基于Angstrom指数的可见光及近红外多波段遥感图像去雾方法

文档序号:10553570阅读:923来源:国知局
基于Angstrom指数的可见光及近红外多波段遥感图像去雾方法
【专利摘要】本发明提出了一种基于Angstrom指数的多波段图像去雾方法,该方法具体为:输入多波段图像,在可见光波段范围任选3个波段,构建输入图像获取大气天光位置和场景粗透过率;任选两个波段,结合粗透过率,利用导向滤波器获取精细透过率;利用精细透过率和相应波长,根据Angstrom指数关系,获取场景Angstrom指数,计算遥感图像任意其他波段的场景透过率;利用各波段透过率和大气天光位置,结合大气退化模型,获取最终的去雾图像。本方法针对多波段遥感图像的特点,从图像上选取少量波段获取透过率信息,并利用Angstrom指数关系推演出其他波段的透过率,从而降低了恢复算法的工作量,并最终实现多波段图像的全波段遥感快速去雾恢复,提高了图像的对比度和清晰度,增加图像细节。
【专利说明】
基于Angstrom指数的可见光及近红外多波段遥感图像去雾 方法
技术领域
[0001 ] 本发明涉及计算机图像处理技术,涉及一种基于Angstrom指数的可见光及近红外 多波段遥感图像快速去雾方法。
【背景技术】
[0002] 在遥感成像的过程中,光辐射不仅仅依赖于观测目标,同时它还受到大气中的各 种气体和气溶胶粒子的吸收和散射影响。成像过程中不可避免的大气干扰,通常会导致成 像质量的退化,尤其是基于卫星、平流层、航空平台的光学遥感对地观测(特别是侧摆、倾斜 拍摄)情况下,成像距离非常远从而使得大气光学厚度增加,导致捕获图像的对比度、色彩 饱和度下降,目标细节信息丢失,从而大大降低景物的可识别度。因此,为了从图像中获得 更多有用的信息,必须进行图像的复原操作,补偿大气造成的退化影响。
[0003] 而近些年遥感探测从多光谱向着高光谱,甚至于超光谱方向快速发展。成像光谱 的增多,导致了遥感图像数据量的大大增加,从而使得图像的大气补偿耗费大量的计算资 源。同时大气在不同波段变现出来的光学性质差异,也导致了目前主流的图像去雾算法无 法获取理想的图像恢复效果。因此如何根据多波段遥感图像数据量大,波段差异等特点,有 效的应对光学遥感对地观测情况下由于大气造成的图像退化问题,是当前的重要需求。

【发明内容】

[0004] 本发明要解决的技术问题是提供一种适用于可见光和近红外波段范围的多波段 图像的去雾方法。从而能够降低成像图像各个波段的大气退化影响,提高各波段的对比度 和清晰度,增加各波段细节。
[0005] 为解决上述技术问题,本发明包括如下步骤:
[0006] (1)输入一副波段范围在可见光及近红外之内的多波段有雾遥感图像In,在其可 见光波段范围内,任选3个不同波段,构建一副三通道输入图像1 3。利用先验知识,提取大气 天光值位置和场景粗透过率;
[0007] (2)从输入的多波段遥感图像波段中任选两个波段,利用步骤(1)中计算出来的场 景粗透过率作为引导图,输入到导向滤波器中,最终获取这两个波段的场景精细透过率;
[0008] (3)根据获取的两个波段的场景精细透过率和两个波段的波长值,结合不同波段 大气光学厚度同光波长的Angstrom指数关系,推算出图像场景各位置区域的Angstrom指数 数值;利用该指数数值和上述任一波段场景精细透过率,来快速获取多波段遥感图像的其 他波段的场景精细透过率;
[0009] (4)利用步骤(1)中获得天光值位置,获取各个波段的大气天光值,结合各波段的 场景精细透过率和相应的大气点扩散函数,根据大气多次散射图像退化模型,获取最终的 多波段遥感图像去雾结果。
[0010] 所述步骤1)中的详细步骤包括:
[0011] a)对于一副波段范围在可见光及近红外之内的具有n个波段的有雾遥感图像In, 在其可见光波段范围内,任选3个不同波段,构建一副三通道输入图像1 3。依据暗原色先验 知识提取三通道图像的暗通道:
[0012] min^min^/^v))] (11)
