用于通过组合实验和数字数据预测时间相关现象的方法和系统的利记博彩app

文档序号:10625090阅读:847来源:国知局
用于通过组合实验和数字数据预测时间相关现象的方法和系统的利记博彩app
【专利摘要】本发明涉及用于通过组合实验和数字数据预测时间相关现象的方法和系统。系统(1)包括中央处理单元(7),其包括数据获取单元(11),构造成获取表征时间相关现象的参数的实验数据;数据获取单元(12),构造成获取表征该现象的参数的数字数据;和数据处理单元(8),构造成组合实验数据和数字数据,通过使用正常正交分解POD,实现了获得时间相关现象的有效预测,组合了实验数据的优点(精确度)和数字数据的优点(空间分辨率)。
【专利说明】
用于通过组合实验和数字数据预测时间相关现象的方法和 系统
技术领域
[0001] 本发明设及一种方法和一种系统,用于预测至少一个时间相关现象。
[0002] 时间相关现象的预测显著地对飞行器的研制和建造有用。因此,作出努力获取足 够精确的预测,从而把时间相关现象合并到飞行器尤其是运输机的研制中,并因此减轻重 量、节约成本。
[0003] 本发明能够被用于需要时间相关现象的精确预测的工程中的任何问题,并且在非 常多的领域(航空学、机动车、计量学等等)运样做。例如在航空学中,本发明能够被用于飞 行器的很多技术领域(发动机、机身、起落装置等等)和飞行器的元件(发动机装置、空气进 口、起落装置、高升程系统设备等等)。
【背景技术】
[0004] 该时间相关现象能够呈现在飞行器的许多组成部件或元件中,例如发动机装置、 进气口、起落装置、高升程系统设备。该时间相关现象显著地增加了飞行器的运些部件上的 结构负载,由此直接影响结构质量(尺寸)、保养费用和飞行器的寿命和可用性。
[0005] 现在,与运类现象有关的潜在问题通常在飞行器的研制中发现的非常晚(通常是 在飞行试验期间),因此不得不通过结构加强或缩短检查间隔来解决,运既增加了飞行器的 重量又增加了飞行器的研制成本。
[0006] 因此,为了能够避免运些类型的问题,重要的是,能够在设计过程中非常早地对时 间相关现象进行精确预测。
[0007] 时间相关现象的预测通常是根据实验数据,其给出带有有效精度的结果,但该结 果带有相对低的空间分辨率(因为有限数量的传感器),从而,不提供对上述应用情况的有 效解决方案。

【发明内容】

[000引本发明的目的是补救运个缺陷并且提供预测方法,其产生特别有效的预测,即,既 精确又具有高的空间分辨率。它设及一种方法,用于预测出现的至少一个时间相关现象,所 述方法包括的步骤是: A:获取与所述现象有关的第一时间相关数据,所述第一时间相关数据包括表征该现象 的参数的实验数据,该实验数据是由使用传感器执行的测量产生的。
[0009] 根据本发明,所述方法进一步地包括下列步骤,是: B:获取与所述现象有关的第二时间相关数据,所述第二时间相关数据包括表征该现象 的参数的数字数据,该数字数据是通过数字模拟获取的;和 C:通过使用第一数据来校准第二数据而组合第一和第二数据,从而获得该时间相关现 象的预测,所述预测被传送给至少一个用户系统14。
[0010] 因此,利用本发明,得到一种预测方法,其组合实验数据和数字数据,从而考虑了 它们各自的优点。
[0011 ]有利的,步骤C包括下列子步骤,是: C1:把第一和第二时间相关数据从时间域转变到频率域; C2:构造与正常正交分解(proper o;rthogonal decomposition)有关的模型,叫做POD 模型,实验数据和数字数据被相应地分解成两个POD模型,运些适当获取的POD模型包含与 正常正交分解有关的不同的模式,叫做POD模式; C3:从所述POD模式选择,所谓的相关POD模式;和 C4:根据选择的相关POD模式产生数据的组合,相应的基数,叫做POD基数,由数字数据 计算得到,实验数据用于校准POD基数,从而形成全解,使得可获得时间相关现象的预测。
