金融衍生品大数据分析、交易与风险管理系统及方法
【专利摘要】本发明提供一种金融衍生品大数据分析、交易与风险管理系统及方法,包括:数据收集服务器获取金融衍生品数据;分析服务器根据金融衍生品数据采用衍生品定价模型计算获得分析结果信息,并发送给交易服务器和分析客户端;交易服务器根据实时数据和分析结果信息进行交易判断,并将交易指令发送至交易所,以及将交易信息发送给交易客户端。本发明提供的一种金融衍生品大数据分析、交易与风险管理系统及方法,通过集成金融衍生品的数据采集、衍生品定价、交易决策、衍生品风险控制,建立了一套统一完整、科学系统和快速实施的系统,可以完整地处理衍生品的定价分析、交易和风险管理系统,解决了一般衍生品处理工具各自为战不能形成一个统一的整体。
【专利说明】
金融衍生品大数据分析、交易与风险管理系统及方法
技术领域
[0001] 本发明设及金融信息管理技术领域,尤其设及一种金融衍生品大数据分析、交易 与风险管理系统及方法。
【背景技术】
[0002] 衍生产品是一种金融工具,一般表现为两个主体之间的一个协议,其价格由其他 基础产品的价格决定。随着现代金融业的发展,金融衍生品在市场上扮演越来越重要的作 用,基于衍生品的定价分析、交易和风险管理成为学术界和金融业界的关注重点。
[0003] 当前金融与信息技术界很多衍生品相关的独立的软件系统,例如:金融信息提供 平台、金融模型软件、大数据系统和风险管理软件,但是缺乏统筹协调、实时准确和精确快 速的可W同时应用于学术和金融业界的金融衍生品大数据分析、交易与风险管理平台。例 如,金融信息提供平台只提供数据源和简单模型,并不能提供完善的金融模型演算。金融模 型软件一般是学术应用,应用于静态的历史数据,进行静态的学术研究,不适应高频率的实 时金融业界环境。大数据系统目前一般应用于IT领域,如果需要应用于金融领域必须要重 新调整。目前在业界应用的风险管理软件存在实时应用问题,即使仓位头寸可W实时追踪 更新,模型参数也不能根据市场实时调整,造成了风险估计的不准确。
【发明内容】
[0004] 本发明提供一种金融衍生品大数据分析、交易与风险管理系统及方法,用于解决 现有技术中管理方法缺乏统筹协调、实时准确和精确快速的问题。
[0005] -方面,本发明提供一种金融衍生品大数据分析、交易与风险管理系统,其特征在 于,包括数据收集服务器、分析服务器和交易服务器,其中,:
[0006] 数据收集服务器,与分析服务器连接,用于获取金融衍生品数据,并将金融衍生品 数据传输给所述分析服务器,所述金融衍生品数据包括实时数据和在预设时间内的历史数 据;
[0007] 分析服务器,与交易服务器和分析客户端连接,用于根据金融衍生品数据采用衍 生品定价模型计算获得分析结果信息,并将获得的分析结果信息传输给交易服务器和分析 客户端;
[000引交易服务器,与交易所和交易客户端连接,用于根据实时数据和分析结果信息进 行交易判断,并将交易指令发送至交易所,W及将交易信息发送给交易客户端。
[0009] 优选地,还包括风险分析服务器,与交易服务器和风险客户端连接,用于根据交易 头寸采用风险模型计算获得风险信息,并将风险信息传输给风险客户端,所述交易头寸为 交易服务器根据实时数据和分析结果信息进行交易判断获得交易头寸。
[0010] 优选地,所述数据收集服务器还与市场大数据服务器连接,市场大数据服务器用 于存储金融衍生品数据;所述市场大数据服务器与分析服务器连接,用于将金融衍生品数 据传输给分析服务器。
[0011] 优选地,所述市场大数据服务器连接备份服务器,所述备份服务器用于同步备份 金融衍生品数据。
[0012] 优选地,所述分析服务器连接分析大数据服务器连接,分析大数据服务器用于存 储分析结果信息;所述分析大数据服务器与交易服务器连接,用于将分析结果信息传输给 交易服务器。
