一种基于小波分析的图像去雨方法及系统的利记博彩app
【专利摘要】本发明属于图像处理技术领域,尤其涉及一种基于小波分析的图像去雨方法及系统。所述基于小波分析的图像去雨方法包括:步骤a:根据小波分析对视频帧图像进行图层分解,并分析所述分解图层的图像信息,分别得到包含背景与颜色信息的图层、包含雨滴噪声的图层以及包含图像纹理与物体边缘信息的图层;步骤b:对所述包含雨滴噪声的图层进行双边滤波保边去噪处理;步骤c:计算融合系数矩阵,根据所述融合系数矩阵对所述包含背景与颜色信息的图层、包含雨滴噪声的图层以及包含图像纹理与物体边缘信息的图层分别进行小波融合,并根据融合结果进行图像重构得到去雨图像。本发明的实施可以避免受到动态特性的干扰,更加准确有效的去除雨滴。
【专利说明】
-种基于小波分析的图像去雨方法及系统
技术领域
[0001] 本发明属于图像处理技术领域,尤其设及一种基于小波分析的图像去雨方法及系 统。
【背景技术】
[0002] 雨对图像成像有很大的影响,会造成图像成像模糊和信息覆盖,其直接结果是视 频图像的清晰度下降,视频图像的数字化处理也会受此影响而性能下降。对受雨滴污染的 视频图像进行修复处理有利于图像的进一步处理,包括基于图像的目标检测、识别、追踪、 分割和监控等技术的性能提高。而且视频基于小波分析的图像去雨技术在现代军事、交通 W及安全监控等领域都有广泛的应用前景。
[0003] 有关视频图像中雨滴特性的研究已受到国际学术界的广泛关注,去雨算法的研究 也从2003年Starik等(Starik S,Werman M. Simulation of rainin videos[C]Proceeding of Texture Workshop, ICCV. Ni Ce, France: 2003,2:406-409)提出的中值法开始得到了迅 速的发展,处理的方法已经不再局限于最初简单的中值计算,偏度计算、K均值聚类、卡尔曼 滤波、字典学习和稀疏编码、引导滤波、帖间亮度差、HSV空间、光流法、运动分割等很多方法 也逐渐开始应用在视频图像中雨滴检测与去除的算法中,雨滴去除的效果也逐渐被提高。 Garg等最先提出利用雨滴带来的帖间亮度差进行雨滴初检,然后利用雨滴的直线性和方向 一致的特点进一步筛选,最后根据前后帖的像素亮度去除雨滴影响,可W较好地满足雨滴 不覆盖连续帖图像情况下的雨滴检测与去除;Zhang等将雨滴给像素带来的色彩影响考虑 在内,从而提高雨滴检测的准确性,改善了基于亮度变化的去雨算法在彩色图像上的应用 效果;Liu等将雨滴的亮度影响和色彩影响同时应用在算法中,用两帖检测雨滴并去除; TripatM等先研究雨滴像素亮度变化的概率统计特性,然后利用雨滴像素亮度变化的对称 性实现雨滴检测,仅基于时域和另外考虑空间位置的影响时效果不完全相同;Kang等首先 利用双边滤波将雨图分成高频部分和低频部分,并对高频部分进一步处理得到非雨成分, 结合低频部分得到去雨图;Huang等首先利用上下文约束进行图像分割,并利用上下文感知 进行单幅基于小波分析的图像去雨,并在此基础上提出了改进算法,文中首先用到了超完 备的字典对高频部分进行处理。
[0004] 特别是最近几年,视频图像去雨技术已成为新的研究热点。如何在保证高鲁棒性 的前提下提高去雨的准确率和实时性,是目前视频图像去雨领域的焦点。目前存在的算法 中,应用于静态场景视频雨滴检测与去除的算法有较为成熟的研究成果,但是应用在动态 场景中的视频上时,算法考虑的是视频中出现运动物体所带来的干扰,对于与雨滴特性区 别度不高的运动物体无法达到理想的检测效果。此外,实时处理在多项技术应用的自动导 航系统、安全监控系统等场合中有很大的应用需求。运些应用场合中往往需要及时得到处 理结果,反馈给用户,视频处理的滞后有可能导致用户做出错误的判断。因此视频中雨滴检 测与去除不仅需要提高精度,也需要提高处理速度,而且需要找到二者之间最佳平衡点。但 是当前算法还无法兼顾各种场景的处理速度和精度,实现去雨算法的实时性是当前研究面 对的一个重要课题。