[0012] 该预测方法因此使用数学近似法,叫做正常正交分解POD。后者代表有效的无偏差 方法,用于组合来源于不同源的时间相关数据。运实现了获得时间相关现象的有利且有效 的预测,组合了实验数据的优点(精确)和数字数据的优点(空间分辨率),并因此使得可补 救上述缺陷。
[0013] 此外,有利的,在子步骤C1中,实验数据和数字数据被相应地表示为两组数据的形 式,所述两组的每一组都包括η个样本,运些样本包括指定频率下在指定点处的所述参数的 数值,η是代表所考虑的离散频率的数量的整数。
[0014] 此外,有利地,步骤C包括子步骤C5,是:在子步骤C1的可逆变换的情况下,把全解 从频率域转变成时间域,从而获得时间相关现象的预测。
[0015] 在优选实施例中,子步骤C3是,选择f个第一POD模式作为相关POD模式,是从3、 4和5中选择的整数。
[0016] 本发明还设及一种系统,用于预测至少一个时间相关现象,所述系统包括中央处 理单元,其包括第一数据获取单元,构造成获取与所述现象有关的第一时间相关数据,所述 第一时间相关数据包括表征该现象的参数的实验数据,该实验数据是由使用传感器执行的 测量产生的。
[0017] 根据本发明,所述中央处理单元进一步地包括: -第二数据获取单元,其构造成获取与所述现象有关的第二时间相关数据,所述第二时 间相关数据包括表征该现象的参数的数字数据,该数字数据是通过数字模拟获取的;和 -数据处理单元,其构造成通过使用第一数据来校准第二数据而组合第一和第二数据, 从而获得该时间相关现象的预测,所述预测被传送给至少一个用户系统。
[0018] 有利地,该数据处理单元包括: -数据处理元件,其构造成把第一和第二时间相关数据从时间域转变到频率域; -数据处理元件,其构造成构造与正常正交分解有关的模型,叫做POD模型; -选择元件,其构造成从所述POD模式选择,所谓的相关POD模式;和 -数据处理元件,其构造成根据选择的相关POD模式产生数据的组合,相应的基数,叫做 POD基数,由数字数据组计算得到,实验数据则用于校准POD基数,从而形成全解,使得可获 得时间相关现象的预测。
[0019] 此外,有利地,数据处理单元包括数据处理元件,构造成,在可逆变换的情况下,把 全解从频率域转变成时间域,从而获得时间相关现象的预测。
[0020] 此外,在一个特定实施例中,该预测系统进一步地包括: -第一数据生成单元,其构造成产生所述第一数据;和/或 -第二数据生成单元,其构造成产生所述第二数据;和/或 -数据传送单元,其构造成传送时间相关现象的所述预测给至少一个用户系统。
【附图说明】
[0021] 附图将给出对如何能够制造本发明的良好理解。在运些图中,相同的附图标记指 示相似的元件。
[0022] 图1是用于预测出现在飞行器的部件上的时间相关现象的系统的特定实施例的框 图。
[0023] 图2示出在正常正交分解的背景下预测系统的数据处理单元实施的一系列步骤。
[0024] 图3示意地示出飞行器的发动机支柱后面的整流装置上的一组疲劳产生激励源, 本发明示出在该飞行器上。
[0025] 图4示出飞行器的发动机支柱后面的整流装置上的传感器的位置(相对于图3的例 子),示出实验数据的空间分辨率。
[0026] 图5示出在飞行器的发动机支柱后面的整流装置的水平处的数字数据的空间分辨 率(相对于图3的例子)。
[0027] 图6是图示,示出表示压力PSD的Ξ条曲线,分别用于实验数据、数字数据和通过组 合实验数据和数字数据所产生的组合数据。
【具体实施方式】
[0028] 示意地在图1中给出并且用于解释本发明的系统1是运样的系统,用于预测在例如 飞行器尤其是运输机的一部分上出现的至少一个时间相关现象。
[0029] 飞行器的运个部分能够设及受到时间相关外部干扰的任何元件,并且尤其是飞行 器的下列元件之一:按照下文参照图3-5的说明的发动机装置、进气口、起落装置、高升程系 统设备、缠绕装置、支柱缠绕装置、水平尾翼等等。