[0013] 其中Idark为获取的图像暗通道,右表示图像13的c通道图像,Q (x)表示以x像素位 置为中心的局部邻域;
[0014] b)从上述图像的暗通道中提取最亮点的位置,作为各通道的天光值的取值位置, 将各通道的相应位置的值取作为相应通道的天光值;
[0015] c)根据暗通道性质,对于无雾区域其值接近于0,因此图像的粗透过率计算如下:
(12)
[0017] 其中V为计算得到的场景粗透过率,CO是常数系数,f为di道的天光值。
[0018] 所述步骤2)中首先从原始输入图像中任选两个波段1^12。用步骤(1)中获取的场 景粗透过率作为引导图,输入到导向滤波器中,滤波器输出结果就是两个波段相应的场景 精细透过率:
[0019] (13) LUUIVJ t:^GuuieFilter(i\\,) K 1
[0020]其中GuideFilteH.)为导向滤波操作,t#Pt2分别是1波段和2波段的场景精细透 过率图。
[0021]所述步骤3)中的详细步骤包括:
[0022] a)首先求取场景的Angstrom指数,根据不同波段大气光学厚度同光波长的 Angstrom指数关系:
(14)
[0024] 其中a是Angstrom指数,vk分别是波长下的气溶胶光学厚度,又因为场景 透过率同大气光学厚度存在如下关系:
[0025] x = -l〇g(t) (15)
[0026] 因此利用步骤(2)中获取的波段1和波段2的场景精细透过率图,结合式(14)和式 (15),计算出场景图像各区域Angstrom指数:
(16)
[0028] b)利用计算出来的Angstrom指数以及上述任一波段的精细透过率,从式(14)和式 (15)中可以推断出图像其他任意波段的场景精细透过率计算公式:
[0029] t = t0{AIA^r (17)
[0030] 其中,t是任意波段的场景精细透过率,A是相应的波长,to是步骤(2)选取的任一 波段的图像透过率,Ao是相应的波长。根据式(17),我们就可以计算出输入图像任意波段的 场景精细透过率。
[0031]所述步骤4)中的详细步骤包括:
[0032] a)利用广义的高斯分布计算的大气点扩散函数和天光点扩散函数,其式如下:
[0034]其中x,y为图像坐标位置,r (?)是伽马函数,「(丨,P 和0为大气参量,分别计算如下:
(19)
[0036]其中k是参数常量,q为前向散射因子,T为光学厚度。
[0037] b)利用如下大气退化模型:
[0038] 4 = ? APSFo + //v.(l ~ty )?APSFa (20)
[0039] 其中Ix为多波段输入图像的x波段,tx是相应的场景精细透过率,Ax是利用步骤(1) 中标记的天光位置获取的相应天光值,APSF。和APSF a*别是用广义的高斯分布计算的大气 点扩散函数和天光点扩散函数,其中的光学厚度分别是-l〇g(t x)和-log(l-tx)。
[0040] c)利用计算出来的各参数,计算退化模型中的天光部分:
[0041 ] G = F>t 0 APSFa = / -,M \-t)? APSFa (21)
[0042] 利用维纳滤波结合获取的大气点扩散函数进行最终的去雾
[0043] 本发明的有益效果是:本方法针对多波段遥感图像的特点,从图像上选取少量波 段获取透过率信息,并利用Angstrom指数关系推演出其他波段的透过率,从而降低了恢复 算法的工作量,并最终实现多波段图像的全波段遥感快速去雾恢复,提高了图像的对比度 和清晰度,增加图像细节。
【附图说明】
[0044] 图1为本发明实施例的流程示意图;
[0045] 图2为本发明实施例的原始图像;
[0046] 图3为本发明实施例提取到的暗通道;
[0047] 图4为本发明实施例提取到的粗图像透过率;
[0048] 图5为本发明实施例提取到的波段1场景精细透过率;
[0049] 图6为本发明实施例提取到的波段2场景精细透过率;
[0050] 图7为本发明实施例计算出的波段3场景精细透过率;