[0013] 优选地,所述分析大数据服务器连接备份服务器,所述备份服务器用于同步备份 金融衍生品数据。
[0014] 另一方面,本发明提供一种金融衍生品大数据分析、交易与风险管理方法,包括:
[0015] 数据收集服务器获取金融衍生品数据,并将金融衍生品数据传输给分析服务器, 所述金融衍生品数据包括实时数据和在预设时间内的历史数据;
[0016] 分析服务器根据金融衍生品数据采用衍生品定价模型计算获得分析结果信息,并 将获得的分析结果信息发送给交易服务器和分析客户端;
[0017] 交易服务器根据实时数据和分析结果信息进行交易判断,并将交易指令发送至交 易所,W及将交易信息发送给交易客户端。
[001引优选地,还包括:
[0019] 交易服务器根据实时数据和分析结果信息进行交易判断获得交易头寸,并将交易 头寸发送给风险分析服务器;
[0020] 风险分析服务器根据交易头寸采用风险模型计算获得风险信息,并将风险信息发 送给风险客户端。
[0021] 优选地,所述衍生品定价模型为:D = f(S,〇,t),其中D为衍生品价格,S为标的物价 格,O为标的物的特性,t为衍生品的规格信息。
[0022] 优选地,所述风险模型包括市场风险模型和交易对手风险模型,其中,
[0023] 市场风险模型为:ProM AP《-化R}=a,其中,化R为风险价值,CVaR为条件风险价 值;
[0024] 交易对手风险模型为: ,其中,R为恢复率,qi为时间i的 交易对手违约概率,Vi为时间i的风险暴露金额。
[00巧]由上述技术方案可知:
[0026] 本发明提供的一种金融衍生品大数据分析、交易与风险管理方法,通过集成金融 衍生品的数据集成、数据存储、衍生品定价、交易决策、衍生品风险控制,建立了一套统一完 整、科学系统和快速实施的系统。相比单一的金融衍生品软件,可W完整地处理衍生品的定 价分析、交易和风险管理系统,解决了一般衍生品处理工具各自为战,不能形成一个统一的 整体。
[0027] 同时相对一般的衍生品分析系统,可W处理大数据时代的金融数据,具备对不同 标的物、不同参数的衍生品的日间数据、分钟数据、高频分时数据、逐笔成交数据、指令簿数 据和持仓数据进行储存和处理能力,具备了高频实时、多维海量的大数据的处理。
【附图说明】
[0028] 图1为本发明实施例1提供的金融衍生品大数据分析、交易与风险管理系统的结构 不意图;
[0029] 图2为本发明实施例2提供的金融衍生品大数据分析、交易与风险管理系统的结构 示意图;
[0030] 图3为本发明实施例3提供的金融衍生品大数据分析、交易与风险管理系统的结构 示意图;
[0031] 图4为本发明实施例4提供的金融衍生品大数据分析、交易与风险管理方法的流程 示意图。
【具体实施方式】
[0032] 下面结合附图和实施例,对本发明的【具体实施方式】作进一步详细描述。W下实施 例用于说明本发明,但不用来限制本发明的范围。
[0033] 图1示出了本发明实施例1提供的一种金融衍生品大数据分析、交易与风险管理系 统,包括数据收集服务器1、分析服务器2和交易服务器3,其中,:
[0034] 数据收集服务器1,与分析服务器2连接,用于获取金融衍生品数据,并将金融衍生 品数据传输给所述分析服务器,所述金融衍生品数据包括实时数据和在预设时间内的历史 数据。所述数据采集服务器从交易所6和数据提供商8处获取金融衍生品数据。
[0035] 分析服务器2,与交易服务器3和分析客户端4连接,用于根据金融衍生品数据采用 衍生品定价模型7计算获得分析结果信息,并将获得的分析结果信息传输给交易服务器和 分析客户端。