[0030] 此外,该时间相关现象能够对应于任何现象,尤其是流体的流动、结构响应、声学 或电信号等等,其随着时间而变化。
[0031] 该系统1包括数据生成单元2,其被构造成产生第一时间相关数据,与所考虑的现 象有关。运些第一(时间相关)数据是表征所考虑的现象的参数的实验数据。运些实验数据 是通过在飞行器的所述部分上执行的测量产生的。对于此,数据生成单元2包括传感器4(或 测量元件)的组3,它们执行测量并且发送测量结果给中央处理单元5(经由链路15)。运些传 感器4(或测量元件)通常是测量指定参数的数值的常用传感器。运个参数能够对应于压力、 溫度或其它运样的数值,使得可表征所考虑的现象。
[0032] 根据本发明,系统1进一步地包括(数字模拟)数据生成单元6,其被构造成产生第 二(时间相关)数据,与所述同一现象有关。运些第二时间相关数据是表征该现象的所述参 数的数字数据。运些数字数据是通过数字模拟产生的。对于此,数据生成单元6包括至少一 个通常的数字模拟单元。
[0033] 根据本发明,所述系统1进一步地包括: -中央处理单元7,设置有数据处理单元8,其通过链路9和10分别链接到数据生成单元2 和6并且接收由运些数据生成单元2和6产生的实验数据和数字数据,通过集成的数据获取 装置11和12。数据处理单元8被构造成按照下述的方式通过组合运些实验数据和运些数字 数据来产生对时间相关现象的预测;和 -至少一个数据传送单元(链路13),其提供由数据处理单元8产生的预测的结果给至少 一个用户系统14,例如显示器或存储单元或者是计算机。
[0034] 因为时间相关现象的预测显著地有用于飞行器的研制和构造,所W运个用户系统 13能够显著地对应于任何系统(显示器、存储器等等),使得在研制过程中实现了呈现信息 给有关的操作员。
[0035] 如图1中所示,分别从获取装置11和12通过链路16和17接收实验数据和数字数据 的数据处理单元8包括: -数据处理元件18,构造成把时间相关实验数据和数字数据从时间域转变到频率域。实 验数据和数字数据相应地表示为两组数据的形式。运两组中的每一组都包括η个样本,运些 样本包括指定频率下在飞行器的所述部分上的指定点处的所述参数的数值,η是代表所考 虑的离散频率的数量的整数; -数据处理元件19,其构造成构建与正常正交分解POD有关的模型,叫做POD模型。实验 数据和数字数据被相应地分解成两个POD模型。运些适当获取的POD模型包含与正常正交分 解有关的不同的模式,叫做POD模式,它们是对数据的两个原始组的精确表达; -选择元件20,其构造成从全部所述POD模式选择,所谓的相关POD模式; -数据处理元件21,其构造成根据由选择元件20选择的相关POD模式产生数据的组合。 数据处理元件21从运组数字数据计算相应的基数,叫做POD基数。数据处理元件21然后使用 实验数据来校准POD基数从而形成(再造)全解;和 -数据处理元件22,构造成把该适当再造的全解从频率域转变到时间域。运实现了获取 出现在飞行器的运个部件上的时间相关现象的预测。
[0036] 在本发明的环境中,数字数据对应于由通常的数字模拟产生的,由数据生成单元6 实施的数据。优选地,它们是通过与CFD(计算流体动力学)型数字流体力学有关的模拟来获 取的。然而能够使用所有的通常类型的计算和模拟,例如LBM类型的离散格子玻尔兹曼方法 (lattice Boltzmann method)。通过示例的方式,在带有载荷和结构的应用的情况下,还可 使用采用FEM类型的有限元法的数字模拟,或者CAA(计算气动声学)模拟或声域中的数字气 动声学模拟。
[0037] 此外,所使用的实验数据是由数据生成单元2的传感器4测量的数据,并且显著地: -在类似于要被研制的那个的元件上测得,例如在类似的飞行器上,在运个类似的飞行 器的飞行期间; -在独立元件上测得,包括飞行器的所述部件,或对应于此的,例如发动机,在现场的独 立测试期间;和/或 -在配备所述部件的飞行器的飞行期间测得,在它的设计和它的构造之后。
