基于svm的图像mtf测量方法
【专利摘要】本发明提供了一种基于SVM的图像MTF测量方法。本发明包括如下步骤:1)根据使用要求,通过仿真获取不同刃边角度、图像对比度、噪声等级、MTF等级的刃边图像;2)利用特征识别算法,获得仿真刃边图像的特征;3)对仿真刃边图像的图像特征进行预处理,使用处理后的图像特征对SVM分类器进行训练;4)选出待测图像的刃边区域;5)对待测刃边图像利用特征识别算法进行特征提取;6)将待测刃边图像的特征经过预处理后输入步骤3)训练得到的SVM分类器,获得待测图像Nyquist频率处的MTF值。本发明实现对含刃边区域的图像进行MTF测量,具有不受图像刃边角度限制、计算准确、稳定性好等优点。
【专利说明】
基于SVM的图像MTF测量方法
技术领域
[0001] 本发明属于遥感成像质量评价领域,特别设及一种基于SVM的图像MTF检测方法。
【背景技术】
[0002] 调制传递函数MTF(Modulation Transfer F^mction)是评价光学成像系统成像质 量的一个重要指标,可观反映了不同空间频率光信号经过成像系统后的衰减情况,代表成 像过程中成像系统对输入信号的传递特性,是目前国际上通用的评定成像系统性能的指标 之一。此外,根据成像退化理论,如果系统的MTF可W精确测得,那么可W从退化图像中恢复 得到真实图像。因此对成像系统进行MTF准确测量具有非常重要的意义。
[0003] 目前,针对数码成像系统,根据选用的祀标不同,MTF测量方法包含光栅法、点源 法、狭缝法、刃边法等。光栅法的输入是一个方向上光强按一定空间频率变化的余弦波,输 出仍是一个同频率的余弦波,像与物的对比度之比定义为MTF,反映成像系统传递各种频率 正弦物体调制度的能力;点源法的输入时一个足够窄的点源脉冲,得到的输出称为点扩散 函数(PSF),其傅里叶称为光学传递函数(OTF),光学传递函数的模即为MTF;狭缝法的输入 是一个沿任意方向的线激励,得到的输出称为线扩散函数化SF),线响应的傅里叶变换可W 得到传递函数截面;刃边法的输入是一个沿任意方向的阶跃函数,得到的输出称为边缘扩 散函数化SF),对其求导可得到线响应,从而可W通过傅里叶变换得到传递函数截面。
[0004] 在上述方法中,刃边法因其对祀标布设相对容易,祀标选取条件相对宽松(人工祀 标或合乎要求的刃边目标),受噪声等因素干扰较小,是一种使用普遍的MTF测量方法。 IS012233将倾斜刃边法作为电子静态图像相机分辨率测试的标准方法。
[0005] 实际使用中刃边法存在一定限制:数码成像是离散的采样,边缘扩散函数中边缘 采样数量点过少,采样结果的偏差会导致计算结果出现一定的偏差;噪声污染不可忽视,当 刃边图像存在噪声时,测量得到的ESF也必然被噪声所污染,求导得到线响应的过程会进一 步放大噪声,导致测量结果失真;刃边角度对计算的准确性影响较大,实际应用常选取特定 角度的刃边图片,而部分应用中不容易控制刃边的角度。
[0006] 现有技术为提高测量的准确度和稳定性,常常通过构造 ESF的函数模型,对上采样 的ESF数据进行非线性拟合,再用于下一步计算。运种方法可W-定程度提高该方法的稳定 性,但在ESF的拟合过程中实际上也是引入了新的噪声,从而影响测量结果的准确度和稳定 性。另外,刃边角度对MTF测量结果的影响在现有方法中也无法得到很好的解决。
【发明内容】
[0007] 本发明解决的技术问题是:针对数码成像系统MTF测量中刃边法受刃边角度、噪声 和模型限制,MTF测量结果准确度不高且不稳定,提出一种基于SVM的图像MTF测量方法。
[000引本发明提供一种基于SVM的图像MTF测量方法,包括W下步骤:
[0009] (1)结合实际需求,指定刃边图像大小。通过分析待测图像刃边区域的刃边角度范 围、图像对比度范围、噪声等级范围,确定具体的使用要求。根据使用要求,通过仿真获取不 同刃边角度、图像对比度、噪声等级、MTF等级的刃边图像作为训练样本集;
[0010] (2)利用特征识别算法,获得仿真刃边图像的特征;
[0011] (3)对仿真刃边图像的图像特征进行预处理,使用处理后的图像特征对SVM分类器 进行训练;
[0012] (4)选出待测图像的刃边区域;