[0005] 综上所述,现有的图像去雨技术存在的缺点在于:现有的图像去雨算法基本是基 于像素亮度和雨滴形态特征进行去雨,去雨效果不是很理想;同时,现有的图像去雨技术对 于动态场景的去雨效果不是很理想,算法复杂度和算法实时性也不能很好地兼顾。
【发明内容】
[0006] 本发明提供了一种基于小波分析的图像去雨方法及系统,旨在解决现有的图像去 雨技术对于动态场景的去雨效果不是很理想,且算法复杂度和算法实时性不能兼顾的技术 问题。
[0007] 本发明是运样实现的,一种基于小波分析的图像去雨方法,包括:
[0008] 步骤a:根据小波分析对视频帖图像进行图层分解,并分析所述分解图层的图像信 息,分别得到包含背景与颜色信息的图层、包含雨滴噪声的图层W及包含图像纹理与物体 边缘信息的图层;
[0009] 步骤b:对所述包含雨滴噪声的图层进行双边滤波保边去噪处理;
[0010] 步骤C:计算融合系数矩阵,根据所述融合系数矩阵对所述包含背景与颜色信息的 图层、包含雨滴噪声的图层W及包含图像纹理与物体边缘信息的图层分别进行小波融合, 并根据融合结果进行图像重构得到去雨图像。
[0011] 本发明实施例采取的技术方案还包括:在所述步骤a中,所述根据小波分析对视频 帖图像进行图层分解具体为:基于小波分析的Malla算法将所述视频帖图像分解为十层, Malla算法的分解公式为:
[0012] Ci =出 HrCi-I
[0013]
[0014]
[0015]
[0016] 巧上还公巧甲,H和G分别是尺度函数d) (X)和小波函数iKx)的系数矩阵,Cl、 巧、巧和坏分别对应图像Ci-I的低频部分、垂直方向的高频部分、竖直方向的高频部分 W及对角线方向的高频部分。
[0017] 本发明实施例采取的技术方案还包括:所述步骤a还包括:检测出包含雨滴噪声的 图层;所述包含雨滴噪声的图层为第二到第四高频系数图层。
[0018] 本发明实施例采取的技术方案还包括:在所述步骤C中,所述计算融合系数矩阵的 计算方式为:根据雨滴的亮度特性定义雨滴污染程度系数,根据雨滴污染程度系数计算融 合系数矩阵;所述计算融合系数矩阵具体为:令雨滴污染程度系数S = G X E,其中,G为局部 梯度,E为局部能量,局部梯度和局部能量两个参数相乘得到一个新的变量S,S值越大污染 越严重;对S矩阵进行归一化处理得到S',系数矩阵和S'矩阵用于对图像重构算法进行加权 优化得到融合系数矩阵。
[0019] 本发明实施例采取的技术方案还包括:所述局部梯度G定义为:
[0020]
[0021 ]在上述公式中,A Xf (i,j)和A yf (i,j)分别为点(i,j)的水平和垂直方向,M和N分 别为区域的边长;
[0022] 所述像素的局部能量E表示为:
[0023]
[0024] 本发明实施例采取的另一技术方案为:一种基于小波分析的图像去雨系统,包括 小波分解模块、图像去噪模块和小波融合模块;所述小波分解模块用于根据小波分析对视 频帖图像进行图层分解,分析所述分解图层的图像信息,分别得到包含背景与颜色信息的 图层、包含雨滴噪声的图层W及包含图像纹理与物体边缘信息的图层;所述图像去噪模块 用于对所述包含雨滴噪声的图层进行双边滤波保边去噪处理;所述小波融合模块用于计算 融合系数矩阵,根据所述融合系数矩阵对所述包含背景与颜色信息的图层、包含雨滴噪声 的图层W及包含图像纹理与物体边缘信息的图层分别进行小波融合,并根据融合结果进行 图像重构得到去雨图像。
