林火识别方法与系统的利记博彩app

文档序号:6722591阅读:334来源:国知局
专利名称:林火识别方法与系统的利记博彩app
技术领域
本发明涉及森林防火技术领域,特别是涉及一种林火识别方法与系统。
背景技术
随着造林事业的不断发展,林地面积、林业蓄积量逐年增加,防火工作成为首要任务。森林火灾是世界性的林业重要灾害之一,年年都有一定数量的发生,造成森林资源的重大损失和全球性的环境污染。森林火灾具有突发性、灾害发生的随机性、短时间内能造成巨大损失的特点。因此一旦有火警发生,就必须以极快的速度采取扑救措施,而扑救是否及时,决策是否得当,重要原因都取决于对林火行为的发现是否及时,分析是否准确合理,决策措施是否得当。然而,目前森林火险的发现还依赖于人工瞭望,造成林火发现不及时、着火点位置判断不准确等问题,不利于预警与救灾,给森林资源造成极大损害。

发明内容
基于上述情况,本发明提出了一种林火识别方法与系统,以提高林火识别的时效性和准确性。一种林火识别方法,包括步骤:获取森林监测视频,从中提取每一帧图像;对提取的图像进行火焰检测,所述火焰检测包括如下步骤:将图像转到HIS空间,统计每个像素的H值,将H值小于等于30的像素标记为红色像素;将图像划分为预定大小的图像块;统计每个图像块中红色像素的数目,若超过预定数目,则将该图像块标记为有疑似火焰;对标记为有疑似火焰的图像块中的像素的像素值进行统计,比较与前一帧图像中对应像素的像素值的差值,若差值超过阈值,则将该像素标记为闪烁像素,若标记为有疑似火焰的图像块中闪烁像素的个数小于阈值,则判定该图像块中没有火焰,去除该图像块有疑似火焰的标记;将连续预定次数被标记为有疑似火焰的图像块判定为有火焰。—种林火识别系统,包括:图像获取单元,用于获取森林监测视频,从中提取每一帧图像;火焰检测单元,用于对提取的图像进行火焰检测,所述火焰检测单元包括:颜色检测模块,用于将图像转到HIS空间,统计每个像素的H值,将H值小于等于30的像素标记为红色像素;
图像分块模块,用于将图像划分为预定大小的图像块;色彩判断模块,用于统计每个图像块中红色像素的数目,若超过预定数目,则将该图像块标记为有疑似火焰;闪烁频率统计模块,用于对标记为有疑似火焰的图像块中的像素的像素值进行统计,比较与前一帧图像中对应像素的像素值的差值,若差值超过阈值,则将该像素标记为闪烁像素,若标记为有疑似火焰的图像块中闪烁像素的个数小于阈值,则判定该图像块中没有火焰,去除该图像块有疑似火焰的标记;火焰判定模块,用于将连续预定次数被标记为有疑似火焰的图像块判定为有火焰。本发明林火识别方法与系统,对林区监测图像进行分析,提取图像特征,判断是否符合发生火情时的特点,若符合则判定为有火焰,实现了林火识别的目的。避免了原始人工瞭望观察火情的局限,实现了林区管理数字化、科学化,大大减少了林业部门的费用支出和管理成本,提高了林区企业的效应。


图1为本发明林火识别方法的流程示意图;图2为本发明林火识别方法中烟雾检测的流程示意图;图3为本发明林火识别系统的结构示意图;图4为本发明林火识别系统中烟雾检测单元的结构示意图。
具体实施例方式本发明对林区图像进行分析,找出可能的火点,再发给工作人员进行确认并进行相应处理,下面结合附图详细解释本发明。本发明林火识别方法,如图1所示,包括步骤:步骤S101、获取森林监测视频,从中提取每一帧图像。摄像机、镜头系统和云台等安装在铁塔上,摄像机在云台的控制下对森林进行监测,录制视频,本步骤从获取的视频中提取图像,从而按照后续步骤对图像进行分析,进行林火识别。步骤S102、对提取出的每帧图像进行分析,检测是否存在火焰。步骤S102具体包括如下步骤:步骤S1021、颜色检测。将图像转到HIS空间,火焰通常为红色,而红色转到HIS空间后H值小于等于30,故将H值满足此条件的像素标记为红色。步骤S1022、图像分块。将图像划分为预定大小的图像块,如分为10*10大小的图