[0013] (5)对待测刃边图像利用特征识别算法进行特征提取。其中要注意的是,刃边方向 在水平方向的刃边图像需要将刃边方向旋转到竖直方向后再提取特征;
[0014] (6)对仿真刃边图像的图像特征进行预处理,将处理后的图像特征输入步骤3训练 得到的SVM分类器,获得待测图像Nyqui St频率处的MTF值,其中刃边方向在竖直方向的刃边 图像测出值为图像在水平方向的Ny qu i S t频率处的MTF值,刃边方向在水平方向的刃边图像 测出值为图像在竖直方向的Ny qu i S t频率处的MTF值。
[0015] 进一步地,所述步骤2与所述步骤5中的特征识别算法所识别的特征包含图像均 值、图像方差、图像偏度、图像峰度、图像能量值、图像结构参数、图像Nyquist频率处的频谱 和、图像信息赌、图像梯度能量、图像梯度绝对值和、图像brenner梯度、图像拉普拉斯滤波、 图像sobel滤波。
[0016] 进一步地,所述步骤3与所述步骤6中的图像特征预处理,包含相关性筛选、数据归 一化。
[0017] 进一步地,所述步骤4中的刃边区域选取可W通过手动方式进行选取,也可通过刃 边识别算法自动选取出合适的区域。刃边识别算法包括W下步骤:W图像左上角像素为起 点,将图像划分为25*25像素的图像块,每个图像块计算峰度值和偏度值。对峰度值在1到 1.4之间,偏度值-0.12到0.12之间的图像块,统计图像块内左上角、左下角、右上角、右下角 四个角上10*10像素图像小块的方差值。若图像块内有两个或两个W上的图像小块的方差 值小于0.0005,进一步统计图像上、下、左、右四条边上25巧长条的方差。若仅有上边长条与 下边长条的方差小于0.0005而左边长条与右边长条的方差大于0.0005,则该图像块为刃边 方向在水平方向的刃边图像;若仅有左边长条与右边长条的方差小于0.0005而上边长条与 下边长条的方差大于0.0005,则该图像块为刃边方向在竖直方向的刃边图像。之后将起点 在行方向或列方向移动3像素,按W上步骤重新筛选刃边图像。起点在行方向和列方向最多 移动24像素,一共进行9*9次筛选后,可认为完成刃边图像筛选。
[0018] 本发明的有益效果是:本发明将SVM分类器应用于遥感图像MTF测量中,通过选取 遥感图像中的刃边图像,对刃边图像提取特征,使用训练好的SVM分类器进行MTF测量。相对 于传统测量遥感图像MTF的刃边法,本发明方法解决了刃边角度限制问题,在不同刃边角度 下均能取得准确的测量结果,有更广的适用性。此外,相对于最佳刃边角度下的传统刃边 法,本方法计算结果更为精确、稳定性更好。
【附图说明】
[0019] 图1为本发明方法流程示意图;
[0020] 图2为本发明方法训练样本示意图;
[0021] 图3为本发明方法中刃边方向在水平方向的刃边图像示意图;
[0022] 图4为本发明方法中刃边方向在竖直方向的刃边图像示意图;
[0023] 图5为本发明方法第一类测试样本示意图;
[0024] 图6为本发明方法第二类测试样本示意图。
【具体实施方式】
[0025] W下结合附图对本发明作进一步说明。
[0026] 本发明是一种基于SVM的图像MTF测量方法,方法通过仿真生成不同刃边角度、图 像对比度、噪声水平和MTF等级的刃边图像作为训练样本集,通过特征识别算法提取出图像 特征,使用仿真图像的特征来训练SVM分类器,得到具有良好分类效果的分类器,然后对待 测图像的刃边区域提取特征,输入分类器获得待测图像Nyquist频率处的MTF值。本发明的 整体流程如图1所示,主要包括训练样本集获取、训练样本集特征提取、分类器训练、待测图 像刃边区域选取、待测刃边特征提取、待测图像MTF值计算等几个步骤。具体如下:
[0027] 步骤1:通过仿真获取训练样本集
[0028] 1.1根据实际待测图像的情况,确定刃边图像大小,也就是定下训练样本的长宽像 素数。
[0029] 1.2通过分析待测图像刃边区域的刃边角度、图像对比度W及噪声等级,定下训练 样本的刃边角度范围、图像对比度范围和噪声等级范围,范围大小根据测试置信度确定,可 根据实际情况适当改变。