[0025] 本发明实施例采取的技术方案还包括:所述小波分解模块根据小波分析对视频帖 图像进行图层分解具体为:基于小波分析的Malla算法将所述视频帖图像分解为十层, Malla算法的分解公式为:
[0026] Ci =出 HrCi-I
[0027]
[002引
[0029]
[0030] 在上述公式中,H和G分别是尺度函数d) (X)和小波函数iKx)的系数矩阵,Cl、 巧、踩和0,3分别对应图像Ci-I的低频部分、垂直方向的高频部分、竖直方向的高频部分W 及对角线方向的高频部分。
[0031] 本发明实施例采取的技术方案还包括:所述图像去噪模块还用于检测出包含雨滴 噪声的图层;所述包含雨滴噪声的图层为第二到第四高频系数图层。
[0032] 本发明实施例采取的技术方案还包括:所述小波融合模块计算融合系数矩阵的计 算方式为:根据雨滴的亮度特性定义雨滴污染程度系数,根据雨滴污染程度系数计算融合 系数矩阵;所述计算融合系数矩阵具体为:令雨滴污染程度系数S = G X E,其中,G为局部梯 度,E为局部能量,局部梯度和局部能量两个参数相乘得到一个新的变量S,S值越大污染越 严重;对S矩阵进行归一化处理得到S',系数矩阵和S'矩阵用于对图像重构算法进行加权优 化得到融合系数矩阵。
[0033] 本发明实施例采取的技术方案还包括:所述局部梯度G定义为:
[0034]
[0035] 在上述公式中,A Xf (i,j)和A yf (i,j)分别为点(i,j)的水平和垂直方向,M和N分 别为区域的边长;
[0036] 所述像素的局部能量E表示为:
[0037]
[0038] 相对于现有技术,本发明产生的有益效果在于:本发明实施例的基于小波分析的 图像去雨方法及系统采用小波多级分解和小波融合的方法判别雨滴噪声所在的层面,对含 有雨滴噪声的图层进行双边滤波保边去噪处理,并根据雨滴影响的程度定义小波融合的规 贝1J,在特定的层面上进行小波融合W达到雨滴去除的目的;本发明的实施可W避免受到动 态特性的干扰,更加准确有效的去除雨滴,提高了去雨算法的使用范围,在雨势很大的情况 下也能有良好的去雨效果,提高了去雨算法的实时性。
【附图说明】
[0039] 图1是本发明实施例的基于小波分析的图像去雨方法的流程图;
[0040] 图2是小波分解示意图;其中,图2(a)为原始图像,图2(b)是图像的低频信息,图2 (C)至图2(1)是图像的第十到第一层的高频结构;
[0041 ]图3是小波分解重构流程图;
[0042] 图4是本发明实施例的基于小波分析的图像去雨系统的结构示意图。
【具体实施方式】
[0043] 为了使本发明的目的、技术方案及优点更加清楚明白,W下结合附图及实施例,对 本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用W解释本发明,并 不用于限定本发明。
[0044] 请参阅图1,是本发明实施例的基于小波分析的图像去雨方法的流程图。本发明实 施例的基于小波分析的图像去雨方法包括W下步骤:
[0045] 步骤SlOO:输入视频帖图像;
[0046] 步骤S200:根据小波分析对图像进行小波多层分解,并分析各个图层的图像信息, 分别得到包含背景与颜色信息的图层、包含雨滴噪声的图层W及包含图像纹理与物体边缘 信息的图层;
[0047] 在步骤S200中,小波分析具有很好的时间频率定位特性,能够把信号分解成多个 具有不同子频段,频率特性和方向特性的子频段,所W小波分析又被称作数学显微镜。受图 像分解和重构算法的启发,Mallat提出了基于小波分析的Malla算法,即图像多分辨分解和 重构金字塔算法。重构算法是分解算法的逆过程,经过逆滤波就能恢复出原始的信号序列。 巧空间的投影f(x,y)可W用来表示二维图像信号:
[0051 ]如果尺度函数4 (X)和小波函数iKx)的系数矩阵分别是H和G,Malla算法得分解公 式为:
[004引
[0049]
[(K)加 ]
[0化2](4)
[0053] 在式(4)中,Cl、巧、邱和巧分别对应图像Ci-I的低频部分、垂直方向的高频部分、 竖直方向的高频部分W及对角线方向的高频部分。Malla算法的重构算法可W表示为:
[0054]
(5)
[0化5] 在式(5)中,H*、G*分别为H、G的逆矩阵。
[0056] 所述图层包括包含背景与颜色信息的图层、包含雨滴噪声的图层W及包含图像纹 理与物体边缘信息的图层。小波分析能够分别对图像进行线性、高通和低通滤波。在原始图 像上进行行和列的低通滤波,可W得到第一层的低频系数近似分量Cl,它包括图像背景与 颜色信息。在原始图像上进行行和列的高通滤波,可W得到水平高频细节系数心垂直高 频细节系数公r和对角线高频细节系数0,\它们包括不同方向的图像纹理与物体边缘信 息。上述分界操作重复在Cl低频分量上进行操作,可W得到相对应的第二层的各频率分量 C2、〇f、和of。如果上述分界操作重复在第m-1层进行的话,能够得到Cm、£>f、和 D'' 0
[0057] 雨滴噪声的频率很高,而图像纹理与物体边缘的噪声比雨滴还要高,图像背景与 颜色信息的频率很低。所W,由受雨滴污染图像的基于小波分析多层分解,可W发现雨滴噪 声应该被包含在低图层的高频系数部分,更大的分解层数通常被用来确保去雨后图像的细 节信息。在本发明实施例中,对图像进行小波多层分解的分解层数为十层。具体如图2所示, 是小波分解示意图;其中,图2(a)为原始图像,图2(b)是图像的低频信息,图2(c)至图2(1) 是图像的第十到第一层的高频结构。由分析可知,大部分的雨滴噪声集中在第二到第四高 频系数图层上,而第五到第十高频系数图层则包含绝大部分图像背景与颜色信息,第一层 包含图像纹理与物体边缘信息。
[005引步骤S300:检测出包含雨滴噪声的图层,并对包含雨滴噪声的图层进行双边滤波 保边去噪处理;
[0059] 在步骤S300中,双边滤波是一种可W保边去噪的滤波器,之所W可W达到此去噪 效果,是因为其由两个函数构成。一个函数是由几何空间距离决定滤波器系数,另一个由像 素差值决定滤波器系数。双边滤波同时考虑了空间域与值域的差别,故能够实现保边保留 的噪声去除,有利于后续更好地实现图像融合。双边滤波器中,输出像素的值依赖于邻域像 素的值的加权组合。权重系数w(i,j,k,l)取决于定义域核(式(7))和值域核(式(8))的乘 积:
[0060] (6)
[0061 ] (7)
[0062] (扮
[0063] . (9)
[0064] 步骤S400:根据雨滴的亮度特性定义雨滴污染程度系数,根据雨滴污染程度系数 计算融合系数矩阵,根据融合系数矩阵对包含背景与颜色信息的图层、包含雨滴噪声的图 层W及包含图像纹理与物体边缘信息的图层分别进行小波融合,并通过融合结果进行图像 重构得到去雨图像;
[0065] 在步骤S400中,由于被雨滴覆盖的像素的灰度等级比背景灰度大,会产生边缘效 应,于是,局部梯度能够用来测量灰度的变化,局部梯度定义为:
[0066] (10)
[0067] 式(10)中,A Xf (i,j)和A yf (i,j)分别为点(i,j)的水平和垂直方向,M和N分别为 区域的边长。由于雨滴亮度是基本不变的,雨滴像素具有更高和更稳定的能量,像素的局部 能量可W表示为:
[0068 (11)