[0036] 需要说明的是,所述分析服务器在获取到金融衍生品数据后,采用内部处理器利 用衍生品定价模型进行计算,最终获得分析结果信息。为此,对具体情况下的衍生品定价模 型进行解释说明,由于衍生品较多,其适用的定价模型也较多。其归纳为一个通用的定价模 型为:D = f(S,〇,t),其中D为衍生品价格,S为标的物价格。O为标的物的特性,比如收益波动 率。t为衍生品的规格信息,如期限、方向等。
[0037] W看涨期权举例来说,如果假设标的物服从几何布朗运动,那么有如下定价关系: [003 引 c = SN(di)-Ke-rTN(d2),其中,
[0039]
[0040]
[0041] C为看涨期权理论价格,S为标的物价格,O为期权的特征收益波动率,K和T为衍生 品的规格,分别是行权价格和到期时间。N为正态分布的累计密度函数Jn为自然对数。
[0042] 于此同时,也可W通过衍生品的市场价格,反推标的物的一些特性(通过研究期权 市场价格反推标的物的隐含波动率和隐含概率分布):
[0043] 〇 = f-i(s,D,t)
[0044] O为标的物的特性,S为标的物价格,D为衍生品价格,t为衍生品的规格。
[0045] 还可W通过构造一些衍生品的投资组合,确定衍生品的一些性质。例如:
[0046]
[0047] P撼組合为投资组合价格,Pi为第i个组成成分衍生品价格,qi为第i个衍生品的合约 数量。
[004引
[0049] R撼組合为投资组合收益,Ri为第i个组成成分衍生品收益,qi为第i个衍生品的价值 权重。
[0050] 还可W计算衍生品价格对于各种因素(比如,标的物价格、标的物特征和合约特征 等)的敏感程度,有时被称为Greeks。
[0化1 ]
[0052] Ak为衍生品价格对于因素 k的敏感程度,P为衍生品价格,k为因素。
[0053] 交易服务器3,与交易所6和交易客户端5连接,用于根据实时数据和分析结果信息 进行交易判断,并将交易指令发送至交易所,W及将交易信息发送给交易客户端。
[0054] 本发明实施例1提供的一种金融衍生品大数据分析、交易与风险管理系统,通过集 成金融衍生品的数据采集、衍生品定价、交易决策控制,建立了一套统一完整、科学系统和 快速实施的系统。相比单一的金融衍生品软件,可W完整地处理衍生品的定价分析、交易管 理,解决了一般衍生品处理工具各自为战,不能形成一个统一的整体。
[0055] 图2示出了本发明实施例2提供的一种金融衍生品大数据分析、交易与风险管理系 统,包括数据收集服务器1、分析服务器2、交易服务器3和风险分析服务器9,其中,
[0056] 数据收集服务器1,与分析服务器2连接,用于获取金融衍生品数据,并将金融衍生 品数据传输给所述分析服务器,所述金融衍生品数据包括实时数据和在预设时间内的历史 数据。所述数据采集服务器从交易所6和数据提供商8处获取金融衍生品数据。
[0057] 分析服务器2,与交易服务器3和分析客户端4连接,用于根据金融衍生品数据采用 衍生品定价模型7计算获得分析结果信息,并将获得的分析结果信息传输给交易服务器和 分析客户端。
[005引交易服务器3,与交易所6和交易客户端5连接,用于根据实时数据和分析结果信息 进行交易判断,并将交易指令发送至交易所,W及将交易信息发送给交易客户端。
[0059] 风险分析服务器9,与交易服务器和风险客户端10连接,用于根据交易头寸采用风 险模型11计算获得风险信息,并将风险信息传输给风险客户端,所述交易头寸为交易服务 器根据实时数据和分析结果信息进行交易判断获得交易头寸。风险模型不仅要求交易头寸 和市场数据实时更新,而且需要要求模型参数实时更新,保证风险评价的科学和稳定。
