光盘装置和光盘记录方法

文档序号:6773072阅读:290来源:国知局
专利名称:光盘装置和光盘记录方法
技术领域
本发明涉及一个光盘装置,特别涉及一种在记录处理中计算计录波形补偿量并且根据所计算的量补偿记录波形的脉冲光盘装置。
背景技术
最近,用于对例如DVD(数字通用光盘)这样的光盘执行记录和再现的光盘已经被广泛使用,并且根据各种标准而开发和制造。在这种情况下,需要改进记录波形脉冲补偿技术的性能,该技术根据每个光盘的特性而改变记录特性。
执行记录波形脉冲补偿处理的与本发明无关的常规光盘系统通常包括一个用于以预定的转速旋转光盘的电机、用于发射和接收激光束的读写头、记录装置、再现装置、参数计算装置和记录波形脉冲位置/宽度控制装置。在这种光盘系统中,记录在光盘上的信息被通过使用读写头而再现,成为微弱的模拟信号。该模拟信号被前置放大器放大到足以足够的信号电平,并且由电平限幅器转换为对应于标记(mark)/空白(space)的二进制信号。PLL(锁相环)电路产生与输入二进制信号相位同步的通道时钟。
通过使用该二进制信号和通道时钟信号,在标记之前获得一个波形补偿量。根据该补偿量,该记录波形脉冲位置/宽度控制装置产生具有不在相应空白长度造成任何热干扰的记录波形,从而记录具有适当特性的预定数据。
不幸的是,这种常规的光盘装置包括一个波形校正量计算器(参数计算器),其使用电平限幅方法作为一种识别方法。因此,如果使用例如PRML(部分响应和最大可能性)方法这样的数字方法作为识别方法,则上述常规方法不能够计算波形校正量。
PRML在美国专利No.6148043中描述。但是,该参考文献没有公开任何把PRML方法应用于光盘记录处理的实践方法。也不是说,该参考文献没有实现使用该PRML方法的光盘记录/再现处理。

发明内容
本发明的一个目的是提供一种包含波形补偿功能的光盘装置,其即使在把例如PRML方法这样的数字方法用作为识别方法的情况下,也可以执行正确的波形校正。
本发明是一种用于在具有同心或螺旋存储区域的光盘上记录数据的光盘装置,其中包括旋转装置,用于以预定的转速旋转该光盘;再现信号产生装置,用于通过一个激光束照射由旋转装置所旋转的光盘,并且产生一个再现信号,其中包含具有对应于激光束的反射波的波形图案的预定时间宽度的数据串;理想信号产生装置,用于产生一理想信号,其中包含具有预定时间宽度的数据串,其对应于包含在由再现信号产生装置所产生的再现信号中的预定时间宽度;波形补偿量确定装置,其用于把包含在由再现信号产生装置所产生的再现信号中具有预定时间宽度的数据串与包含在由理想信号产生装置所产生的理想信号中具有预定时间宽度的数据串相比较,并且根据该补偿结果确定波形补偿量;记录波形产生装置,用于对外部提供的记录数据执行预定处理,并且根据由波形补偿量确定装置所确定的波形补偿量产生记录波形脉冲;以及记录装置,用于根据由记录波形产生装置所产生的记录波形脉冲产生激光束,以及用该激光束照射光盘的存储区域,以记录该记录数据。
如上文所述,本发明产生具有对应于从光盘检测的再现信号的波形图案的预定时间宽度的数据串,并且还产生一个理想信号,其中包含具有对应于该波形图案的预定时间宽度的数据串。一个误差量E是通过把该再现信号的数据串的与理想信号的数据串相比较而获得的。根据该误差量E,确定波形补偿量C。给定记录数据R的记录波形由该波形补偿量C所补偿。在此之后,记录数据R被记录在光盘上。按照这种方式,不是在一个特定的时序按照数值,而是按照作为具有预定时间宽度的多个采样数据的数据串,比较检测信号和理想信号。这样可以通过统计方法精确地检测每个唯一波形图案的误差量。相应地,可以正确地使用由数字识别方法所获得的适当波形补偿量而执行记录处理。
在上述现有技术中,另一方面,从二进制信号和通道时钟的上升沿和下降沿之间的相位差计算波形补偿量。该系统被有效用于使用限幅方法作为识别方法的情况中。但是,该系统不能够被应用于例如积分识别方法这样一种方法,该方法从再现信号样本的幅度执行识别。特别是当光盘系统的记录密度增加时,使用限幅方法作为一种识别方法是不令人满意的,从而需要一种高级识别方法,例如PRML(部分响应和最大可能性方法)。不幸的是,这种PRML还由再现信号样本的幅度执行识别。相应地,由现有技术不能够获得适当的波形补偿量。
附图简述

图1为示出作为根据本发明的光盘装置的一个例子的第一实施例的主要部件的方框图;图2为示出根据本发明的光盘装置的整体结构的方框图;图3为示出图1中所示的光盘装置的理想信号产生器的一个例子的结构的方框图;图4为示出在根据本发明的光盘装置中,再现信号、理想信号和误差信号之间的关系的曲线图;图5为示出在根据本发明的光盘装置中,nT标记、空白和理想信号之间的关系的曲线图;图6为示出第一实施例的参数计算器和记录波形产生器之间的关系的方框图;图7为示出在第一实施例中数据模式和误差信号累加存储位置之间的关系的曲线图;图8为示出在第一实施例中的记录波形脉冲的时序图;图9为示出由第一实施例的参数计算器所处理的一个例子的示意图;图10为示出第一实施例的记录波形补偿方法的时序图;图11为示出根据本发明的光盘装置的第二实施例的主要部分的方框图;图12为示出根据本发明的光盘装置的第三实施例的主要部分的方框图;图13为示出图12中所示的参考波形选择器的一个例子的结构的方框图;图14为示出第四实施例的参数计算器和记录波形产生器之间的关系的方框图;图15为示出数据模式和误差信号累加存储位置之间的关系(2T标记)之间的关系的曲线图;图16为示出数据模式与误差信号之间的关系(3T标记)的曲线图;图17为示出数据模式与误差信号之间的关系(4T标记)的曲线图;图18为示出数据模式与误差信号之间的关系(nT(n≥5)标记)的曲线图;图19为用于说明由第四实施例的参数计算器所执行的处理的一个例子的示意图。
具体实施例方式
下面参照附图详细说明本发明的实施例。
《根据第一实施例的光盘装置》图1为示出作为根据本发明的光盘装置的一个例子的第一实施例的主要部件的方框图。图2为示出根据本发明的光盘装置的整体结构的方框图。
图1示出作为本发明的主要部件的数据处理单元1。图2示出包含该数据处理单元1的光盘装置的整体结构。