像块;步骤S1023、色彩判断。统计每个图像块中红色像素的数目,若红色像素占大多数,则将该图像块标记为有疑似火焰;步骤S1024、统计闪烁频率。由于火焰存在闪烁,故其像素值是不稳定的,与前一帧图像比较,像素值差异较大。据此,对标记为有疑似火焰的图像块中的像素的像素值进行统计,比较与前一帧图像中对应像素的像素值的差值,若差值超过阈值,则将该像素标记为闪烁像素,若标记为有疑似火焰的图像块中闪烁像素的个数小于阈值,则判定该图像块中没有火焰,去除该图像块有疑似火焰的标记;步骤S1025、将连续预定次数被标记为有疑似火焰的图像块判定为有火焰。可知,本方法利用火焰的颜色及变化特点,对图像进行分析,判断是否符合发生火情时的特点,从而对林火进行识别。以上步骤是对明火进行识别,实际情况中,火灾现场除了明火还伴有烟雾,若能识别出烟雾也说明可能有火灾发生。因此,作为一个优选的实施例,本方法还可以对图像中的烟雾进行检测,烟雾检测可以在火焰检测之前或之后进行,如图2所示,其包括以下步骤:步骤S1031、背景建模。利用C0DEB00K算法,根据预定帧图像,如前20-30帧图像,建立背景模型,此处的背景为非烟雾的森林背景。步骤S1032、变化检测。对于所述预定帧图像后面的每帧图像,用每个像素的R、G、B值与所述背景模型中相应像素的R、G、B值进行比对,若差值超过阈值则将该像素标记为前景,否则标记为背景。步骤S1033、区域提取。生成一幅标记图像,所述标记图像的前景像素灰度值为255,背景像素灰度值为0,对所述标记图像进行中值滤波去掉孤立点,提取每个前景区域,作为目标区域,并计算其面积和圆形度,去掉面积或圆形度小于阈值的目标区域,对于剩余的每个目标区域,若其像素的R、G、B值中任意两个值的差值小于阈值,则将该像素判定为灰色像素,而林火烟雾一般为灰色,故统计每个目标区域内灰色像素的数目,并与目标区域面积进行比较然后计算该目标区域为烟雾的权值。步骤S1034、跟踪区域。跟踪每个目标区域,并与前一帧图像相应的目标区域进行比较,若两目标区域有重叠,根据重叠区域的比例计算一个面积权值累加到该目标区域的烟雾权值上,考虑到烟雾一般呈扩散和上升状态,根据前后两帧图像对应目标区域的面积和高度计算一个权值再次累加到后帧图像目标区域的烟雾权值上。步骤S1035、若目标区域的烟雾权值大于阈值,则说明该区域可能为烟雾,将该目标区域标记为可能有烟雾,考虑到烟雾的连续性,若目标区域连续预定次数被标记为可能有烟雾,则判定该目标区域为烟雾。作为一个优选的实施例,本方法还可以对提取的图像先进行预处理再进行火焰检测和烟雾检测,以排除干扰。所述预处理的过程包括:利用高斯函数对获取的图像进行平滑去噪;以第一帧图像为基础,利用直方图规定化对图像的色彩和亮度进行调整;利用图像金字塔在预设的阈值范围内对图像进行抖动改正。采用以上步骤,识别出火焰或烟雾后,作为一个优选的实施例,还可以包括以下步骤:图像块被判定为有火焰或目标区域被判定为烟雾后,发出报警;将判定为有火焰的图像块和被判定为烟雾的目标区域在图像中标识出来,给出确认提示;若未接到确认命令,则解除报警,若接到确认命令,则向云台控制模块发出锁定云台的指令,所述云台控制模块为录制所述森林监测视频的云台的控制模块。通过图像分析识别出可疑火点和烟雾后,还给出提示,提示监测人员确认是否是火点和烟雾,以进一步提高林火识别的准确性。监测人员目视确认林火“是”或“否”;如果接到“是”,就向云台控制模块发送锁定云台的指令;如果接到“否”,则解除报警,返回到单帧图像处理的开始阶段,循环进行图像识别。如果经过人工交互识别后确认为“是”林火,通过带实时角度信息回传的云台,结合GIS工作站,将每个火情点的地理位置准确的显示在三维电子地图上,云台工作时实时将摄像机的水平及俯仰角度回传至防火指挥中心,送入GIS系统进行实时解算,利用数据库中的DEM和ArcGIS的空间分析功能通过软件来实现定位,当云台的视线和DEM相交时,根据水平及俯仰角度和监控点的已知位置就可将发生火情的确切位置在GIS上显示出来。同时还显示着火点的三维地形地貌,林火类型。预留读取火灾现场移动气象站数据,以及通往火场的主要道路及通行能力,防火隔离带的位置及阻火能力,距着火点最近的消防队伍的具体位置及赶赴火场所需要的时间等重要指挥信息。