[0060] 风险模型是用数理模型计算金融风险的模型,对于衍生品来讲,主要是市场风险 和交易对手风险。市场风险可W用风险价值化R和条件风险价值CVaR来确定。
[0061 ] ProM AP《-化R}=曰
[0062]置信水平为1-a的风险价值VaR的意义为由于市场价格变化而带来的最大损失超 过化R元的概率为a。
[0063] CVaR = -E(XlX^-VaR)
[0064] 置信水平为1-a的条件风险价值CVaR的意义为其含义为在投资组合的损失超过某 个给定化R值的条件下,该投资组合的平均损失值。
[0065] 衍生品的交易对手风险一般可W用信用价值调整CVA来度量。
[0066]
[0067] 其中R为恢复率,qi为时间i的交易对手违约概率,Vi为时间i的风险暴露金额。
[0068] 本发明实施例2提供的一种金融衍生品大数据分析、交易与风险管理系统,通过集 成金融衍生品的数据采集、衍生品定价、交易决策、衍生品风险控制,建立了一套统一完整、 科学系统和快速实施的系统。相比单一的金融衍生品软件,可W完整地处理衍生品的定价 分析、交易和风险管理,解决了一般衍生品处理工具各自为战,不能形成一个统一的整体。
[0069] 图3示出了本发明实施例3提供的一种融衍生品大数据分析、交易与风险管理系 统,包括:
[0070] 包括数据收集服务器1、分析服务器2、交易服务器3、风险分析服务器、市场大数据 服务器12、分析大数据服务器13和备份服务器14,其中,
[0071] 数据收集服务器1,与分析服务器2连接,用于获取金融衍生品数据。所述数据收集 服务器还与市场大数据服务器连接,市场大数据服务器用于存储金融衍生品数据。所述市 场大数据服务器与分析服务器连接,用于将金融衍生品数据传输给分析服务器。所述金融 衍生品数据包括实时数据和在预设时间内的历史数据。所述数据采集服务器从交易所6和 数据提供商8处获取金融衍生品数据。所述市场大数据服务器连接备份服务器,所述备份服 务器用于同步备份金融衍生品数据。
[0072] 分析服务器2,与交易服务器3和分析客户端4连接,用于根据金融衍生品数据采用 衍生品定价模型7计算获得分析结果信息,并将获得的分析结果信息传输给分析客户端。所 述分析服务器连接分析大数据服务器连接,分析大数据服务器用于存储分析结果信息;所 述分析大数据服务器与交易服务器连接,用于将分析结果信息传输给交易服务器。所述分 析大数据服务器连接备份服务器,所述备份服务器用于同步备份金融衍生品数据。
[0073] 交易服务器3,与交易所6和交易客户端5连接,用于根据实时数据和分析结果信息 进行交易判断,并将交易指令发送至交易所,W及将交易信息发送给交易客户端。
[0074] 风险分析服务器9,与交易服务器和风险客户端10连接,用于根据交易头寸采用风 险模型11计算获得风险信息,并将风险信息传输给风险客户端,所述交易头寸为交易服务 器根据实时数据和分析结果信息进行交易判断获得交易头寸。
[0075] 本发明实施例3提供的一种金融衍生品大数据分析、交易与风险管理系统,通过集 成金融衍生品的数据采集、衍生品定价、交易决策、衍生品风险控制,建立了一套统一完整、 科学系统和快速实施的系统。相比单一的金融衍生品软件,可W完整地处理衍生品的定价 分析、交易和风险管理,解决了一般衍生品处理工具各自为战,不能形成一个统一的整体。
[0076] 同时相对一般的衍生品分析系统,可W处理大数据时代的金融数据,具备对不同 标的物、不同参数的衍生品的日间数据、分钟数据、高频分时数据、逐笔成交数据、指令簿数 据和持仓数据进行储存和处理能力,具备了高频实时、多维海量的大数据的处理。
[0077] 图4示出了本发明实施例4提供一种金融衍生品大数据分析、交易与风险管理方 法,包括:
[0078] S11、数据收集服务器获取金融衍生品数据,所述金融衍生品数据包括实时数据和 在预设时间内的历史数据。在本步骤中,需要说明的是,在所述数据收集服务器获取金融衍 生品数据之后,市场大数据服务器存储所述金融衍生品数据。由于数据收集服务器收集的 数据要供于系统其它部分使用,所W要求数据收集服务器需要进行低延迟优化。数据收集 服务器需要就数据进行清洗,出去异常数据。
[0079] 由于现代金融业的发展,金融数据已经有单维的股票日间数据,演化到不同标的 物、不同参数的衍生品的日间数据、分钟数据、高频分时数据、逐笔成交数据、指令簿数据和 持仓数据等,数据量较过去有了爆炸式的增长。所W需要市场大数据服务器能够处理和存 储海量数据。对于比较大的系统应用,需要分布的存储系统,并且根据数据的使用频率存储 在不同的存储介质,使用频率高的数据存储在高速存储介质上,使用频率低的数据压缩存 储在普通存储介质上。市场大数据服务器需要实现主从同步备份,备份到备份服务器上,W 保证数据安全,同时提高数据读取吞吐量。
[0080] S12、分析服务器根据金融衍生品数据采用衍生品定价模型计算获得分析结果信 息,并将获得的分析结果信息发送给交易服务器和分析客户端。
[0081] 在本步骤中,需要说明的是,分析服务器获得分析结果信息后会发送给交易服务 器和分析客户端,分析客户端用于接收到分析结果信息后进行显示。
[0082] 需要说明的是,所述分析服务器在获取到金融衍生品数据后,采用内部处理器利 用衍生品定价模型进行计算,最终获得分析结果信息。为此,对具体情况下的衍生品定价模 型进行解释说明,由于衍生品较多,其适用的定价模型也较多。其归纳为一个通用的定价模 型为:D = f(S,〇,t),其中D为衍生品价格,S为标的物价格。O为标的物的特性,比如收益波动 率。t为衍生品的规格信息,如期限、方向等。
[0083] W看涨期权举例来说,如果假设标的物服从几何布朗运动,那么有如下定价关系:
[0084] c = SN(di)-Ke-rTN(d2),其中,
[0085]
[0086]
[0087] C为看涨期权理论价格,S为标的物价格,O为期权的特征收益波动率,K和T为衍生 品的规格,分别是行权价格和到期时间。N为正态分布的累计密度函数Jn为自然对数。
[0088] 于此同时,也可W通过衍生品的市场价格,反推标的物的一些特性(通过研究期权 市场价格反推标的物的隐含波动率和隐含概率分布):
[0089] 〇 = f-i(s,D,t)
[0090] O为标的物的特性,S为标的物价格,D为衍生品价格,t为衍生品的规格。
[0091] 还可W通过构造一些衍生品的投资组合,确定衍生品的一些性质。例如:
[0092]
[0093] P撼組合为投资组合价格,Pi为第i个组成成分衍生品价格,qi为第i个衍生品的合约 数量。
[0094]
[00M] R撼組合为投资组合收益,Ri为第i个组成成分衍生品收益,qi为第i个衍生品的价值 权重。
[0096] 还可W计算衍生品价格对于各种因素(比如,标的物价格、标的物特征和合约特征 等)的敏感程度,有时被称为Greeks。
[0097]
[0098] Ak为衍生品价格对于因素 k的敏感程度,P为衍生品价格,k为因素。
[0099] 还需要说明的是,分析服务器通过市场数据服务器中的数据,进行金融衍生品定 价模型分析,并将结论发送至分析大数据服务器。可W通过两种方式,一种是直接在分析服 务器内部进行计算,另一种是采用化doop框架,分析服务器将模型推送至市场大数据服务 器的各个计算机进行计算,然后再汇总至分析服务器。分析服务器需要强大的计算能力来 进行金融定价模型计算。
[0100] 分析大数据服务器类似于市场大数据服务器,用于存储分析数据。分析大数据服 务器需要对分析数据和市场大数据服务器中的数据进行连接,加速数据的读取速度。还需 要与备份服务器进行同步备份。