(光盘装置的基本结构)参见图2,根据本发明的光盘装置A对光盘D执行记录和再现数据。该光盘装置A包括用于传送包含在盘盒中的光盘D的托盘32、用于驱动该托盘32的电机33、用于夹住光盘D的夹持器34、以及用于以预定的转速旋转由夹持器34所夹住光盘D的主轴电机35。另外,CPU46、ROM47和RAM48通过控制总线连接。CPU46作为控制器控制整体的工作。ROM47存储该控制操作的基本程序等等。RAM48存储各种控制程序和应用数据,使得这些程序和数据能够被改写。光盘装置A进一步包括用于传动读写头PU的电机36、用于控制读写头的聚焦和跟踪的一个聚焦/跟踪激励驱动器和进送电机驱动器40、用于驱动该主轴电机35的主轴电机驱动器41、以及用于驱动该托盘电机的托盘电机驱动器42,每个这些部件连接到控制器,例如CPU46。
并且,光盘装置A包括连接到读写头PU用于放大检测信号的前置放大器12、伺服放大器38、以及用于把寻道信号提供到驱动器以执行寻道操作的伺服寻道控制单元39。上述数据处理单元1例如连接到读写头PU、前置放大器12和伺服寻道控制单元39,以处理检测信号和记录信号。RAM43存储要用于各种处理中的数据。接口控制器45与RAM44协作与外部设备交换来自数字处理单元1的信号。
在该光盘装置中,在本发明的数据处理单元1如图1中所示那样构成,以便于即使当使用数字方法作为识别方法时也可以实现适当的波形补偿功能。也就是说,该数据处理单元1包括用于接受来自前置放大器12的信号的A/D转换器13、连接到该A/D转换器13的延迟单元14、以及使用PRML(部分响应和最大可能性)方法的维特比解码器15。数据处理单元1进一步包括一个理想信号产生器16和一个减法器17。理想信号产生器16是本发明的特征,并且接收来自维特比解码器15的输出。减法器17接收来自延迟单元14和理想信号产生器16的输出。另外,参数计算器19接收作为来自减法器17的输出的误差信号E和来自理想信号产生器16的理想信号I,以计算一个参数,并且输出对应于所计算参数的波形补偿量C。记录波形产生器11接收该波形补偿量C,以产生一个记录波形,并且把一个记录波形脉冲P提供到该读写头PU。
(光盘装置的操作)根据本发明具有上述结构的光盘装置对光盘执行记录和再现数据如下。也就是说,当光盘D被安装到光盘装置A上时,被记录在光盘D的读入区域的数据区中的控制数据区中的该光盘D的控制信息被读写头PU和数据处理单元1所读取并且提供到CPU46。
在本发明的光盘装置A中,根据例如与用户操作相关的操作信息、记录在光盘D的控制数据区中的光盘D的控制信息、以及当前状态,在CPU46的控制下由激光控制单元(未示出)的偏置产生的激光束。
所产生的激光束被物镜31所汇聚,以照射光盘的记录区域。从而,数据被记录在光盘D的存储区域中(标记串产生数据被根据可变长度标记之间的间隔和每个可变长度标记的长度而记录在光盘D中)。另外,对应于所存储数据的反射波被反射和检测,以再现该数据。
在图2中,包含在读写头PU中的激光控制单元被数据处理单元1所设置。该设置根据用于获得再现信号S的再现功率、用于记录数据的记录功率、以及用于擦除数据的擦除功率而改变。激光束具有在对应于三个功率的不同电平的功率,即再现功率、记录功率和擦除功率。半导体激光单元被激光控制单元所偏置,从而产生具有所需的3种功率中的一种功率的激光束。
该激光控制单元包括电阻器和晶体管(未示出)。电源电压被施加到该电阻器、晶体管和作为半导体激光单元的半导体激光器。由于放大因子根据晶体管的基极电流而改变,不同电流流过半导体激光振荡器,从而产生具有不同强度的激光束。在本实施例中。下面将详细描述的作为本发明的特征,根据每个光盘的特性执行记录波形补偿,并且根据来自记录波形产生器11的输出记录波形脉冲P产生激光功率,从而在光盘上记录数据。
为了使光盘D面对物镜31,该光盘D被托盘32直接装载到该装置中或者以盘盒的形式装载到该装置中。用于驱动托盘32的托盘电机33包含在该装置中。如此装载的光盘D可旋转地被夹持器34夹持在主轴电机35上,并且由该主轴电机35以预定的转速旋转。
读写头PU包含用于检测激光束的光检测器(未示出)。该光检测器检测由光盘D所反射的激光束,并且被通过物镜31返回。来自光检测器的检测信号(电流信号)被电流/电压转换器(I/V)转换为电压信号,并且该电压信号被提供到前置放大器12和伺服放大器34。前置放大器12把一个用于再现标头数据的信号和用于再现记录区域中的数据的信号输出到数据处理单元1。伺服放大器34把伺服信号(跟踪误差信号和聚焦误差信号)输出到伺服寻道控制单元39。
光检测聚焦误差的方法的一个例子是在下文中描述的散光方法和刀口检验法。
在散光方法中,用于产生散光的光学元件(未示出)被插入到由光盘D的光反射层或光反射记录层所反射的光束的检测光路径中,并且检测被反射到光检测器的激光束的改变。光检测区域被对角地分为4个部分。从这些检测区域获得的检测信号中,伺服寻道控制单元39计算对角总和之间的差,并且获得聚焦误差检测信号(聚焦信号)。
刀口检测方法使用一个刀口,其不对称地遮挡部分由光盘D反射的激光束。光检测区域被分为两个部分。聚焦误差检测信号是通过计算由两个检测区域获得的检测信号之间的差而获得的。
通常,使用在上文中所述的散光方法和刀口检验方法中的一种方法。
光盘D具有一个螺旋或同心的记录道,并且信息被记录在该记录道上。通过沿着该记录道跟踪聚焦点,信息被再现、记录或擦除。为了稳定地沿着记录道跟踪所聚焦的光点,必须用光检测该记录道和聚焦光点之间的相对位置差。
跟踪误差检查方法的一般例子是下文中所述的差分相位检测法、推挽式方法(push-pull method)、以及双点方法(twin-spot method)。
差分相位检测法在光检测器上检测由光盘D的光反射层或光反射记录层所反射的激光束的光强分布的改变。光检测区域被对角地分为4个部分。从这些检测区域获得的检测信号中,伺服寻道控制单元39计算对角总和之间的差,并且获得聚焦误差检测信号(聚焦信号)。
推挽式方法在光检测器上检测由光盘D所反射的激光束的光强分布的改变。光检测区域被分为两个部分。聚焦误差检测信号是通过计算由两个检测区域获得的检测信号之间的差而获得的。
在双点方法中,衍射元件等等被置于半导体激光元件和光盘D之间的光传送系统中,以把光线分为多个波面,并且检测照射光盘D的±初级衍射光线的反射光量中的改变。除了用于检测再现信号的光检测区域之外,还行成用于分别检测+初级衍射光线和-初级衍射光线的反射光量的光检测区域。通过计算来自这些检测区域的检测信号之间的差值而获得跟踪误差检测信号。
通过如上文所述的聚焦控制和跟踪控制,伺服寻道控制单元39把聚焦信号、跟踪信号和进送信号提供到聚焦/跟踪激励驱动器和进送电机驱动器40。该驱动器40对物镜31执行伺服控制和跟踪伺服控制。另外,驱动器40根据存取信号把偏置信号提供到进送电机36,控制读写头PU的传动。