本发明林火识别系统,如图3所示,包括:图像获取单元,用于获取森林监测视频,从中提取每一帧图像;火焰检测单元,用于对提取的图像进行火焰检测,所述火焰检测单元包括:颜色检测模块,用于将图像转到HIS空间,统计每个像素的H值,将H值小于等于30的像素标记为红色像素;图像分块模块,用于将图像划分为预定大小的图像块;色彩判断模块,用于统计每个图像块中红色像素的数目,若超过预定数目,则将该图像块标记为有疑似火焰;闪烁频率统计模块,用于对标记为有疑似火焰的图像块中的像素的像素值进行统计,比较与前一帧图像中对应像素的像素值的差值,若差值超过阈值,则将该像素标记为闪烁像素,若标记为有疑似火焰的图像块中闪烁像素的个数小于阈值,则判定该图像块中没有火焰,去除该图像块有疑似火焰的标记;火焰判定模块,用于将连续预定次数被标记为有疑似火焰的图像块判定为有火焰。作为一个优选的实施例,如图4所示,本系统还可以包括烟雾检测单元,用于对提取的图像进行烟雾检测,所述烟雾检测单元包括:背景建模模块,用于利用C0DEB00K算法,根据预定帧图像建立背景模型;变化检测模块,用于对于所述预定帧图像之后的每帧图像,用每个像素的R、G、B值与所述背景模型中相应像素的R、G、B值进行比对,若差值超过阈值则将该像素标记为前景,否则标记为背景;区域提取模块,用于生成一幅标记图像,所述标记图像的前景像素灰度值为255,背景像素灰度值为0,对所述标记图像进行中值滤波去掉孤立点,提取每个前景区域,作为目标区域,并计算其面积和圆形度,去掉面积或圆形度小于阈值的目标区域,对于剩余的每个目标区域,若其像素的R、G、B值中任意两个值的差值小于阈值,则将该像素判定为灰色像素,统计目标区域中灰色像素的数目,并与该目标区域的面积比较得出该目标区域为烟雾的权值;区域跟踪模块,用于跟踪每个目标区域,并与前一帧图像相应的目标区域进行比较,若两目标区域有重叠,根据重叠区域的比例计算一个面积权值累加到该目标区域的烟雾权值上,根据前后两帧图像对应目标区域的面积和高度计算一个权值再次累加到后帧图像目标区域的烟雾权值上;烟雾判定模块,用于在目标区域的烟雾权值大于阈值时,将该目标区域标记为可能有烟雾,在目标区域连续预定次数被标记为可能有烟雾时,判定该目标区域为烟雾。作为一个优选的实施例,本系统还可以包括预处理单元,用于对提取的图像先进行预处理再进行火焰检测和烟雾检测,所述预处理单元包括:去噪模块,用于利用高斯函数对获取的图像进行平滑去噪;色亮度调整模块,用于以第一帧图像为基础,利用直方图规定化对图像的色彩和売度进行调整;抖动改正模块,用于利用图像金字塔在预设的阈值范围内对图像进行抖动改正。作为一个优选的实施例,本系统还可以包括:报警模块,用于在图像块被判定为有火焰或目标区域被判定为烟雾后,发出报
m.1=I ,人工交互模块,用于将判定为有火焰的图像块和被判定为烟雾的目标区域在图像中标识出来,给出确认提示;确认命令处理模块,用于在未接到确认命令时,解除报警,在接到确认命令后,向云台控制模块发出锁定云台的指令,所述云台控制模块为录制所述森林监测视频的云台的控制模块。作为一个优选的实施例,本系统还可以包括:着火点位置确定模块,用于在所述确认命令处理模块发出锁定云台的指令后,获取云台摄像机的水平及俯仰角度,利用GIS系统的空间分析功能,确定着火点的确切位置,并在GIS系统的三维地图上显示出来;救灾方案显示模块,用于在GIS系统的三维地图上还显示着火点的三维地形地貌、林火类型、气象站数据,以及通往着火点的主要道路及通行能力、防火隔离带的位置及阻火能力、距着火点最近的消防队伍的具体位置及赶赴着火点所需要的时间。本系统是基于图像分析的林火识别系统,由以上实施例可知,本系统除了可以自动对林火进行识别外,还可以进行预警、交互、火点定位及后续处理。相比人工瞭望的方法,本系统能够及时发现火情,准确定位着火点,并给出相应解决方案,实现了林区管理数字化、科学化,大大减少了林业部门的费用支出和管理成本,提高了林区企业的效应。以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