[0069] 令雨滴污染程度系数S = GXE,即局部梯度和局部能量两个参数相乘得到一个新 的变量S,S值越大污染越严重。对S矩阵进行归一化处理得到S',系数矩阵和S'矩阵用于对 图像重构算法进行加权优化得到融合系数矩阵,根据融合系数矩阵对包含背景与颜色信 息、雨滴噪声和图像纹理与物体边缘信息的图层分别进行小波融合,最后将=部分融合结 果进行图像重构得到去雨图像,运样可W使图像的颜色和细节不失真。在本发明实施例中, 为了去除雨滴,对于雨滴噪声所在的图层,融合系数矩阵的权值应该小于1;而对于没有被 雨滴污染的图层,融合系数矩阵的权值设成大于1;具体如图3所示,是小波分解重构流程 图。
[0070] 在进行不同图像信息的图层分别进行小波融合之后,再对连续的9个视频帖图像 进行图像融合,融合后的去雨图像代替中间第五帖图像,W达到最终去雨效果。
[0071] 步骤S500:输出视频帖图像。
[0072] 请参阅图4,是本发明实施例的基于小波分析的图像去雨系统的结构示意图。本发 明实施例的基于小波分析的图像去雨系统包括图像输入模块、小波分解模块、图像去噪模 块、小波融合模块和图像输出模块;具体地:
[0073 ]图像输入模块用于输入视频帖图像;
[0074]小波分解模块用于根据小波分析对图像进行小波多层分解,并分析各个图层的图 像信息,分别得到包含背景与颜色信息的图层、包含雨滴噪声的图层W及包含图像纹理与 物体边缘信息的图层;其中,小波分析具有很好的时间频率定位特性,能够把信号分解成多 个具有不同子频段,频率特性和方向特性的子频段,所W小波分析又被称作数学显微镜。受 图像分解和重构算法的启发,Mallat提出了基于小波分析的Malla算法,即图像多分辨分解 和重构金字塔算法。重构算法是分解算法的逆过程,经过逆滤波就能恢复出原始的信号序 列。Ff空间的投影f(x,y)可W用来表示二维图像信号:
[0078] 如果尺度函数(1) (X)和小波函数iKx)的系数矩阵分别是H和G,Malla算法得分解公 式为:
[0075]
[0076]
[0077]
[0079] (4)
[0080] 在式(4)中,Ci、、传和巧分别对应图像Ci-I的低频部分、垂直方向的高频部 分、竖直方向的高频部分W及对角线方向的高频部分。Malla算法的重构算法可W表示为: [0081 ]
巧)
[0082] 在式(5)中,H*、G*分别为H、G的逆矩阵。
[0083] 所述图层包括包含背景与颜色信息的图层、包含雨滴噪声的图层W及包含图像纹 理与物体边缘信息的图层。小波分析能够分别对图像进行线性、高通和低通滤波。在原始图 像上进行行和列的低通滤波,可W得到第一层的低频系数近似分量Cl,它包括图像背景与 颜色信息。在原始图像上进行行和列的高通滤波,可W得到水平高频细节系数巧?,垂直高 频细节系数巧^和对角线高频细节系数巧°,它们包括不同方向的图像纹理与物体边缘信 息。上述分界操作重复在Cl低频分量上进行操作,可W得到相对应的第二层的各频率分量 〇2、。2"、蹲和邱。如果上述分界操作重复在第m-1层进行的话,能够得到Cm、Af、化'和 巧。
[0084] 雨滴噪声的频率很高,而图像纹理与物体边缘的噪声比雨滴还要高,图像背景与 颜色信息的频率很低。所W,由受雨滴污染图像的基于小波分析多层分解,可W发现雨滴噪 声应该被包含在低图层的高频系数部分,更大的分解层数通常被用来确保去雨后图像的细 节信息。在本发明实施例中,对图像进行小波多层分解的分解层数为十层。具体如图2所示, 是小波分解示意图;其中,图2(a)为原始图像,图2(b)是图像的低频信息,图2(c)至图2(1) 是图像的第十到第一层的高频结构。由分析可知,大部分的雨滴噪声集中在第二到第四高 频系数图层上,而第五到第十高频系数图层则包含绝大部分图像背景与颜色信息,第一层 包含图像纹理与物体边缘信息。