伺服寻道控制单元39被数据处理单元1所控制。例如,数据处理单元1把访问信号提供到伺服寻道控制单元39,以产生一个进送信号。
并且,来自数据处理单元1的控制信号控制主轴电机驱动器41和托盘电机驱动器42,以分别偏置主轴电机35和托盘电机33。相应地,主轴电机35以预定的转速旋转,并且托盘电机33正确地控制该托盘。
被提供到数据处理单元1的对应于在标头部分中的数据的再现信号S被提供到CPU46。从该再现信号S,CPU46确定扇区数作为该标头部分的地址,并且把该扇区数与作为要访问(即,要记录或再现数据)的地址的扇区数相比较。
从对应于存储区域中的数据并且被提供到数据处理单元1的再现信号S中,把必要的数据存储在RAM48中。该再现信号S被数据处理单元1所处理并且被提供到接口控制器45。再现处理信号被提供到例如个人计算机这样的外部装置。
《本发明所特有的记录脉冲补偿》由数据处理单元1所执行的本发明所特有的记录脉冲补偿将在下文中参照附图详细描述。参见图1,作为在光盘D上的标记和空白而记录的信息被读写头PU读出作为微弱的模拟信号。该微弱的模拟信号被前置放大器12放大到足够的电平。该放大的模拟再现信号被A/D转换器13转换为数字再现信号S。该数字再现信号S被分为两个信号一个被提供到维特比解码器15,并且另一个被提供到延迟单元。维特比解码器15根据维特比算法把该信号解码为二进制标识数据d。该二进制标识数据d被提供到后续电路(未示出),如果需要的话进行例如解调和纠错这样的处理。在此之后,该数据被通过接口控制器45传送到用户。该标识数据d还被提供到理想信号产生器16。
该理想信号产生器16产生对应于要使用的PR特性的理想再现信号(在下文中称为理想信号I)。延迟单元14把该再现信号S延迟预定的时间,从而该再现信号S与理想信号I同相。相互同相的再现信号S和理想信号I被提供到减法器17。减法器17从理想信号I中减去再现信号S,以计算误差信号E。误差信号E和理想信号I被提供到参数计算器19。参数计算器19把误差信号E存储到对应于所检测波形图案的存储区域,并且根据存储的结果计算计算波形的波形补偿量C。
根据参考时钟CLK,记录数据R以及波形补偿量C,记录波形产生器11产生记录波形脉冲P。读写头PU使用所产生的记录波形脉冲来在光盘D上记录信息。
一个“序列”例如是以数字数据的形式给出的以8位为单位的再现信号S的波形模式。由于该序列是以数字数据的形式给出的,因此它的模式的种类数是无限的。因此,可以在以处理模拟信号时更短的时间周期内执行这些模式的误差量的统计处理。并且,误差信号E是通过把再现信号S的每个波形模式(序列)的多个采样信号(具有预定时间宽度的数据串)与这些理想信号I相比较而获得的。与通过把模拟信号的一个数值与理想信号的数值相比较而计算误差量的常规比较处理不同,上述比较处理可以对每个波形图案(序列)的一个信号中的整体改变获得更加精确的误差量。相应地,可以对应于每个光盘的测量结果,执行非常适当的记录相位补偿。
下面更加详细的说明每个单元的操作。
(理想信号产生器)下面将参照附图详细描述理想信号产生器的细节。图3为示出理想信号产生器的一个例子的结构的方框图。图4为示出再现信号、理想信号和误差信号之间的关系的曲线图。图5为示出nT标记、空白和理想信号之间的关系的曲线图。
图3示出当使用PR(1,2,2,1)特性时理想信号产生器16的结构的一个例子。该理想信号产生器的一个例子包括用于接收输入信号的第一延迟单元52、用于接收来自第一延迟单元52的输出的第二延迟单元53、用于接收来自第二延迟单元53的输出的第三延迟单元54、用于接收来自第一延迟单元52的输出的减法器55、用于接收来自第二延迟单元53的输出的减法器56、以及用于接收来自减法器55和56的输出、输入信号和来自第三延迟单元54的输出的比较器57。该理想信号产生器16还被称为4抽头FIR(有限脉冲响应)滤波器,并且其抽头系数为“1,2,2,1”。例如,波形模式(序列)“00010000”被输入到理想信号产生器16时,“00012210”被输出。类似地,当“000110000”被输入时,“000134310”被输出;当“0001110000”被输入时,“000135531”被输出;以及当“00011110000”被输入时,“00013565310”被输出。
当由PR(1,2,2,1)特性表示波形模式(序列)时,它是7个电平(1evel)“0,1,2,3,4,5和6”中的一个。为了方便其间,连续n个代码位“1”的波形模式(序列)将被定义为nT标记,并且连续n个代码位“0”的波形模式(序列)将被定义为nT空白。当RLL(1,7)代码(RLL游长限制)被定义为如上文所述的调制码,在记录数据中出现的波形图案(序列)被限制为2T至8T标记和2T至8T空白。相应地,可以在对于每个波形模式(序列)的短时间段内统计地处理误差量。并且,可以根据波形模式(序列)的类型,把一个波形模式(序列)表示为多个样本数据串。也就是说,例如对于4T标记,在电平5和6的部分中,对误差信号E的三个样本执行理想信号与再现信号(检测信号)之间的减法,从而累加该误差信号E的三个样本,并且把结果存储到4T_M存储器中。按照这种方式,可以获得包括在波形之前和之后的信号改变的整个波形的正确补偿量,与常规装置的补偿处理不同,对于一个样本执行与理想信号的比较。
图4示出在光盘系统中的再现信号S、理想信号I和误差信号E之间的关系,在该系统中结合RLL(1,7)代码和PR(1,2,2,1)特性。由于与记录波形脉冲的最佳数值之间的差别以及噪声所造成例如不良标记信息这样的恶化因素造成再现信号S(a)与理想信号I(b)之间不完全匹配。从理想信号I中减去再现信号S(检测信号)的结果被获得作为误差信号E(c)。
图5示出可以采用的波形模式(序列)的形式的一个例子。在RLL(1,7)代码中,出现在记录数据中的波形模式(序列)被限于2T至8T标记和2T至8T空白,从而理想信号I还被限制为有限模式。也就是说,如果电平3是如图5中所示的开始和结束点,则(a)的2T标记对应于(3,4,3),(b)的3T标记对应于(3,5,5,3),(c)的4T标记对应于(3,5,6,5,3)以及(d)的5T标记对应于(3,5,6,6,5,3)。并且(e)的2T空白对应于(3,2,3),(f)的3T空白对应于(3,1,1,3),(g)的4T空白对应于(3,1,0,1,3)以及(h)的5T空白对应于(3,1,0,0,1,3)。
(参数计算器)下面将参照附图详细描述参数计算器的操作。图6为示出第一实施例的参数计算器和记录波形产生器之间的关系的方框图。图7为示出数据模式和误差信号累加存储位置之间的关系的曲线图。图8为示出记录波形脉冲的时序图。图9为示出确定补偿量的方法的一个例子的示意图。