权利要求
1.一种林火识别方法,其特征在于,包括步骤: 获取森林监测视频,从中提取每一帧图像; 对提取的图像进行火焰检测, 所述火焰检测包括如下步骤: 将图像转到HIS空间,统计每个像素的H值,将H值小于等于30的像素标记为红色像素; 将图像划分为预定大小的图像块; 统计每个图像块中红色像素的数目,若超过预定数目,则将该图像块标记为有疑似火焰; 对标记为有疑似火焰的图像块中的像素的像素值进行统计,比较与前一帧图像中对应像素的像素值的差值,若差值超过阈值,则将该像素标记为闪烁像素,若标记为有疑似火焰的图像块中闪烁像素的个数小于阈值,则判定该图像块中没有火焰,去除该图像块有疑似火焰的标记; 将连续预定次数被标记为有疑似火焰的图像块判定为有火焰。
2.根据权利要求1所述的林火识别方法,其特征在于,还包括步骤:对提取的图像进行烟雾检测, 所述烟雾检测包括如下步骤: 利用CODEBOOK算法,根据预定帧图像建立背景模型; 对于所述预定帧图像之后的每帧图像,用每个像素的R、G、B值与所述背景模型中相应像素的R、G、B值进行比对,若差值超过阈值则将该像素标记为前景,否则标记为背景;生成一幅标记图像,所述标记图像的前景像素灰度值为255,背景像素灰度值为0,对所述标记图像进行中值滤波去掉孤立点,提取每个前景区域,作为目标区域,计算目标区域的面积和圆形度,去掉面积或圆形度小于阈值的目标区域,对于剩余的每个目标区域,若其像素的R、G、B值中任意两个值的差值小于阈值,则将该像素判定为灰色像素,统计目标区域中灰色像素的数目,并与该目标区域的面积比较得出该目标区域为烟雾的权值; 跟踪每个目标区域,并与前一帧图像相应的目标区域进行比较,若两目标区域有重叠,根据重叠区域的比例计算一个权值累加到该目标区域的烟雾权值上,根据前后两帧图像对应目标区域的面积和高度计算一个权值再次累加到后帧图像目标区域的烟雾权值上; 若目标区域的烟雾权值大于阈值,则将该目标区域标记为可能有烟雾,若目标区域连续预定次数被标记为可能有烟雾,则判定该目标区域为烟雾。
3.根据权利要求2所述的林火识别方法,其特征在于,对提取的图像先进行预处理再进行火焰检测和烟雾检测,所述预处理的过程包括: 利用高斯函数对获取的图像进行平滑去噪; 以第一帧图像为基础,利用直方图规定化对图像的色彩和亮度进行调整; 利用图像金字塔在预设的阈值范围内对图像进行抖动改正。
4.根据权利要求2或3所述的林火识别方法,其特征在于,还包括步骤: 图像块被判定为有火焰或目标区域被判定为烟雾后,发出报警; 将判定为有火焰的图像块和被判定为烟雾的目标区域在图像中标识出来,给出确认提示;若未接到确认命令,则解除报警,若接到确认命令,则向云台控制模块发出锁定云台的指令,所述云台控制模块为录制所述森林监测视频的云台的控制模块。
5.根据权利要求4所述的林火识别方法,其特征在于,发出锁定云台的指令后,获取云台上摄像机的水平及俯仰角度,利用GIS系统的空间分析功能,确定着火点的确切位置,并在GIS系统的三维地图上显示出来, 在GIS系统的三维地图上还显示着火点的三维地形地貌、林火类型、气象站数据,以及通往着火点的主要道路及通行能力、防火隔离带的位置及阻火能力、距着火点最近的消防队伍的具体位置及赶赴着火点所需要的时间。
6.—种林火识别系统,其特征在于,包括: 图像获取单元,用于获取森林监测视频,从中提取每一帧图像; 火焰检测单元,用于对提取的图像进行火焰检测, 所述火焰检测单元包括: 颜色检测模块,用于将图像转到HIS空间,统计每个像素的H值,将H值小于等于30的像素标记为红色像素; 图像分块模块,用于将图像划分为预定大小的图像块; 色彩判断模块,用于统计每个图像块中红色像素的数目,若超过预定数目,则将该图像块标记为有疑似火焰; 闪烁频率统计模块,用于对标记为有疑似火焰的图像块中的像素的像素值进行统计,比较与前一帧图像中对应像素的像素值的差值,若差值超过阈值,则将该像素标记为闪烁像素,若标记为有疑似火焰的图像`块中闪烁像素的个数小于阈值,则判定该图像块中没有火焰,去除该图像块有疑似火焰的标记; 火焰判定模块,用于将连续预定次数被标记为有疑似火焰的图像块判定为有火焰。