[0051] 图8为本发明实施例最终去雾图像。
【具体实施方式】
[0052]如图1所示,本实施例基于Angstrom指数的多波段图像快速去雾算法的实施步骤 如下:
[0053] (1)输入一幅有雾多波段遥感图像(见图2,本例中采用3通道图像),选取其中三个 通道构建输入图像,依据暗原色先验知识提取三通道图像的暗通道:
[0054] Idark = min fmm (/; (v))l (22)
[0055] 其中Idark为获取的图像暗通道,g表示图像I3的c通道图像,Q (x)表示以x像素位 置为中心的局部邻域。
[0056] 从上述图像的暗通道(见图3)中提取最亮点的位置,本实施例中其位置为(315,1) 像素,作为各通道的天光值的取值位置,将各通道的相应位置的值作为相应通道的天光值, 本实施例中其值分别为
[0057]根据暗通道性质,对于无雾区域其值接近于0,因此图像的粗透过率计算如下:
(23)
[0059]其中V为计算得到的场景粗透过率(见图4),co是常数系数,f为dl道的天光值; [0060] (2)从原始输入图像中任选两个波段iKhzeSSnm),l2(>2 = 532nm)。利用步骤(1) 获取的场景粗透过率,作为引导图,输入到导向滤波器中,滤波器输出结果就是两个波段相 应的场景精细透过率: 「 ^GuideFi.her{\\\,) ,,
[0061] t^GuuieFil^A,) _
[0062]其中GuideFilteH.)为导向滤波操作,t#Pt2分别是1波段和2波段的场景精细透 过率(见图5和图6)。
[0063] (3)利用步骤(2)获取的t#Pt2,根据不同波段大气光学厚度同光波长的Angstrom 指数关系:
(25)
[0065] 其中a是Angstrom指数,巧,&分别是波长下的气溶胶光学厚度,又因为场景 透过率同大气光学厚度的如下关系:
[0066] x = -log(t) (26)
[0067 ] 计算出场景图像各区域Angs trom指数:
(27)
[0069]利用计算出来的Angstrom指数以及上述任一波段的精细透过率,从式(14)和式 (15)中可以推断出图像其他任意波段的场景精细透过率:
[0070] / 二/,厂/:'.r (28)
[0071] 其中,t是任意波段的场景精细透过率,A是相应的波长,to是步骤(2)选取的任一 波段的图像透过率,Ao是相应的波长。根据式(17),我们就可以计算出输入图像任意波段的 场景精细透过率。在本实施例中我们选取波段1的透过率图像作为to, 即AQ = 685nm,来求取 波段3(A = 485nm)的图像透过率(见图7)〇
[0072] (4)根据步骤(3)中获取的各通道透过率,利用用广义的高斯分布来计算的大气点 扩散函数和天光点扩散函数,其式如下:
(29)
[0074]其中义巧为图像坐标位置^^是伽马函数^^外^^^以丨/^/下^/^::屮 和0为和大气参量,分别计算如下:
(30)
[0076] 其中k是参数常量,q为前向散射因子,T为光学厚度。然后利用如下大气退化模型:
[0077] APSFo +.4-0 - ^:3 ? (31)
[0078] 其中Ix为多波段输入图像的x波段,tx是相应的图像透过率,Ax是利用步骤(1)中标 记的天光位置获取的相应天光值,APSF。和APSFj别是用广义的高斯分布计算的大气点扩 散函数和天光点扩散函数,其中的光学厚度分别是-l〇g(t x)和-l〇g(l_tx)。
[0079] c)利用计算出来的各参数,计算退化模型中的天光部分:
[0080] (7 = F>t ? APSF, = I-a4\-() ? APSF, (32)
[0081 ]利用维纳滤波结合获取的大气点扩散函数进行最终的去雾 最终的输出去雾结果见图8。
【主权项】