图6中所示的模式识别器19-1可以根据上述理想信号I识别作为图7中所示的几个模式的再现信号S。除了对应于识别结果的存储器选择信号M之外,如图7中所示,对于(a)的2T标记,参数计算器19-2把在电平4的误差信号E的一个样本累加到2T_M存储器。对于(b)的3T标记,在电平5的误差信号E的两个样本被累加到3T_M存储器。对于(c)的4T标记,在电平5和6的误差信号E的三个样本被累加到4T_M存储器。对于(d)的5T标记,在电平5和6的误差信号E的四个样本被累加到5T_M存储器。对于(e)或更高的6T标记,首先在电平5和6出现以及最后在电平5和6出现的误差信号E的四个样本被累加到5T_M存储器。
接着,对于(f)的2T空白,首先在电平3出现以及在电平2出现的误差信号E的两个样本被累加到2T_T存储器,并且最后在电平2和在电平3出现的误差信号E的两个样本被累加到2T_L存储器。对于(g)的3T空白,首先在电平3和1出现的误差信号E的两个样本被累加到3T_T存储器,并且最后在电平1和3出现的误差信号E的两个样本被累加到3T_L存储器。对于(h)的4T空白,在电平3和1首先出现并且在电平0出现的误差信号E的三个样本被累加到4T_T存储器,并且在电平0以及最后在电平1和3出现的误差信号E的3个样本被累加到4T_L存储器。对于(i)的5T空白,首先在电平3、1和0出现的误差信号E的三个样本被累加到5T_T存储器,并且最后在电平0、1和3出现的误差信号E的三个样本被累加到5T_L存储器。对于(j)或更高的6T空白,首先在电平3、1和0出现的误差信号E的三个样本被累加到5T_T存储器,并且最后在电平0、1和3出现的误差信号E的两个样本被累加到5T_L存储器。
并且,在2T_M至5T_M、2T_T至5T_T、以及2T_L至5T_L存储器中,除了误差信号E的累加和之外还计算模量。当经过预定时间段之后,存储在2T_M至5T_M、2T至5T_T以及2T_L至5T_L存储器中的累加和被该模量所除。波形补偿值C由所得的商计算。
图8示出记录波形脉冲的7T标记。该7T标记由第一脉冲、4个多重脉冲和最后一个脉冲所记录。但是,根据光盘介质,在最后脉冲之后输出一个冷却脉冲。仅仅由第一脉冲记录一个2T标记。由第一和最后脉冲记录一个3T标记。由第一脉冲、(n-3)个多重脉冲和最后一个脉冲记录一个nT(n≥4)标记。
图9为用于详细说明上述参数计算器的一系列操作。也就是说,如图9中所示,首先根据所给出的再现信号S识别再现信号模式,从而产生一个理想信号I。接着,计算作为所产生的理想信号I和再现信号S之间的差的误差信号E。根据再现信号S和理想信号I的波形模式(序列)的类型,如果第一个是5T_L,则在5T_L存储器中累加对应于误差信号E的误差量。如果下一个是4T_M、3T_T、...,则根据信号的类型在4T_M存储器、3T_T存储器、...等等中累加误差量。
按照这种方式,根据所检测误差信号E累加误差量的数据。应当知道,例如对于5T_L,不是比较一个样本信号,而是比较3个样本信号,并且存储比较结果。因此,与由于根据在某个时序的一个信号值而统一地执行控制操作而没有考虑到整个信号改变模式的常规装置所控制的模拟信号不同,本发明的控制操作没有这种不便。也就是说,如果存在突然的信号改变(例如,4T_L),则根据对应于该突然信号改变的误差量的统计结果,或者如果存在细微信号改变(例如,2T_M),则根据对应于细微信号改变的误差量,可以确定消除误差量的非常适当的波形补偿量。
(记录波形产生器记录补偿的三种方法)下面将参照附图详细描述根据由参数计算器19所计算的波形补偿值C,由记录波形产生器11所执行的记录补偿方法。图10为示出记录波形补偿方法的时序图。
该第一种方法是通过图10的(b)所示的脉冲宽度调节对记录波形的自适应控制。第一脉冲、多重脉冲和最后脉冲的宽度被根据波形补偿值C而调节。使用其标记长度和在该标记之前和之后的空白长度记录一个nT标记。例如,下面将说明具有2T空白、3T标记和4T空白的波形模式(序列)的记录。第一脉冲的宽度被根据来自2T_L、3T_M和4T_T存储器的波形补偿值C而调节。如果在这些2T_L、3T_M和4T_T存储器中的累加和为正数(负数),则第一脉冲宽度被减小(增加)。该调节量取决于通过用该模量除每个存储器的累加和而获得的数值的绝对值。下面将说明作为另一个例子的具有4T空白、5T标记和6T空白的波形模式(序列)的记录。第一脉冲宽度由来自4T_L存储器的波形补偿值C所调节,第一脉冲宽度、多重脉冲宽度和最后脉冲宽度由来自5T_M存储器的波形补偿值C所调节,并且最后脉冲宽度由来自5T_T存储器的波形补偿值C所调节。如果在4T_L存储器中的累加和为正数(负数),则第一脉冲宽度减小(增加)。如果在5T_M存储器中的累加和为正数(负数),则第一脉冲宽度、多重脉冲宽度和最后脉冲宽度减小(增加)。如果在4T_L存储器中的累加和为正数(负数),则第一脉冲宽度减小(增加)。如果在5T_M存储器中的累加和为正数(负数),则第一脉冲宽度、多重脉冲宽度和最后脉冲宽度减小(增加)。如果在5T_T存储器中的累加和为正数(负数),则最后脉冲宽度减小(增加)。这类似地应用于其它波形模式(序列)。
该第二种方法是通过图10的(c)所示的脉冲高度调节对记录波形的自适应控制。第一脉冲、多重脉冲和最后脉冲的高度被根据波形补偿值C而调节。使用其标记长度和在该标记之前和之后的空白长度记录一个nT标记。例如,下面将说明具有2T空白、3T标记和4T空白的波形模式(序列)的记录。第一脉冲的高度被根据来自2T_L、3T_M和4T_T存储器的波形补偿值C而调节。如果在这些2T_L、3T_M和4T_T存储器中的累加和为正数(负数),则第一脉冲高度被减小(增加)。该调节量取决于通过用该模量除每个存储器的累加和而获得的数值的绝对值。下面将说明作为另一个例子的具有4T空白、5T标记和6T空白的波形模式(序列)的记录。第一脉冲高度由来自4T_L存储器的波形补偿值C所调节,第一脉冲高度、多重脉冲高度和最后脉冲高度由来自5T_M存储器的波形补偿值C所调节,并且最后脉冲高度由来自5T_T存储器的波形补偿值C所调节。如果在4T_L存储器中的累加和为正数(负数),则第一脉冲高度减小(增加)。如果在5T_M存储器中的累加和为正数(负数),则第一脉冲高度、多重脉冲高度和最后脉冲高度减小(增加)。如果在4T_L存储器中的累加和为正数(负数),则第一脉冲高度减小(增加)。如果在5T_M存储器中的累加和为正数(负数),则第一脉冲高度、多重脉冲高度和最后脉冲高度减小(增加)。如果在5T_T存储器中的累加和为正数(负数),则最后脉冲高度减小(增加)。这类似地应用于其它波形模式(序列)。