[0038] 运些测量是使用适用于执行所考虑的测量类型(压力、溫度等等)的常用传感器执 行的。它们能够例如是粘合在飞行器的构造上在所述部件上且记录噪声的扩音器。
[0039] 独立地使用的数字和实验数据并不提供合并时间相关现象到早期飞行器设计过 程中所必须的精度的必要水平。另一方面,系统1结合实验数据的优点(精度)和数字数据的 优点(空间分辨率)。对于此,它使用正常正交分解POD,运是组合来源于不同源的时间相关 数据的有效的无偏差方法。
[0040] 数据处理单元7实施的POD分解的一般概念在下文详细描述。
[0041] 通过考虑带有平均算子椅的有限空间迷中的变量J的域并且通过考虑运个 域的每种实现属于标量积;|箱和模方II的希尔伯特空间姑,下列问题:
[0042] 接受一组函数和句作为解。运组函数构成妊的基数乘,叫做?00基数。!^能够被分 解成:
[0043] 在空间-时间信号域取荀的情况下,运个分解的延伸是单一的,在适当的平均算子 的定义之后,并且在运种情况下心的POD分解对应于:
[0044] 信号的POD分解是最优分解,因为与其在POD基数的第一欢函数上的投影之间的 差值小于如果任何取个其它函数用于该投影的情况。
[0045] 因此更少数量的模式足W非常精确地再造数据。使用POD基数从不完整组的数据 构造样本。运个过程叫做"Gappy POD "。
[0046] 目的是组合由模拟(尤其是CFD类型)提供的高密度信息与实验数据的高精度,通 过使用革新和有效的方法,用于从模拟中提炼信息。
[0047] 空间变量X是通过W索引的。通过考虑仅仅在有限数量的点上已知的数据上的样 本V,"屏蔽"矢量《被定义为表征运个特性: 而=〇如果数据是缺失的;和 喘二巧日果数据是已知的。
[004引内积算子禪t于是由下定义:
其中Λν)代表逐点乘法。
[0049] 通过考虑?00基数(兵^);^=1胃.7'已经为代表相同物理现象的一组样本计算为*,并且 按fc)料,是一组系数,重构的样本能够从方第一模式形成,如下:
运个过程的目的是确定系数组粗,其最小化参量:
也就是重构的样本中的误差,基于可用的原始数据。
[0050] 运个过程用作数据桥接法。对于此,为一组数字解(C抑模拟)计算POD基数,并且由 实验数据产生的不完整样本被用来从运个基数再造全解,考虑的事实是数字数据和实验数 据设及相同的空气动力现象。因为运个情况设及非平稳现象和随机信号,所W,数据没有在 时间域被分析和用于而是在频率域。因此,在频率域中形成"Gappy POD"重构。运个是W上 述方式实施的,通过使用频率步长而不是时间步长。样本不再是的形式,而是巧勒巧 的形式。优化系数每次被用于一个频率步长,W获取校准的解。
[0051] 系统1,且尤其是数据处理单元8,如上所述,从实验数据和数字数据实施(先前按 照下文确定的并且从单元2和則欠到的)连续步骤E1至E5,如图2中所示,包括: E1:把时间相关实验数据和数字数据从时间域转变到频率域; E2:构造与正常正交分解有关的模型,叫做POD模型,包含不同的POD模式; E3:选择相关POD模式; E4:根据选择的相关POD模式产生数据的组合,通过从数字数据组计算相应的基数,叫 做POD基数,并且通过从实验数据组校准运个POD基数来再造基数的全解;和 E5:把该适当再造的全解从频率域转变到时间域,从而获取预测探寻,也就是出现在飞 行器的所关注部件上的时间相关现象的预测。