7.根据权利要求6所述的林火识别系统,其特征在于,还包括烟雾检测单元,用于对提取的图像进行烟雾检测, 所述烟雾检测单元包括: 背景建模模块,用于利用CODEBOOK算法,根据预定帧图像建立背景模型; 变化检测模块,用于对于所述预定帧图像之后的每帧图像,用每个像素的R、G、B值与所述背景模型中相应像素的R、G、B值进行比对,若差值超过阈值则将该像素标记为前景,否则标记为背景; 区域提取模块,用于生成一幅标记图像,所述标记图像的前景像素灰度值为255,背景像素灰度值为0,对所述标记图像进行中值滤波去掉孤立点,提取每个前景区域,作为目标区域,计算目标区域的面积和圆形度,去掉面积或圆形度小于阈值的目标区域,对于剩余的每个目标区域,若其像素的R、G、B值中任意两个值的差值小于阈值,则将该像素判定为灰色像素,统计目标区域中灰色像素的数目,并与该目标区域的面积比较得出该目标区域为烟雾的权值; 区域跟踪模块,用于跟踪每个目标区域,并与前一帧图像相应的目标区域进行比较,若两目标区域有重叠,根据重叠区域的比例计算一个权值累加到该目标区域的烟雾权值上,根据前后两帧图像对应目标区域的面积和高度计算一个权值再次累加到后帧图像目标区域的烟雾权值上;烟雾判定模块,用于在目标区域的烟雾权值大于阈值时,将该目标区域标记为可能有烟雾,在目标区域连续预定次数被标记为可能有烟雾时,判定该目标区域为烟雾。
8.根据权利要求7所述的林火识别系统,其特征在于,还包括预处理单元,用于对提取的图像先进行预处理再进行火焰检测和烟雾检测,所述预处理单元包括: 去噪模块,用于利用高斯函数对获取的图像进行平滑去噪; 色亮度调整模块,用于以第一帧图像为基础,利用直方图规定化对图像的色彩和亮度进行调整; 抖动改正模块,用于利用图像金字塔在预设的阈值范围内对图像进行抖动改正。
9.根据权利要求7或8所述的林火识别系统,其特征在于,还包括: 报警模块,用于在图像块被判定为有火焰或目标区域被判定为烟雾后,发出报警; 人工交互模块,用于将判定为有火焰的图像块和被判定为烟雾的目标区域在图像中标识出来,给出确认提示; 确认命令处理模块,用于在未接到确认命令时,解除报警,在接到确认命令后,向云台控制模块发出锁定云台的指令,所述云台控制模块为录制所述森林监测视频的云台的控制模块。
10.根据权利要求9所述的林火识别系统,其特征在于,还包括: 着火点位置确定模块,用于在所述确认命令处理模块发出锁定云台的指令后,获取云台上摄像机的水平及俯仰角度,利用GIS系统的空间分析功能,确定着火点的确切位置,并在GIS系统的三维地 图上显示出来, 救灾方案显示模块,用于在GIS系统的三维地图上还显示着火点的三维地形地貌、林火类型、气象站数据,以及通往着火点的主要道路及通行能力、防火隔离带的位置及阻火能力、距着火点最近的消防队伍的具体位置及赶赴着火点所需要的时间。
全文摘要
本发明公开了一种林火识别方法与系统,对林区监测图像进行分析,提取图像特征,判断是否符合发生火情时的特点,若符合则判定为有疑似火点,实现了林火识别的目的,并可以进行报警,监测人员还可以通过目视辨别有疑似火点的图像,确认该区域是否发生了森林火灾。本方法与系统具有林火自动识别功能,还可以对火情自动报警,结合GIS系统,对着火点精确定位,清晰成像,避免了原始人工了望观察火情的局限,实现了林区管理数字化、科学化,大大减少了林业部门的费用支出和管理成本,提高了林区企业的效应。
文档编号G08B17/00GK103106766SQ20131001381
公开日2013年5月15日 申请日期2013年1月14日 优先权日2013年1月14日
发明者杜江, 杨德明 申请人:广东赛能科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1