[0030] 1.3根据步骤1.1确定的训练样本长宽像素数,在步骤1.2确定的训练样本的刃边 角度范围、图像对比度范围和噪声等级范围内生成随机的刃边角度、亮暗区灰度值和噪声 等级,根据运几个参数仿真得到刃边图像,刃边与图像上下边相交。然后对每个刃边图像做 26个不同MTF等级的退化处理,每个图像水平方向的Nyquist频率处MTF值按级差0.0 l从0.3 到0.05变化,图像竖直方向的NyquiSt频率处MTF值在水平方向的NyquiSt频率处MTF值的± 0.08范围内随机分布。具体训练样本如图2所示;
[0031] 步骤2:提取训练样本集的图像特征。利用特征识别算法提取样本图像的图像均 值、图像方差、图像偏度、图像峰度、图像能量值、图像结构参数、图像Nyquist频率处的频谱 和、图像信息赌、图像梯度能量、图像梯度绝对值和、图像brenner梯度、图像拉普拉斯滤波、 图像SObel滤波特征,从而获得一个n X m大小的特征矩阵,其中n为样本数目,m为特征参数 数目;
[0032] 步骤3:训练MTF等级分类器
[0033] 3.1对仿真得到刃边图像的图像特征进行相关性筛选,比如主成分分析方法,去掉 多余的图像特征,获得一个nXm'大小的特征矩阵,其中n为样本数目,m'为筛选后的特征参 数数目;
[0034] 3.2对特征数据进行归一化处理,并记录每个特征参数的最大值与最小值,用于步 骤6.2的数据处理;
[0035] 3.3使用处理后的nXm'大小的图像特征矩阵对SVM分类器进行训练;
[0036] 步骤4:待测图像刃边区域选取。可W手动选取待测图像的刃边区域或合乎要求的 刃边目标,也可W利用算法自动选取。刃边识别算法包括W下步骤:W图像左上角像素为起 点,将图像划分为25*25像素的图像块,每个图像块计算峰度值和偏度值。对峰度值在1到 1.4之间,偏度值-0.12到0.12之间的图像块,统计图像块内左上角、左下角、右上角、右下角 四个角上10*10像素图像小块的方差值。若图像块内有两个或两个W上的图像小块的方差 值小于0.0005,进一步统计图像上、下、左、右四条边上25巧长条的方差。若仅有上边长条与 下边长条的方差小于0.0005而左边长条与右边长条的方差大于0.0005,则该图像块为刃边 方向在水平方向的刃边图像,如图3所示;若仅有左边长条与右边长条的方差小于0.0005而 上边长条与下边长条的方差大于0.0005,则该图像块为刃边方向在竖直方向的刃边图像, 如图4所示。之后将起点在行方向或列方向移动3像素,按W上步骤重新筛选刃边图像。起点 在行方向和列方向最多移动24像素,一共进行9*9次筛选后,可认为完成刃边图像筛选;
[0037] 步骤5:待测刃边特征提取。对待测刃边图像利用特征识别算法进行特征提取,获 得待测刃边图像的图像均值、图像方差、图像偏度、图像峰度、图像能量值、图像结构参数、 图像Nyquist频率处的频谱和、图像信息赌、图像梯度能量、图像梯度绝对值和、图像 brenner梯度、图像拉普拉斯滤波、图像SObe 1滤波特征,从而获得一个1 Xm大小的特征向 量,其中m为特征参数数目。其中要注意的是,刃边方向在水平方向的刃边图像需要将刃边 方向旋转到竖直方向后再提取特征;
[0038] 步骤6:待测图像MTF值计算
[0039] 6.1根据步骤3.1的相关性筛选方法对待测刃边图像特征进行筛选,获得一个IX m'大小的特征向量,其中m'为筛选后的特征参数数目;
[0040] 6.2利用步骤3.2记录的每个特征参数的最大值与最小值,对待测图像的特征参数 作归一化处理;
[0041] 6.3将处理后的图像特征输入步骤3.3训练得到的SVM分类器,获得待测图像 Ny qu i S t频率处的MTF值,其中刃边方向在竖直方向的刃边图像测出值为图像在水平方向的 Nyquist频率处的MTF值,刃边方向在水平方向的刃边图像测出值为图像在竖直方向的 Nyqui St频率处的MTF值。
