录层可通过适当目标的蒸汽淀积或喷射而施加于衬底。这样淀积的层是非晶的并呈现出低的反射。为了形成合适的具有高反射的记录层,该层必须首先被完全晶化,这通常称为初始化。为了这一目的,记录层可在加热炉中加热到Ge-Sb-Te合金的结晶温度以上,如180℃。合成树脂衬底如聚碳酸脂可选择的另一种情况是被足够能量的激光束来加热。这可通过例如在记录机中来实现,其中激光束扫描移动的记录层。非晶层然后在衬底不经受不利的热负荷情况下被局部加热到晶化该层所需的温度。
如果需要,附加薄金属层可插入衬底和第一绝缘层之间,从而形成一个所谓的MIPIM结构。尽管结构变得更复杂,附加金属层提高了记录层的冷却速率和光对比度。
结晶速度可在上述材料被用于堆积层II+PI+IM或II+PIM时被进一步提高,其中I+是碳化物、氮化物或氧化物。实验表明II+PI+IM堆积层的CET少于IPIM堆积层的70%。
本发明将通过例示出的实施例参考附图作更具体的描述,其中图1表示三角形三元成分Ge-Sb-Te原子比图的一部分,图2表示根据本发明的光信息介质的横截面示意图,图3表示代表Ge(at%)和Sb/Te(原子比率)的三元成分图的一部分,和图4表示在成分(GeSb2Te4)1-xTex的合金中CET(ns)和x(摩尔分数)之间的关系。
图2简略示出根据本发明的光信息盘的横截面的一部分。参考标号1表示直径为120mm厚度为1.2mm的聚碳酸脂盘状衬底。衬底1提供有如下结构的IPIM堆积层-厚度为d2的(ZnS)80(SiO2)20第一绝缘层(I)2,-厚度为d3的Ge-Sb-Te合金记录层(P)3,-厚度为d4的(ZnS)80(SiO2)20第二绝缘层(I)4,-厚度为d5的Al金属镜面层(M)5。
所有层通过喷射形成。记录层3的初始晶化状态通过在记录机中聚焦激光束加热如上淀积的非晶合金获得。
用来记录、再现和擦除信息的激光束经衬底1进入记录层3。该光束示意的以箭头6代表。非晶标记用功率Pw=1.25Pm(Pm=熔化临界功率)的单一激光脉冲和100ns的持续时间来写入。擦除功率为Pw/2。
表1总结了根据本发明的例子的结果。
表1
例子1到4位于图1和图3中的五边形区域PQRST内。五边形顶点P,Q,R,S和T代表权利要求1中所示的成分的合金。图1是完整的三角形三元成分图Ge-Sb-Te的一部分。该图具有顶点Te(100%Te),化合物GeTe(50%Ge,50%Te,0%Sb),和成分0%Ge,50%Sb,50%Te。化合物GeSb2Te4(原子百分比Ge14.3Sb28.6Te57.1)位于化合物GeTe和Sb2Te3之间的连线(虚线)上。
图3表示不同格式下的放大的成分图。垂直轴代表Ge含量(at%),而水平轴代表Te/Sb原子比率。该图表示图1中的连线的一部分,也表示化合物GeSb2Te4。顶点T位于Te和GeSb2Te4的连线上。根据本发明的例子1到4在五边形PQRST区域中以十字标记x表示。
最小CET值位于Te和GeSb2Te4的连线(虚线)上,而在五边形PQRST区域内,如表1中的例子2和4。图4表示向化合物GeSb2Te4(原子百分比Ge14.3Sb28.6Te57.1)中添加Te的摩尔分数x对CET的影响。通过增加Te,成分沿这两端点的连线从GeSb2Te4移向Te。如果x=0.00,即为纯化合物GeSb2Te4,CET值等于53ns。添加少量Te(x=0.01),CET值降低到50ns以下。CET保持50ns以下一直到x=0.37(原子百分比Ge13.2Sb26.4Te60.4),其相应于图1和3中的顶点T。如果x在0.02到0.35之间,CET甚至保持45ns以下。例子4(x=0.10)和2(x=0.22)位于这条连线上。