[0052] 系统1的运转在下文更详细地描述,应用到声疲劳的预测的例子,在飞行器的发动 机25的支柱后面的APF 24整流装置(尾部外挂整流装置)上,如图3至5中示意性示出的。声 疲劳能够起因于许多激励源,其效果在图3中用不同的符号S1至S4表示。运些激励源包括副 喷射与外部流之间的混合层SUW及得到的噪声)、来自发动机的端流S2、与更低翼梁的相 互作用S3和发动机25的噪音S4。运些现象产生非平稳压力场,其作用在APF构造上并且能够 引起结构损坏。具体地,尺寸不足的构造能够导致过早的结构疲劳(声疲劳、增加的保养费 用),而超尺寸的构造能够导致过重(降级的飞机性能)。为了获取最佳设计的APF构造,必须 在飞行器研制的第一阶段具有对非平稳压力场的精确预测。由于非平稳压力场的随机性和 局部性,运个预测需要兼备高精度和高空间分辨率。系统1使得得到运样的预测(基于实验 数据和数字数据)成为可能。
[0053] 通过示例,示出了与运个例子有关的空间分辨率,对于图4中的实验数据和图5中 的数字数据。
[0054] 实验数据的空间分辨率被限制于几个离散的传感器4。仅仅带有运样的实验数据, 存在风险,即不检测非平稳压力场的全局极大值。另一方面,数字数据的空间分辨率更高 (例如,具有大于100 000点的数据量),产生均匀分布,呈现不同的压力场的不同的区Z1至 巧在图5中给出。在运种情况下,正确地定义了最大值。
[0化日]在运个特定例子中,系统1尤其通过数据处理单元8实施下列步骤E1至E5: E1:转变到频率域。由于非平稳压力场的随机性,时间相关数据转变到频率域(PSD或傅 里叶变换)。压力的功率谱密度是优选要考虑的。实验数据和数字数据表达成两组数据的形 式,每组包括η个样本(或快照),其包含指定频率下传感器上的压力数据(η是离散频率的数 量); E2:构造 POD模型。实验数据和数字数据被分解成两个POD模型。运些适当获取的POD模 型包含不同的POD模式,它们是原始数据组的精确表达; E3:选择相关POD模式。第一 POD模式通常包含时间相关信号的大部分能量。第一四个模 式常常包含全部能量的99%W上。因此,在组合期间不必要考虑所有POD模式,运能降低该方 法的鲁棒性。POD模式的数量被减少到相关模式W捕获时间相关现象的物理成分(通常在3 与5之间); E4:根据减少的POD模型组合数据。从运组高分辨率数据(数字数据)计算POD基数。带有 高保真度但低分辨率的数据(实验数据)于是被用于校准该POD基数("Gappy POD")并且再 造生成新的全解。运个新的解现在包含数字数据的高分辨率和实验数据的高精确度;和 E5:转变到时间域。如果原始数据已经使用可逆变换例如傅里叶变换转变到频率域,那 么组合的数据能够反过来转变到时间域。
[0化6]获得的结果能够通过图6清楚的理解。图6示出作为频率F的函数的压力巧I祉的趋 势,对于指定的传感器位置,分别是: -曲线C1形式的,代表实验数据; -曲线C2形式的,代表数字数据; -曲线C3形式的,代表组合数据(使用系统1获得的)。
[0057]将注意到,组合解的精确度与实验数据良好吻合。
[005引上面描述的系统1和方法产生了对于时间相关信号组合实验数据和数字数据的数 据组合(数据桥接过程),尤其实现了获得合并时间相关现象到飞行器尤其是运输机的研制 中所必须的预测精度,因此节省了重量和成本。
[0059] 所述系统1和所述方法因此实现了: -改进预测的有效性; -节省了重量和成本; -把时间相关现象引入飞行器的研制中;和 -降低实验方法的复杂性和成本(更少的测试仪器和矩阵)。
[0060] 此外,系统1和该方法可应用于许多工程领域(航空、运输、计算、建筑等等),对于 大量的技术学科(流体力学、声学、荷载、结构、电子)。
【主权项】