第三种方法是记录通过图10的(d)中所示的脉冲位置(相位)自适应控制的波形。根据波形补偿值C调节第一脉冲、多重脉冲和最后脉冲的位置(相位)。一个nT标记是使用在该标记之前和之后的空白长度而记录的。例如,下面将说明具有2T空白、3T标记和4T空白的波形模式(序列)的记录。第一脉冲位置被根据来自2TvL和4T_T存储器的波形补偿值而调节。如果在2T_L存储器中的累加和为正数(负数),则第一脉冲位置被延迟(提前)。如果在4T_T存储器中的累加和为正数(负数),则第一脉冲位置被延迟(提前)。下面将说明作为另一个例子的具有4T空白、5T标记和6T空白的波形模式(序列)的记录。第一脉冲位置由来自4T_L存储器的波形补偿值C所调节,并且最后脉冲位置由来自5T_T存储器的波形补偿值C所调节。如果在4T_L存储器中的累加和为正数(负数),则第一脉冲位置被延迟(提前)。如果在5T_T存储器中的累加和为正数(负数),则最后脉冲位置被延迟(提前)。这类似地应用于其它波形模式(序列)。
请注意这三种方法可以相互结合或者可以与其它方法结合使用。
根据如此获得的记录波形脉冲,执行对应于每个光盘的特性的最佳波形补偿,以可靠地在该光盘D上记录数据。
在如上文所述的第一实施例中,根据所检测的再现信号S获得理想信号I,并且表示再现信号S的理想信号I之间的差值的误差信号E根据所识别的脉冲模式而获得。误差信号E必须具有一个数值;该误差信号E可以根据所识别的波形模式具有两个样本或三个或更多的样本。误差信号E是通过比较在预定存储区域中存储和累加的这些样本而获得的。通过使用比较具有对应于再现信号S的波形模式的预定时间宽度的数据串的方法,通过考虑到对波形模式所特有的误差量而执行非常适当的波形补偿,在与仅仅使用在某个特定时序的一个信号值执行控制的现有装置不同。按照这种方式,本发明的第一实施例可以在光盘上记录数据。
在上述控制方法中,为了获得通过再现记录于光盘上的记录信号而产生的再现信号S,必须预先记录该记录信号。为了记录该记录信号,可以紧接着在该光盘装置在光盘B上记录数据之前自动执行测试写入。但是,还可以读出在光盘的预定区域中预先写入的测试数据。
并且,在一个光盘D上记录数据时,上文所述的记录再现的记录补偿量C可以通过设置用于确定记录特性的测试写入时间而确定。在这种情况中,通过使用所确定的补偿量C,最终可以把数据记录在该光盘D上。
但是,本发明不限于该方法。例如在执行记录的同时执行再现,并且与该记录并行地确定记录补偿量C,并且在任何给定的时序实时地更新到最佳记录补偿量C。该方法也是优选的。还可以切换上文所谓的测试写入模式和实时模式。如上文所述,由本领域的技术人员可以设想的范围内能够实现本发明的波形补偿处理的各种变形方法被包含在本发明的范围内。
《第二实施例的光盘装置》第二实施例的特征在于不是与第一实施例那样从维特比解码器15产生一个理想信号,而是使用要记录在光盘D上的记录信号R产生一个理想信号I。该第二实施例将在下文参照附图详细描述。
图11示出根据本发明的第二实施例的结构例子。根据第二实施例的光盘装置即使在使用数字方法作为识别方法时,也可以通过利用图11中所示的数据处理单元1实现适当的波形补偿功能。也就是说,该数据处理单元1包括用于接收来自前置放大器12的A/D转换器13,以及使用PRML(部分响应和最大可能性)方法的维特比解码器15。来自该维特比解码器15的输出不被提供到理想信号产生器16;该维特比解码器15把识别信号数据d提供到后续电路级(未示出)。根据第二实施例的数据处理单元1进一步包括用于接收记录数据R的延迟单元14、用于接收由延迟单元14延迟的记录数据R的理想信号产生器16、以及接收来自延迟单元14和理想信号产生器16的输出的减法器17。另外,参数计算器19接收作为减法器17的输出的误差信号E和来自理想信号产生器16的理想信号I,以计算一个参数,并且输出对应于所计算参数的波形补偿量C。记录波形产生器11接收该波形补偿量C,以产生一个记录波形,并且把一个记录波形脉冲P提供到该读写头PU。
如上文所述,根据第二实施例的理想信号产生器16不基于来自维特比解码器15的输出而产生理想信号,与根据第一实施例的理想信号产生器16不同。也就是说,第二实施例的理想信号产生器16从记录数据R的延迟信号产生一个理想信号。相应地,不再需要等待维特比解码器15结束解码来自光盘D的再现信号,并且没有受到识别错误的影响。这可以提供一种能够执行快速和可靠的记录波形补偿的光盘装置。
《第三实施例的光盘装置》第三实施例的特征在于无论是否需要都不产生理想信号,而是把预先准备的参考数据用作为理想信号。
图12示出本发明的第三实施例的结构的例子。根据第三实施例的光盘装置即使在使用数字方法作为识别方法时,也可以通过利用图12中所示的数据处理单元1实现适当的波形补偿功能。也就是说,该数据处理单元1包括用于接收来自前置放大器12的A/D转换器13,以及使用PRML(部分响应和最大可能性)方法的维特比解码器15。来自该维特比解码器15的输出不被提供到理想信号产生器16;该维特比解码器15把识别信号数据d提供到后续电路级(未示出)。该数据处理单元1进一步包括用于接收来自A/D转换器13的输出的参考电平选择器61以及参考电平L。来自参考电平选择器61的输出被作为理想信号I提供到减法器17和参数计算器19。参数计算器19接入作为来自减法器17的输出的误差信号E和来自参考电平选择器61的输出,以计算一个参数,并且输出对应于所计算参数的波形补偿量C。记录波形产生器11接收该波形补偿量C、参考时钟CLK和记录数据R,以产生一个记录波形,并且把记录波形脉冲P提供到读写头PU。
在第三实施例的光盘装置中,作为标记和空白记录在光盘上的信息被读写头PU读出作为一个微弱模拟信号。该微弱模拟信号被前置放大器放大到足够的电平。放大的模拟再现信号被A/D转换器13转换为数字再现信号。该数字再现被分为三个信号第一信号被提供到维特比解码器15,第二信号被提供到参考电平选择器61,以及第三信号被提供到减法器17。维特比解码器15根据维特比算法把该信号解码为二进制标识数据。该标识数据被提供到后续电路(未示出),并且如果需要的话进行例如解调的纠错这样的处理。在此之后,把数据传送到用户。