[0085] 图像去噪模块用于检测出包含雨滴噪声的图层,并对包含雨滴噪声的图层进行双 边滤波保边去噪处理;其中,双边滤波是一种可W保边去噪的滤波器,之所W可W达到此去 噪效果,是因为其由两个函数构成。一个函数是由几何空间距离决定滤波器系数,另一个由 像素差值决定滤波器系数。双边滤波同时考虑了空间域与值域的差别,故能够实现保边保 留的噪声去除。双边滤波器中,输出像素的值依赖于邻域像素的值的加权组合。权重系数W (王^,4,1)取决于定义域核(式(7))和值域核(式(8))的乘积:
[0086] 《6)
[0087] (7)
[008引 (8)
[0089] 巧)
[0090] 小波融合模块用于根据雨滴的亮度特性定义雨滴污染程度系数,根据雨滴污染程 度系数计算融合系数矩阵,根据融合系数矩阵对包含背景与颜色信息的图层、包含雨滴噪 声的图层W及包含图像纹理与物体边缘信息的图层分别进行小波融合,并通过融合结果进 行图像重构得到去雨图像;其中,由于被雨滴覆盖的像素的灰度等级比背景灰度大,会产生 边缘效应,于是,局部梯度能够用夹测量灰度的变化,局部梯度定义为:
[0091] (10)
[0092] 式(10)中,A Xf (i,j)和A yf (i,j)分别为点(i,j)的水平和垂直方向,M和N分别为 区域的边长。由于雨滴亮度是基本不变的,雨滴像素具有更高和更稳定的能量,像素的局部 能量可W表示为:
[0093] (11)
[0094] 令雨滴污染程度系数S = GXE,即局部梯度和局部能量两个参数相乘得到一个新 的变量S,S值越大污染越严重。对S矩阵进行归一化处理得到S',系数矩阵和S'矩阵用于对 图像重构算法进行加权优化得到融合系数矩阵,根据融合系数矩阵对包含背景与颜色信 息、雨滴噪声和图像纹理与物体边缘信息的图层分别进行小波融合,最后将=部分融合结 果进行图像重构得到去雨图像,运样可W使图像的颜色和细节不失真。在本发明实施例中, 为了去除雨滴,对于雨滴噪声所在的图层,融合系数矩阵的权值应该小于1;而对于没有被 雨滴污染的图层,融合系数矩阵的权值设成大于1;具体如图3所示,是小波分解重构流程 图。
[0095] 在进行不同图像信息的图层分别进行小波融合之后,再对连续的9个视频帖图像 进行图像融合,融合后的去雨图像代替中间第五帖图像,W达到最终去雨效果。
[0096] 图像输出模块用于输出视频帖图像。
[0097] 本发明实施例的基于小波分析的图像去雨方法及系统采用小波多级分解和小波 融合的方法判别雨滴噪声所在的层面,对含有雨滴噪声的图层进行双边滤波保边去噪处 理,并根据雨滴影响的程度定义小波融合的规则,在特定的层面上进行小波融合W达到雨 滴去除的目的;本发明的实施可W避免受到动态特性的干扰,更加准确有效的去除雨滴,提 高了去雨算法的使用范围,在雨势很大的情况下也能有良好的去雨效果,提高了去雨算法 的实时性。
[0098] W上所述仅为本发明的较佳实施例而已,并不用W限制本发明,凡在本发明的精 神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。
【主权项】
1. 一种基于小波分析的图像去雨方法,其特征在于,包括: 步骤a:根据小波分析对视频帧图像进行图层分解,并分析所述分解图层的图像信息, 分别得到包含背景与颜色信息的图层、包含雨滴噪声的图层以及包含图像纹理与物体边缘 信息的图层; 步骤b:对所述包含雨滴噪声的图层进行双边滤波保边去噪处理; 步骤c:计算融合系数矩阵,根据所述融合系数矩阵对所述包含背景与颜色信息的图 层、包含雨滴噪声的图层以及包含图像纹理与物体边缘信息的图层分别进行小波融合,并 根据融合结果进行图像重构得到去雨图像。2. 根据权利要求1所述的基于小波分析的图像去雨方法,其特征在于,在所述步骤a中, 所述根据小波分析对视频帧图像进行图层分解具体为:基于小波分析的Malla算法将所述 视频帧图像分解为十层,Malla算法的分解公式为: Ci = HcHrCi-I DhGiHrCil Df = GiGrCii 在上述公式中,H和G分别是尺度函数Φ(χ)和小波函数Φ(χ)的系数矩阵,A2和 Λ 贫分别对应图像CV1的低频部分、垂直方向的高频部分、竖直方向的高频部分以及对角线方 向的高频部分。