1. 一种基于Angs化om指数的可见光及近红外多波段遥感图像去雾方法,其特征在于, 该方法包括W下步骤: (1) 输入一副波段范围在可见光及近红外之内的多波段有雾遥感图像In,在其可见光波 段范围内,任选3个不同波段,构建一副=通道输入图像13。利用先验知识,提取大气天光值 位置和场景粗透过率; (2) 从输入的多波段遥感图像中任选两个波段,利用步骤(1)中计算出来的场景粗透过 率作为引导图,输入到导向滤波器中,最终获取运两个波段的场景精细透过率; (3) 根据获取的两个波段的场景精细透过率和两个波段的波长值,结合不同波段大气 光学厚度同光波长的Angs化om指数关系,推算出图像场景各位置区域的Angs化om指数数 值;利用该指数数值和上述任一波段场景精细透过率,来快速获取多波段遥感图像的其他 波段的场景精细透过率; (4) 利用步骤(1)中获得的天光值位置,获取各个波段的大气天光值,结合各波段的场 景精细透过率和相应的大气点扩散函数,根据大气多次散射图像退化模型,获取最终的多 波段遥感图像去雾结果。2. 根据权利要求1所述的一种基于Angstrom指数的可见光及近红外多波段遥感图像去 雾方法,其特征在于,所述步骤1)中的详细步骤包括: a) 对于一副波段范围在可见光及近红外之内的具有n个波段的有雾遥感图像In,在其可 见光波段范围内,任选3个不同波段,构建一副=通道输入图像13。依据暗原色先验知识提 取3通道图像的暗通道:(1) 其中Idark为获取的图像暗通道,写表示图像13的C通道图像,Q (X)表示Wx像素位置为 中屯、的局部邻域; b) 从上述图像的暗通道中提取最亮点的位置,作为各通道的天光值的取值位置,将各 通道的相应位置的值取作为相应通道的天光值;C)根据暗通帯化席-对平乎愛R协且估巧;厅于0,因此图像的粗透过率计算如下: 巧 其中t'为id弁1守判日'、"刘方、他平,W疋巾数系数,A。为C通道的天光值。3. 根据权利要求1所述的一种基于Angstrom指数的可见光及近红外多波段遥感图像去 雾方法,其特征在于,所述步骤(2)中从In中任选两个波段Ii和12,用步骤(1)中获取的场景 粗透过率作为引导图,输入到导向滤波器中,滤波器输出结果就是两个波段相应的场景精 细透过率:闽 其中GuideFilteH.)为导向滤波操作,ti和t2分别是1波段和2波段的场景精细透过率。4. 根据权利要求1所述的一种基于Angstrom指数的可见光及近红外多波段遥感图像去 雾方法,其特征在于,所述步骤3)中利用不同波段大气光学厚度同光波长的Angs化om指数 (4) 关系: 其中a是Angstrom指数,Vfj:分别是波长Al,下的气溶胶光学厚度,又因为场景透过率 同大气光学厚度存在如下关系: T = -l〇g(t) (5) 因此利用步骤(2)中获取的波段1和波段2的场景精细透过率,结合式(4)和式(5),计算 出场景图像各区域Angstrom指敬:㈱ 基于该指数W及上述任一波段的场景精细透过率,从式(4)和式(5)中可W计算出图像 其他任意波段的场景精细透过率:(7) 其中,t是任意波段的场景精细透过率,A是相应的波长,to是步骤(2)选取的任一波段的 场景精细透过率,Ao是相应的波长。5.根据权利要求1所述的一种基于Angstrom指数的可见光及近红外多波段遥感图像去 雾方法,其特巧#^.目斤;未娶由未Il田々n下十与M化瑪型; (8) 其中Ix为多波段输入图像的X波段,tx是相应的场景精细透过率,Ax是利用步骤(1)中标 记的天光位置获取的相应天光值,APSFd和APSFa分别是用广义的高斯分布计算的大气点扩 散函数和天光点扩散函数,其式如下:哟 其中X,y为图像坐标位置,r (.)是伽马函数,,p和曰为 大气参量,分别计算如下:(101 其中k是参数常量,q为前向散射因子。 最终利用维纳滤波曲卷积的方法获取各通道的去雾结果。
【文档编号】G06T5/00GK105913387SQ201610205707
【公开日】2016年8月31日
【申请日】2016年4月1日
【发明人】林光, 冯华君, 徐之海, 李奇, 陈跃庭
【申请人】浙江大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1