参考电平选择器61紧接着从数字再现信号中选择一个参考电平,即,电平0、1、2、3、4、5或6。所获得的电平的波形模式(序列)是一个理想信号I。减法器17从理想信号I中减去再现信号S(检测信号)以计算误差信号E。该误差信号E和理想信号I被提供到参数计算器19。参数计算器19从这两个信号计算记录波形的波形补偿量。根据参考时钟CLK、记录数据R和波形补偿量C,该记录波形产生器11产生记录波形脉冲。读写头PU使用该记录波形脉冲来在光盘上记录该记录数据R。
图13示出参考电平选择器61的结构的一个例子。参考电平选择器61包括用于接收参考电平信号0、1、2、3、4、5和6的多个比较器71、用于接收来自这些比较器71的输出的多个绝对值计算器72、以及用于接收来自这些绝对值计算器72的输出的最小值选择器。参考电平选择器61还具有接收作为来自最小值选择器73的输出表示最小值输入数以及参考电平信号0、1、2、3、4、5和6的信号的选择器74。通过这种结构,参考电平选择器61把再现信号S与每个参考电平L之间的差的绝对值为最小的一个参考电平输出到减法器17和参数计算器19。
在第三实施例中,使用从外部给出的参考电平信号产生作为本发明的特征的理想信号,而不使用来自维特比解码器15的检测信号。这可以进一步简化该装置的结构并且还增加处理速度,因为不需要等待费时的维特比解码完成。
《第四实施例的光盘装置》第三实施例的特点在于在根据本发明执行波形补偿中,再现信号的波形模式(序列)被分类,把在前的空白和标记作为一对并且把在后的空白和标记作为另一对。
下面将参照附图更加详细地描述第四实施例。图14为示出第四实施例的参数计算器和记录波形产生器之间的关系的方框图。图15为示出数据模式和误差信号累加存储位置之间的关系(2T标记)之间的关系的曲线图。图16为示出3T标记的曲线图。图17为示出4T标记的曲线图。图18为示出nT(n≥5)标记的曲线图。图19为用于说明由第四实施例的参数计算器所执行的处理的一个例子的示意图。
图14为示出根据第四实施例的参数计算器19和记录波形产生器的方框图。参见图14,在前的空白和标记被作为一对,并且为4个不同的在前空白和标记2T、3T、4T、5T(或更高)的16种组合准备存储器(L(n,m)存储器)。类似地,在后的空白和标记被作为一对,并且为4个不同的在前空白和标记2T、3T、4T、5T(或更高)的16种组合准备存储器(T(n,m)存储器)。由此,模式识别器19-1选择用于L(m,n)和T(m,n)的存储器。根据选择信号的这些存储器,参数计算器19-2累加和存储相应的误差信号E到L(m,n)和T(m,n)存储器。
图15和18示出波形模式和所用的存储器之间的关系。图15示出2T标记和相应存储器之间关系。对于具有2T空白和2T标记(2T标记和2T空白)的模式,对应于在电平2、3和4(4、3和2)的波形模式(序列)的部分的误差信号E被累加到L(2,2)(T(2,2))存储器。对于具有3T空白和2T标记(2T标记和3T空白)的模式,对应于在电平1、3和4(4、3和1)的波形模式(序列)的部分的误差信号E被累加到L(3,2)(T(3,2))存储器。对于具有4T空白和2T标记(2T标记和4T空白)的模式,对应于在电平0、1、3和4(4、3、1和0)的波形模式(序列)的部分的误差信号E被累加到L(4,2)(T(4,2))存储器。对于具有nT(n≥5)空白和2T标记(2T标记和nT(n≥5)空白)的模式,对应于在电平0、1、3和4(4、3、1和0)的波形模式(序列)的部分的误差信号E被累加到L(5,2)(T(5,2))存储器。
图16示出3T标记和相应存储器之间关系。对于具有2T空白和3T标记(3T标记和2T空白)的模式,对应于在电平2、3和5(5、3和2)的波形模式(序列)的部分的误差信号E被累加到L(2,3)(T(2,2))存储器。对于具有3T空白和3T标记(3T标记和3T空白)的模式,对应于在电平1、3和5(5、3和1)的波形模式(序列)的部分的误差信号E被累加到L(3,3)(T(3,3))存储器。对于具有4T空白和3T标记(3T标记和4T空白)的模式,对应于在电平0、1、3和5(5、3、1和0)的波形模式(序列)的部分的误差信号E被累加到L(4,3)(T(4,3))存储器。对于具有nT(n≥5)空白和3T标记(3T标记和nT(n≥5)空白)的模式,对应于在电平0、1、3和5(5、3、1和0)的波形模式(序列)的部分的误差信号E被累加到L(5,3)(T(5,3))存储器。
图17示出4T标记和相应存储器之间关系。对于具有2T空白和4T标记(4T标记和2T空白)的模式,对应于在电平2、3、5和6(6、5、3和2)的波形模式(序列)的部分的误差信号E被累加到L(2,4)(T(2,4))存储器。对于具有3T空白和4T标记(4T标记和3T空白)的模式,对应于在电平1、3、5和6(6、5、3和1)的波形模式(序列)的部分的误差信号E被累加到L(3,4)(T(3,4))存储器。对于具有4T空白和4T标记(4T标记和4T空白)的模式,对应于在电平0、1、3、5和6(6、5、3、1和0)的波形模式(序列)的部分的误差信号E被累加到L(4,4)(T(4,4))存储器。对于具有nT(n≥5)空白和4T标记(4T标记和nT(n≥5)空白)的模式,对应于在电平0、1、3、5和6(6、5、3、1和0)的波形模式(序列)的部分的误差信号E被累加到L(5,4)(T(5,4))存储器。
图18示出nT标记和相应存储器之间关系。对于具有2T空白和nT标记(nT标记和2T空白)的模式,对应于在电平2、3、5和6(6、5、3和2)的波形模式(序列)的部分的误差信号E被累加到L(2,5)(T(2,5))存储器。对于具有3T空白和nT标记(nT标记和3T空白)的模式,对应于在电平1、3、5和6(6、5、3和1)的波形模式(序列)的部分的误差信号E被累加到L(3,5)(T(3,5))存储器。对于具有4T空白和nT标记(nT标记和4T空白)的模式,对应于在电平0、1、3、5和6(6、5、3、1和0)的波形模式(序列)的部分的误差信号E被累加到L(4,5)(T(4,5))存储器。对于具有mT(m≥5)空白和nT标记(nT标记和mT(m≥5)空白)的模式,对应于在电平0、1、3、5和6(6、5、3、1和0)的波形模式(序列)的部分的误差信号E被累加到L(5,5)(T(5,5))存储器。
另外,根据在图中所示的波形模式和存储器之间的关系,除了误差信号E的累加和之外,还把模量计数到L(m,n)和T(m,n)(m,n=2、3、4和5)存储器。当经过预定时间段时,存储在L(m,n)和T(m,n)(m,n=2、3、4和5)存储器中的累加和被该模量所除。波形补偿值C由除法所得的商数计算。