3. 根据权利要求2所述的基于小波分析的图像去雨方法,其特征在于,所述步骤a还包 括:检测出包含雨滴噪声的图层;所述包含雨滴噪声的图层为第二到第四高频系数图层。4. 根据权利要求1所述的基于小波分析的图像去雨方法,其特征在于,在所述步骤c中, 所述计算融合系数矩阵的计算方式为:根据雨滴的亮度特性定义雨滴污染程度系数,根据 雨滴污染程度系数计算融合系数矩阵;所述计算融合系数矩阵具体为:令雨滴污染程度系 数S = GXE,其中,G为局部梯度,E为局部能量,局部梯度和局部能量两个参数相乘得到一个 新的变量S,S值越大污染越严重;对S矩阵进行归一化处理得到S',系数矩阵和S'矩阵用于 对图像重构算法进行加权优化得到融合系数矩阵。5. 根据权利要求4所述的基于小波分析的图像去雨方法,其特征在于,所述局部梯度G 定义为:在上述公式中,A xf ( i,j )和Δ yf ( i,j )分别为点(i,j )的水平和垂直方向,M和N分别为 区域的边长; 所述像素的局部能量E表示为:6. -种基于小波分析的图像去雨系统,其特征在于,包括小波分解模块、图像去噪模块 和小波融合模块;所述小波分解模块用于根据小波分析对视频帧图像进行图层分解,分析 所述分解图层的图像信息,分别得到包含背景与颜色信息的图层、包含雨滴噪声的图层以 及包含图像纹理与物体边缘信息的图层;所述图像去噪模块用于对所述包含雨滴噪声的图 层进行双边滤波保边去噪处理;所述小波融合模块用于计算融合系数矩阵,根据所述融合 系数矩阵对所述包含背景与颜色信息的图层、包含雨滴噪声的图层以及包含图像纹理与物 体边缘信息的图层分别进行小波融合,并根据融合结果进行图像重构得到去雨图像。7. 根据权利要求6所述的基于小波分析的图像去雨系统,其特征在于,所述小波分解模 块根据小波分析对视频帧图像进行图层分解具体为:基于小波分析的Malla算法将所述视 频帧图像分解为十层,Malla算法的分解公式为: Ci = HcHrCi-I Dl = G, IlrCi , 贫二('丨 2?3 = (;, GX , 在上述公式中,H和G分别是尺度函数Φ(χ)和小波函数Φ(χ)的系数矩阵,C1、贫样和 W分别对应图像CV1的低频部分、垂直方向的高频部分、竖直方向的高频部分以及对角线方 向的高频部分。8. 根据权利要求7所述的基于小波分析的图像去雨系统,其特征在于,所述图像去噪模 块还用于检测出包含雨滴噪声的图层;所述包含雨滴噪声的图层为第二到第四高频系数图 层。9. 根据权利要求6所述的基于小波分析的图像去雨系统,其特征在于,所述小波融合模 块计算融合系数矩阵的计算方式为:根据雨滴的亮度特性定义雨滴污染程度系数,根据雨 滴污染程度系数计算融合系数矩阵;所述计算融合系数矩阵具体为:令雨滴污染程度系数S = GXE,其中,G为局部梯度,E为局部能量,局部梯度和局部能量两个参数相乘得到一个新 的变量S,S值越大污染越严重;对S矩阵进行归一化处理得到S',系数矩阵和S'矩阵用于对 图像重构算法进行加权优化得到融合系数矩阵。10. 根据权利要求9所述的基于小波分析的图像去雨系统,其特征在于,所述局部梯度G 定义为:在上述公式中,A xf ( i,j )和Δ yf ( i,j )分别为点(i,j )的水平和垂直方向,M和N分别为 区域的边长; 所述像素的局部能量E表示为:
【文档编号】G06T5/00GK106023112SQ201610347657
【公开日】2016年10月12日
【申请日】2016年5月24日
【发明人】朱青松, 李佳恒, 王磊
【申请人】中国科学院深圳先进技术研究院