1. 一种用于预测至少一个时间相关现象的方法,所述方法包括的步骤是: A:获取与所述现象有关的第一时间相关数据,所述第一时间相关数据包括表征该现象 的参数的实验数据,该实验数据是由使用传感器执行的测量产生的, 其特征在于,所述方法还包括下列步骤,是: B:获取与所述现象有关的第二时间相关数据,所述第二时间相关数据包括表征该现象 的参数的数字数据,该数字数据是通过数字模拟获取的;和 C:通过使用第一数据来校准第二数据而组合第一和第二数据,从而获得该时间相关现 象的预测,所述预测被传送给至少一个用户系统(14)。2. 如权利要求1所述的方法,其特征在于,所述步骤C包括下列子步骤,是: Cl:把第一和第二时间相关数据从时间域转变到频率域; C2:构造与正常正交分解有关的模型,叫做POD模型,实验数据和数字数据被相应地分 解成两个POD模型,运些适当获取的POD模型包含与正常正交分解有关的不同的模式,叫做 WD模式; C3:从所述POD模式选择,所谓的相关POD模式;和 C4:根据选择的相关POD模式产生数据的组合,相应的基数,叫做POD基数,由数字数据 计算得到,实验数据则用于校准POD基数,从而形成全解,实现获得时间相关现象的预测。3. 如权利要求2所述的方法,其特征在于,在子步骤Cl中,实验数据和数字数据被相应 地表示为两组数据的形式,所述两组的每一组都包括n个样本,运些样本包括指定频率下在 指定点的所述参数的数值,n是代表所考虑的离散频率的数量的整数。4. 如权利要求2和3之一所述的方法,其特征在于,步骤C包括子步骤巧,是:在子步骤Cl 的可逆变换的情况下,把全解从频率域转变成时间域,从而获得时间相关现象的预测。5. 如权利要求2至4之一所述的方法,其特征在于,子步骤C3是,选择异个第一 POD模式作 为相关POD模式,巧是从3、4和5中选择的整数。6. -种用于预测至少一个时间相关现象的系统,所述系统(1)包括中央处理单元(7), 其包括第一数据获取单元(11),构造成获取与所述现象有关的第一时间相关数据,所述第 一时间相关数据包括表征该现象的参数的实验数据,该实验数据是由使用传感器执行的测 量产生的, 其特征在于,所述中央处理单元(7)进一步地包括: -第二数据获取单元(12),其构造成获取与所述现象有关的第二时间相关数据,所述第 二时间相关数据包括表征该现象的参数的数字数据,该数字数据是通过数字模拟获取的; 和 -数据处理单元(8),其构造成通过使用第一数据来校准第二数据而组合第一和第二数 据,从而获得该时间相关现象的预测,所述预测被传送给至少一个用户系统(14)。7. 如权利要求6所述的系统, 其特征在于,数据处理单元(8 )包括: -数据处理元件(18),其构造成把第一和第二时间相关数据从时间域转变到频率域; -数据处理元件(19),其构造成构建与正常正交分解有关的模型,叫做POD模型; -选择元件(20 ),其构造成从所述POD模式选择,所谓的相关POD模式;和 -数据处理元件(21),其构造成根据选择的相关POD模式产生数据的组合,相应的基数, 叫做POD基数,由数字数据组计算得到,实验数据则用于校准POD基数,从而形成全解,实现 获得时间相关现象的预测。8. 如权利要求7所述的系统, 其特征在于,数据处理单元(8)包括数据处理元件(22),其构造成,在可逆变换的情况 下,把全解从频率域转变成时间域,从而获得时间相关现象的预测。9. 如权利要求6至8中任一所述的系统, 其特征在于,它进一步地包括:第一数据生成单元(2 ),其构造成产生所述第一数据。10. 如权利要求6至9中任一所述的系统, 其特征在于,它进一步地包括:第二数据生成单元(6 ),其构造成产生所述第二数据。11. 如权利要求6至10中任一所述的系统, 其特征在于,它进一步地包括:数据传送单元(10),其构造成传送所述预测给至少一个 用户系统(14)。12. 计算机程序,其包括指令,适于在所述程序在计算机上运行时执行如权利要求1至5 任一项所述方法的步骤。
【文档编号】G06Q10/04GK105989421SQ201610156600
【公开日】2016年10月5日
【申请日】2016年3月18日
【发明人】M.巴尔特, L.汉森, M.贝托梅, S.拉詹
【申请人】空中客车运营简化股份公司, 空中客车集团印度私人有限公司, 空中客车德国运营有限责任公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1