[0101] S13、交易服务器根据实时数据和分析结果信息进行交易判断,并将交易指令发送 至交易所,W及将交易信息发送给交易客户端。在本步骤中,交易服务器是通过实时数据和 模型数据,进行快速高频的处理,进行手工和程序化的交易判断,将交易指令发送至交易 所。交易服务器要求安全性,要建立完善的交易授权系统,要对风险管理服务器的模型结论 进行实时的反馈控制。
[0102] 本发明提供的金融衍生品大数据分析、交易与风险管理方法,通过集成金融衍生 品的数据采集、衍生品定价、交易决策控制,建立了一套统一完整、科学系统和快速实施的 系统。相比单一的金融衍生品软件,可W完整地处理衍生品的定价分析、交易管理,解决了 一般衍生品处理工具各自为战,不能形成一个统一的整体。
[0103] 本发明实施例5提供的金融衍生品大数据分析、交易与风险管理方法,本发明实施 例所述方法与实施例1所述方法不同的地方在于:从图2中可W看出:
[0104] 交易服务器根据实时数据和分析结果信息进行交易判断获得交易头寸,并将交易 头寸发送给风险分析服务器。
[0105] 风险分析服务器根据交易头寸采用风险模型计算获得风险信息,并将风险信息发 送给风险客户端。
[0106] 风险分析服务器,是通过风险模型,对现在交易头寸进行的风险分析和风险管理。 风险模型需要实时的预测市场风险和交易对手风险。风险模型不仅要求交易头寸和市场数 据实时更新,而且需要要求模型参数实时更新,保证风险评价的科学和稳定。
[0107]风险模型是用数理模型计算金融风险的模型,对于衍生品来讲,主要是市场风险 和交易对手风险。市场风险可W用风险价值化R和条件风险价值CVaR来确定。
[010引 ProM AP《-化R}=曰
[0109] 置信水平为1-a的风险价值VaR的意义为由于市场价格变化而带来的最大损失超 过化R元的概率为a。
[0110] CVaR = -E(XlX^-VaR)
[0111] 置信水平为I-Q的条件风险价值CVaR的意义为其含义为在投资组合的损失超过某 个给定化R值的条件下,该投资组合的平均损失值。
[0112] 衍生品的交易对手风险一般可W用信用价值调整CVA来度量。
[0113]
[0114] 其中R为恢复率,qi为时间i的交易对手违约概率,Vi为时间i的风险暴露金额。
[0115] 本发明与上述实施例所述方法增加了衍生品风险控制,可W完整地处理衍生品的 定价分析、交易和风险管理系统,解决了一般衍生品处理工具各自为战,不能形成一个统一 的整体。
[0116] 另外,本发明实施例4和5所述方法在原理上与上述实施例1-3相同,由于上述内容 均有描述,在此不再寶述。
[0117] 此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例 中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的 范围之内并且形成不同的实施例。例如,在下面的权利要求书中,所要求保护的实施例的任 意之一都可WW任意的组合方式来使用。
[0118] 应该注意的是上述实施例对本发明进行说明而不是对本发明进行限制,并且本领 域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中, 不应将位于括号之间的任何参考符号构造成对权利要求的限制。单词"包含"不排除存在未 列在权利要求中的元件或步骤。位于元件之前的单词"一"或"一个"不排除存在多个运样的 元件。本发明可W借助于包括有若干不同元件的硬件W及借助于适当编程的计算机来实 现。在列举了若干装置的单元权利要求中,运些装置中的若干个可W是通过同一个硬件项 来具体体现。单词第一、第二、W及第=等的使用不表示任何顺序。可将运些单词解释为名 称。