图19更加具体地示出再现信号S、理想信号I的波形模式,误差信号E和存储器之间的关系。也就是说,理想信号I根据所检测再现信号S而产生,并且作为理想信号I和再现信号S之间的差的误差信号E被根据理想信号I的波形而累加到预定存储区域。更加具体来说,由于第一理想信号I的波形模式为L(4,5),第一组5个样本数据被累加到L(4,5)存储器。紧接着的4个样本数据被累加到T(4,3)存储器。按照这种方式,数据被根据波形模式而累加到预定存储器。从而,对于波形模式唯一的误差量可以忠实地反映在波形补偿量C上。
第四实施例根据上述波形模式存储在各种存储器中的累加和,根据通过除法计算的波形补偿量C而执行如下记录补偿。
图10中所示的三种方式可以用作为该记录补偿方法。第一种方法是由图10的(b)中所示的脉冲宽度调节而自适应控制的记录波形。根据波形补偿值C调节第一脉冲、多重脉冲和最后脉冲的宽度。使用标记长度和在标记之前和之后的空白长度来记录一个nT标记。例如,下文将说明具有2T空白、3T标记和4T空白的波形模式(序列)的记录。
根据来自L(2,3)和T(4,3)存储器的波形补偿值C而调节第一脉冲宽度。如果在这些L(2,3)和T(4,3)存储器中的累加和为正数(负数),则第一脉冲宽度被减小(增加)。调节量取决于通过用该模量除每个存储器的累加和而获得的数值的绝对值。下面将说明作为另一个例子的具有4T空白、5T标记和6T空白的波形模式(序列)的记录。通过来自L(4,5)存储器的波形补偿值C调节第一脉冲宽度,通过来自T(5,5)存储器的波形补偿值C调节最后脉冲宽度。如果在L(4,5)存储器中的累加和为正数(负数),则第一脉冲宽度被减小(增加)。如果在T(5,5)存储器中的累加和为正数(负数),则第一脉冲宽度被减小(增加)。这类似地应用于其它波形模式(序列)。
第二种方法是由图10的(c)中所示的脉冲宽度调节而自适应控制的记录波形。根据波形补偿值C调节第一脉冲、多重脉冲和最后脉冲的高度。使用标记长度和在标记之前和之后的空白长度来记录一个nT标记。例如,下文将说明具有2T空白、3T标记和4T空白的波形模式(序列)的记录。根据来自L(2,3)和T(4,3)存储器的波形补偿值C而调节第一脉冲高度。如果在这些L(2,3)和T(4,3)存储器中的累加和为正数(负数),则第一脉冲高度被减小(增加)。下面将说明作为另一个例子的具有4T空白、5T标记和6T空白的波形模式(序列)的记录。通过来自L(4,5)存储器的波形补偿值C调节第一脉冲高度,通过来自T(5,5)存储器的波形补偿值C调节最后脉冲高度。如果在L(4,5)存储器中的累加和为正数(负数),则第一脉冲宽度被减小(增加)。如果在T(5,5)存储器中的累加和为正数(负数),则第一脉冲宽度被减小(增加)。这类似地应用于其它波形模式(序列)。
第三种方法是由图10的(d)中所示的脉冲位置(相位)调节而自适应控制的记录波形。根据波形补偿值C调节第一脉冲、多重脉冲和最后脉冲的位置(相位)。使用在标记之前和之后的空白长度来记录一个nT标记。例如,下文将说明具有2T空白、3T标记和4T空白的波形模式(序列)的记录。根据来自L(2,3)和T(4,3)存储器的波形补偿值C而调节第一脉冲位置。如果在L(2,3)存储器中的累加和为正数(负数),则第一脉冲位置被延迟(提前)。下面将说明作为另一个例子的具有4T空白、5T标记和6T空白的波形模式(序列)的记录。
通过来自L(4,5)存储器的波形补偿值C调节第一脉冲位置,通过来自T(5,5)存储器的波形补偿值C调节最后脉冲位置。如果在L(4,5)存储器中的累加和为正数(负数),则第一脉冲位置被延迟(提前)。如果在T(5,5)存储器中的累加和为正数(负数),则第一脉冲位置被提前(延迟)。这类似地应用于其它波形模式(序列)。
请注意,这三种方法还可以相互组合。
如上文详细描述的第四实施例中,再现信号的波形模式(序列)被分类,把在前的空白和标记作为一对并且把在后的空白和标记作为另一对。通过使用该方法,可以统计地获得比先前实施例更多种不同波形模式的误差量。从而,可以获得非常适当的波形补偿量。这样可以通过执行与每个光盘的特性相匹配的记录波形补偿提供一种记录数据的光盘装置。
通过上述各种实施例,本领域的专业人员可以实现本发明。但是,这些实施例的各种变型是本领域专业人员显尔易见的,从而可以把在此公开的原理非创造性地应用于各种实施例。因此,本发明覆盖有所公开的原理和新的特征所构成的较宽范围,而不限于上述实施例。
例如,上述实施例是通过使用PR(1,2,2,1)特征而进行说明的,但是本发明可应用于其它PR特征。并且,这些实施例是通过使用RLL(1,7)代码而说明的,但是本发明可应用于其它调制码。另外,本发明的权利范围扩展到由上述方法所记录的记录数据的记录介质,以及扩展到图2中所示再现记录于该记录介质上的数据的光盘记录/再现装置。
已经在上文详细描述的根据本发明的光盘装置产生具有对应于从光盘检测的再现信号的波形模式的预定时间宽度,并且还产生包含具有对应于波形模式的预定时间宽度的理想信号。误差量E是通过比较再现信号的数据串和理想信号的数据串而获得的。根据该误差量E,确定波形补偿量C。给定记录数据R的记录波形被该波形补偿量C所补偿。在此之后,记录数据R被记录在光盘上。
如上文所述,不是使用在特定时序的数值,而是使用具有预定时间宽度的多个数据的数据串,来比较检测信号和理想信号。这样能够精确地检测波形模式的误差量。从而,可以根据每个波形模式的统计误差量而执行最佳记录波形补偿。
权利要求
1.一种用于在光盘上记录数据的光盘装置,其中包括旋转装置(35、41),用于以预定的转速旋转该光盘(D);再现信号产生装置(PU、12、13),用于通过一个激光束照射由旋转装置所旋转的光盘,并且产生一个再现信号(S),其中包含具有对应于激光束的反射波的波形图案的预定时间宽度的数据串;理想信号产生装置(15、16),用于产生一理想信号(I),其中包含具有预定时间宽度的数据串,其对应于包含在由再现信号产生装置所产生的再现信号中的预定时间宽度;波形补偿量确定装置(19),其用于把包含在由再现信号产生装置所产生的再现信号中具有预定时间宽度的数据串与包含在由理想信号产生装置所产生的理想信号中具有预定时间宽度的数据串相比较,并且根据该补偿结果(E)确定波形补偿量;记录波形产生装置(11),用于对外部提供的记录数据执行预定处理,并且根据由波形补偿量确定装置所确定的波形补偿量产生记录波形脉冲;以及记录装置(1、PU),用于根据由记录波形产生装置所产生的记录波形脉冲产生激光束,以及用该激光束照射光盘的存储区域,以记录该记录数据。