例子1到4用来判断抖动特性。作为记录标记的边缘和相应于恢复的数据时钟时间的位置之间的差分的标准偏离的抖动,是用来判断盘循环性能的标准参数。抖动必须在时钟时间Tc的12%以下,即在CD速度下为30ns(1.2m/s;时钟时间230ns)。可测量标记的前缘和后缘。对于这个实验,盘应用凹槽形式的螺旋形伺服道而被提供在衬底一侧,并在记录机中被初始化。凹槽通过复制过程而提供在丙烯酸酯的UV光处理层中。
应用记录机(激光波长650nm)发现对于这些盘可成功执行在线速度达到18m/s(15倍于CD速度)下的随机数据的DOW。在DOW期间,新的非晶位被写入同时新的非晶位之间的区域被同一激光光斑来晶化。发现在DOW期间抖动基本恒定,其值大约占时钟时间的8%。这意味着可获得大约41MB/s的数据速率。
比较例5到10(并非根据本发明)表2总结并非根据本发明的例子的结果表2<
这些例子表示了高于50ns的CET值。成分位于GeTe和Sb2Te3的连线的左侧,而在五边形PQRST区域外侧,在图3中以十字标记x来表示。
比较例11到21(并非根据本发明)表3总结并非根据本发明例子的结果表3
这些例子表示高于50ns的CET值。例子11到20的成分位于GeTe和Sb2Te3的连线的右侧,在图3中以十字标记x来表示。例子21相应于化合物GeSb2Te4,表示于图3中。
根据本发明,提供了可重写的相变光信息介质,如DVD-RAM或光带,CET值为50ns或更小,适合于直接重写和高速度记录,并且表现出良好的循环性能和在7.2m/s或更大的线速度下的轻微抖动。
权利要求
1.一种以激光束来高速记录的可重写光信息介质,所述介质包括承载堆积层的衬底,该堆积层依次包括第一绝缘层,含有由Ge,Sb和Te组成的合金的相变材料的记录层,第二绝缘层和金属镜面层,其特征在于-合金具有由原子百分比的三元成分相图Ge-Sb-Te中的一个区域所限定的成分,所述区域是具有如下顶点的五边形Ge14.2Sb25.8Te60.0(P)Ge12.7Sb27.3Te60.0(Q)Ge13.4Sb29.2Te57.4(R)Ge15.1Sb27.8Te57.1(S)Ge13.2Sb26.4Te60.4(T)-具有70到(70+λ/2n)nm的厚度的第一绝缘层,其中λ是激光束的波长,n是该层的折射率;-具有10到35nm的厚度的记录层;-具有10到50nm的厚度的第二绝缘层;-具有60到160nm的厚度的金属镜面层。
2.如权利要求1所述光信息介质,其特征在于合金具有成分(GeSb2Te4)1-xTex,其中,摩尔分数X满足0.01≤X≤0.37,优选为0.02≤X≤0.35。
3.如权利要求1所述光信息介质,其特征在于记录层具有20到35nm的厚度,优选为25到35nm。
4.如权利要求1所述光信息介质,其特征在于第二绝缘层具有20到40nm的厚度。
5.如权利要求1所述光信息介质,其特征在于金属镜面层具有80到120nm的厚度。
6.如权利要求1所述光信息介质,其特征在于金属镜面层包括至少一种从Al,Ti,Au,Ag,Cu,Pt,Pd,Ni,Cr,Mo,W和Ta,包括这些金属的合金中选择出的金属。
7.如权利要求1所述光信息介质,其特征在于衬底为盘或带。
8.应用如前面任一权利要求所述的光介质来高速记录,从而激光束和介质之间的相对速度至少为7.2m/s。
全文摘要
描述了一种可重写的光信息介质,其具有在成分位于三角形三元成分图中五边形区域PQSRT内的合金Ge-Sb-Te的基础上的相变记录层。这些合金表现出50ns或更少的完全擦除时间(CET)。45ns以下的CET值通过位于五边形区域PQSRT内的Te和化合物GeSb
文档编号G11B7/257GK1249842SQ98803160
公开日2000年4月5日 申请日期1998年10月29日 优先权日1997年11月7日
发明者周国富, B·A·J·雅各布斯 申请人:皇家菲利浦电子有限公司