[0119] 本领域普通技术人员可W理解:W上各实施例仅用W说明本发明的技术方案,而 非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员 应当理解:其依然可W对前述各实施例所记载的技术方案进行修改,或者对其中部分或者 全部技术特征进行等同替换;而运些修改或者替换,并不使相应技术方案的本质脱离本发 明权利要求所限定的范围。
【主权项】
1. 一种金融衍生品大数据分析、交易与风险管理系统,其特征在于,包括数据收集服务 器、分析服务器和交易服务器,其中,: 数据收集服务器,与分析服务器连接,用于获取金融衍生品数据,并将金融衍生品数据 传输给所述分析服务器,所述金融衍生品数据包括实时数据和在预设时间内的历史数据; 分析服务器,与交易服务器和分析客户端连接,用于根据金融衍生品数据采用衍生品 定价模型计算获得分析结果信息,并将获得的分析结果信息传输给交易服务器和分析客户 端; 交易服务器,与交易所和交易客户端连接,用于根据实时数据和分析结果信息进行交 易判断,并将交易指令发送至交易所,以及将交易信息发送给交易客户端。2. 根据权利要求1所述的系统,其特征在于,还包括风险分析服务器,与交易服务器和 风险客户端连接,用于根据交易头寸采用风险模型计算获得风险信息,并将风险信息传输 给风险客户端,所述交易头寸为交易服务器根据实时数据和分析结果信息进行交易判断获 得交易头寸。3. 根据权利要求1所述的系统,其特征在于,所述数据收集服务器还与市场大数据服务 器连接,市场大数据服务器用于存储金融衍生品数据;所述市场大数据服务器与分析服务 器连接,用于将金融衍生品数据传输给分析服务器。4. 根据权利要求3所述的系统,其特征在于,所述市场大数据服务器连接备份服务器, 所述备份服务器用于同步备份金融衍生品数据。5. 根据权利要求1所述的系统,其特征在于,所述分析服务器连接分析大数据服务器连 接,分析大数据服务器用于存储分析结果信息;所述分析大数据服务器与交易服务器连接, 用于将分析结果信息传输给交易服务器。6. 根据权利要求5所述的系统,其特征在于,所述分析大数据服务器连接备份服务器, 所述备份服务器用于同步备份金融衍生品数据。7. -种金融衍生品大数据分析、交易与风险管理方法,其特征在于,包括: 数据收集服务器获取金融衍生品数据,并将金融衍生品数据传输给分析服务器,所述 金融衍生品数据包括实时数据和在预设时间内的历史数据; 分析服务器根据金融衍生品数据采用衍生品定价模型计算获得分析结果信息,并将获 得的分析结果信息发送给交易服务器和分析客户端; 交易服务器根据实时数据和分析结果信息进行交易判断,并将交易指令发送至交易 所,以及将交易信息发送给交易客户端。8. 根据权利要求7所述的方法,其特征在于,还包括: 交易服务器根据实时数据和分析结果信息进行交易判断获得交易头寸,并将交易头寸 发送给风险分析服务器; 风险分析服务器根据交易头寸采用风险模型计算获得风险信息,并将风险信息发送给 风险客户端。9. 根据权利要求7所述的方法,其特征在于,所述衍生品定价模型为:D = f(S,〇,t),其 中D为衍生品价格,S为标的物价格,σ为标的物的特性,t为衍生品的规格信息。10. 根据权利要求8所述的方法,其特征在于,所述风险模型包括市场风险模型和交易 对手风险模型,其中,
【文档编号】G06Q40/04GK105956924SQ201610249071
【公开日】2016年9月21日
【申请日】2016年4月20日
【发明人】吴德胜
【申请人】中国科学院大学