2.根据权利要求1所述的装置,其中该理想信号产生装置通过PRML方法解码从再现信号产生装置输出的具有预定时间宽度的数据串,以提取标识数据,并且根据该标识数据产生包含具有预定时间宽度的数据串的理想信号,其对应于包含在由再现信号产生装置所产生的再现信号中的具有预定时间宽度的数据串。
3.根据权利要求1所述的装置,其中该波形补偿量确定装置包括波形模式识别装置(19),用于把包含在由再现信号产生装置所产生的再现信号中具有预定时间宽度的数据串与包含在由理想信号产生装置所产生的理想信号中具有预定时间宽度的数据串相比较,并且识别从再现信号产生装置输出的具有预定时间宽度的数据串的波形模式;以及波形补偿量确定装置(19),用于计算对应于由波形模式识别装置所识别的波形模式的误差量参数,并且确定波形补偿量。
4.根据权利要求1所述的装置,其中波形补偿量确定装置包括波形模式识别装置(19),用于把包含在由再现信号产生装置所产生的再现信号中具有预定时间宽度的数据串与包含在由理想信号产生装置所产生的理想信号中具有预定时间宽度的数据串相比较,并且识别从再现信号产生装置输出的具有预定时间宽度的数据串的波形模式;以及波形补偿量确定装置(19),用于计算对应于由波形模式识别装置所识别的波形模式的标记长度和空白长度的误差量参数,并且该误差量参数确定波形补偿量。
5.根据权利要求1所述的装置,其中该理想信号产生装置根据从外部提供的记录数据产生包含具有预定时间宽度的数据串的理想信号,其对应于具有预定时间宽度的数据串。
6.根据权利要求1所述的装置,其中该理想信号产生装置根据预先准备的参考电平数据产生包含具有预定时间宽度的数据串的理想信号,其对应于具有预定时间宽度的数据串。
7.根据权利要求3所述的装置,其中该波形模式识别装置把包含在由再现信号产生装置所产生的再现信号中具有预定时间宽度的数据串,与包含在由理想信号产生装置所产生的理想信号中具有预定时间宽度的数据串相比较,并且识别从再现信号产生装置输出的具有预定时间宽度的数据串的波形模式的在前空白长度和标记长度(图14,19-1,L(m,n))以及在后的空白长度和标记长度(图14,19-2,T(m,n))。
8.一种用于在光盘上记录数据的光盘记录方法,其中包括旋转步骤(35、41),用于以预定的转速旋转该光盘(D);再现信号产生步骤(PU、12、13),用于通过一个激光束照射在旋转步骤中旋转的光盘,并且产生一个再现信号(S),其中包含具有对应于激光束的反射波的波形图案的预定时间宽度的数据串;理想信号产生步骤(15、16),用于产生一理想信号(I),其中包含具有预定时间宽度的数据串,其对应于包含在由再现信号产生步骤所产生的再现信号中的预定时间宽度;波形补偿量确定步骤(19),其用于把包含在由再现信号产生步骤所产生的再现信号中具有预定时间宽度的数据串与包含在由理想信号产生步骤所产生的理想信号中具有预定时间宽度的数据串相比较,并且根据该补偿结果(E)确定波形补偿量;记录波形产生步骤(11),用于对外部提供的记录数据执行预定处理,并且根据由波形补偿量确定步骤所确定的波形补偿量产生记录波形脉冲;以及记录步骤(1、PU),用于根据由记录波形产生步骤所产生的记录波形脉冲产生激光束,以及用该激光束照射光盘的存储区域,以记录该记录数据。
9.根据权利要求8所述的方法,其中该理想信号产生步骤包括通过PRML方法解码在再现信号产生步骤中输出的具有预定时间宽度的数据串,以提取标识数据,并且根据该标识数据产生包含具有预定时间宽度的数据串的理想信号,其对应于包含在由再现信号产生步骤所产生的再现信号中的具有预定时间宽度的数据串。
10.根据权利要求8所述的方法,其中该波形补偿量确定步骤包括波形模式识别步骤(19),用于把包含在由再现信号产生步骤所产生的再现信号中具有预定时间宽度的数据串与包含在由理想信号产生步骤所产生的理想信号中具有预定时间宽度的数据串相比较,并且识别从再现信号产生步骤输出的具有预定时间宽度的数据串的波形模式;以及波形补偿量确定步骤(19),用于计算对应于由波形模式识别步骤所识别的波形模式的误差量参数,并且确定波形补偿量。
11.根据权利要求8所述的方法,其中波形补偿量确定步骤包括波形模式识别步骤(19),用于把包含在由再现信号产生步骤所产生的再现信号中具有预定时间宽度的数据串与包含在由理想信号产生步骤所产生的理想信号中具有预定时间宽度的数据串相比较,并且识别从再现信号产生步骤输出的具有预定时间宽度的数据串的波形模式;以及波形补偿量确定步骤(19),用于计算对应于由波形模式识别步骤所识别的波形模式的标记长度和空白长度的误差量参数,并且该误差量参数确定波形补偿量。
12.根据权利要求8所述的方法,其中该理想信号产生步骤根据从外部提供的记录数据产生包含具有预定时间宽度的数据串的理想信号,其对应于具有预定时间宽度的数据串。
13.根据权利要求8所述的方法,其中该理想信号产生步骤根据预先准备的参考电平数据产生包含具有预定时间宽度的数据串的理想信号,其对应于具有预定时间宽度的数据串。
14.根据权利要求10所述的方法,其中该波形模式识别步骤把包含在由再现信号产生步骤所产生的再现信号中具有预定时间宽度的数据串,与包含在由理想信号产生步骤所产生的理想信号中具有预定时间宽度的数据串相比较,并且识别在再现信号产生步骤中输出的具有预定时间宽度的数据串的波形模式的在前空白长度和标记长度(图14,19-1,L(m,n))以及在后的空白长度和标记长度(图14,19-2,T(m,n))。
全文摘要
一种光盘装置包括用于检测对应于具有预定时间宽度的波形模式的数据串的检测器(PU)、用于产生对应于具有预定时间宽度的数据串的具有预定时间宽度的理想信号的数据串的理想信号产生器(16)、用于把所检测的数据串与所产生的理想信号的数据串相比较并且根据该比较结果确定波形比较量(C)的参数计算器(19)、用于根据外部提供的记录数据(R)和波形补偿量(C)产生记录波形脉冲(P)的记录波形产生器(11)、以及用于根据记录波形脉冲(P)把一条激光束照射在光盘的存储区域的读写头(PU)。
文档编号G11B7/125GK1383133SQ02116118
公开日2002年12月4日 申请日期2002年4月19日 优先权日2001年4月20日
发明者柏原裕 申请人:株式会社东芝
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1