[0042] 第一类测试样本选用任意刃边角度和图像对比度的刃边图片,根据噪声水平分为 4组,噪声标准差分别为0、0.0 l、0.02、0.03。对每个刃边图像做26个不同MTF等级的退化处 理,每个图像水平方向的NyquiSt频率处MTF值按级差0.0 l从0.3到0.05变化,图像竖直方向 的NyquiSt频率处MTF值在水平方向的NyquiSt频率处MTF值的±0.08范围内随机分布。图5 为第一类测试样本示意图,竖直方向为不同噪声等级,水平方向为不同MTF等级。对第一类 测试样本进行MTF测量,并计算测量相对误差,相对误差公式如下
[0043]
[0044] 其中RE为相对误差,m为分类器输出的实测值,t为真值。针对第一类测试样本,本 发明方法和基于IS012233标准的传统刃边法的计算结果相对误差比较如表1所示。可W看 出传统刃边法计算MTF值受刃边角度影响,对任意角度的刃边计算MTF值时误差很大,而本 发明方法不受刃边角度限制。
[0045] 表1第一类测试样本测量结果相对误差比较
[0046]
[0047] 传统刃边法在刃边角度为7°时测量最准确,因此第二类测试样本选用7°刃边角、 任意图像对比度的刃边图片。根据噪声水平分为4组,噪声标准差分别为0、0.0 l、0.02、 0.03。对每个刃边图像做26个不同MTF等级的退化处理,每个图像水平方向的Nyquist频率 处MTF值按级差0.0 l从0.3到0.05变化,图像竖直方向的Nyqui St频率处MTF值在水平方向的 Nyquist频率处MTF值的±0.08范围内随机分布。图6为第二类测试样本示意图,竖直方向为 不同噪声等级,水平方向为不同MTF等级。对第二类测试样本进行MTF测量,并计算测量相对 误差。
[004引针对第二类测试样本,本发明方法和基于IS012233标准的传统刃边法的计算结果 相对误差比较如表2所示。可W看出相对传统刃边法,本发明方法计算结果更为准确、稳定 性好。
[0049]表2第二类测试样本测量结果相对误差比较 [(K)加 ]
【主权项】
1. 一种基于SVM的图像MTF测量方法,其特征在于,该方法包括以下步骤: (1) 根据使用要求,通过仿真获取不同刃边角度、图像对比度、噪声等级、MTF等级的刃 边图像; (2) 利用特征识别算法,获得仿真刃边图像的特征; (3) 对仿真刃边图像的图像特征进行预处理,使用处理后的图像特征对SVM分类器进行 训练; (4) 选出待测图像的刃边区域; (5) 对待测刃边图像利用特征识别算法进行特征提取; (6) 将待测刃边图像的特征经过预处理后输入步骤3训练得到的SVM分类器,获得待测 图像Nyquist频率处的MTF值。2. 如权利要求1所述的基于SVM的图像MTF测量方法,其特征在于:所述步骤2与所述步 骤5中的特征识别算法所识别的特征包含图像均值、图像方差、图像偏度、图像峰度、图像能 量值、图像结构参数、图像Nyquist频率处的频谱和、图像信息熵、图像梯度能量、图像梯度 绝对值和、图像brenner梯度、图像拉普拉斯滤波、图像sobe 1滤波。3. 如权利要求1所述的基于SVM的图像MTF测量方法,其特征在于:所述步骤4中的刃边 区域选取可以通过手动方式进行选取,也可通过刃边识别算法自动选取出合适的区域。刃 边识别算法包括以下步骤:以图像左上角像素为起点,将图像划分为25*25像素的图像块, 每个图像块计算峰度值和偏度值。对峰度值在1到1.4之间,偏度值-0.12到0.12之间的图像 块,统计图像块内左上角、左下角、右上角、右下角四个角上10*10像素图像小块的方差值。 若图像块内有两个或两个以上的图像小块的方差值小于0.0005,进一步统计图像上、下、 左、右四条边上25*2长条的方差。若仅有上边长条与下边长条的方差小于0.0005而左边长 条与右边长条的方差大于0.0005,则该图像块为刃边方向在水平方向的刃边图像;若仅有 左边长条与右边长条的方差小于0.0005而上边长条与下边长条的方差大于0.0005,则该图 像块为刃边方向在竖直方向的刃边图像。之后将起点在行方向或列方向移动3像素,按以上 步骤重新筛选刃边图像。起点在行方向和列方向最多移动24像素,一共进行9*9次筛选后, 可认为完成刃边图像筛选。
【文档编号】G06K9/62GK106022354SQ201610301612
【公开日】2016年10月12日
【申请日】2016年5月7日
【发明人】冯华君, 张峥, 陈跃庭, 徐之海, 李奇
【申请人】浙江大学