一种动稳态航空发动机机载模型构建方法
【专利摘要】本发明公开了一种动稳态航空发动机机载模型构建方法,属于航空发动机控制技术领域。首先利用相似准则及及泰勒展开原理进行采样数据的压缩,大幅降低采样数据量及时间;然后利用压缩后采样数据中的动态数据和稳态数据分别训练基于稀疏自动编码器的动态机载模型以及基于BP神经网络的稳态机载模型,最后设置相应的相应的准稳态判断逻辑,在动态过程使用稀疏自动编码器动态模型,在稳态过程使用BP网络稳态模型。相比现有技术,本发明所构建航空发动机机载模型在动态和稳态条件下均具有更高的精度,并且实时性更好,对数据存储量的要求更低。
【专利说明】
一种动稳态航空发动机机载模型构建方法
技术领域
[0001] 本发明涉及航空发动机控制技术领域,尤其涉及一种动稳态航空发动机机载模型 构建方法。
【背景技术】
[0002] 美国在1988~2005年间开展了综合高性能涡轮发动机技术(IHPTET,Integrated High Performance Turbo Engine Technology)计划,旨在提高发动机性能并降低发动机 重量,提高发动机推重比。其中,先进涡轮发动机控制采用基于模型的智能发动机控制 (IEC,Intelligent Engine Control)技术,该控制技术改变了传统的基于传感器的控制模 态,通过机载自适应模型来在线反映发动机的实际工作状态,计算出推力、功率、喘振裕度 等发动机性能参数作为反馈量,构成直接性能参数的控制回路,充分挖掘发动机潜力。在本 世纪初,作为IHPTET的后续计划,美国军方开展了经济可承受多用途先进涡轮发动机 (VAATE,Versatile Affordable Advanced Turbine Engines)计划,在该计划中,智能发动 机控制被定为了一个重要的发展方向。2007年美国Glenn中心针对发动机控制技术专门召 开了会议,明确指出智能发动机控制将作为未来发动机先进控制技术的代表,其主要研究 内容包括模型基控制和诊断、高可靠性发动机控制、延寿控制等核心控制技术。13年度美国 Glenn中心的研究报告表明:基于高精度机载模型的诊断和控制算法为创建集自诊断、自优 化、自适应任务及鲁棒性于一体的智能推进系统提供了可能,可提高控制系统的性能、可靠 性及安全性。
[0003] 作为智能发动机控制的基础,对发动机机载模型的研究工作近些年在国内外也已 相继展开,如NASA构建了改进的发动机机载自适应模型(eSTORM),该模型在发动机状态变 量模型加 Kalman滤波器的传统机载适应模型基础上,增加了基于神经网络实现的偏差量估 计模块,用以补偿模型输出与真实发动机输出之间的偏差,该机载模型的可靠性已在 PW6000发动机上得到验证。近年来,NASA构建了进行性能趋势监控及气路故障诊断的机载 模型,该模型由实时自适应模型、性能基线模型、故障诊断模块三部分组成,其性能基线模 型为分段线化模型,该机载模型通过商用模块化航空推进系统(C-MAPSS40k)提取。试验数 据为NASA车辆综合推进研究(VIPR)中获得的安装在C-17上Pratt&Whitney F117发动机的 测量数据,该机载模型成功检测到了稳态故障,却未能对过渡态故障正确定位,原因分析为 模型动态精度不足,因此有必要进一步提升机载模型动态精度。
[0004] 近年来,随着我国对飞机、发动机等项目的大力投入和支持,国内的航空发动机控 制技术研究也取得了丰富的成果,在机载模型方面,鲁峰,王海泉等均对机载自适应模型的 卡尔曼滤波算法进行了不同程度的改进,但性能基线模型是用发动机部件级模型代替,在 现有的机载芯片上,有实时性较差的问题。王健康,任新宇等研究了基于相似理论的复合机 载模型,能用于寻优,但属于稳态模型,没有反映动态过程。由文献可见现阶段的国内外发 动机机载模型研究以发动机部件级模型和分段线性化模型为主,部件级模型实时性相对较 差,而分段线性化模型则很难实现高精度。神经网络等机器学习算法虽然具有精度高实时 性好的特点,但通常要求训练样本在空间中是稠密的,因此采样过程中各输入变量需要划 分得足够细,当输入量增加时,普遍有维数灾难问题。例如用神经网络法进行机载模型建 模,首先用发动机部件级模型进行采样取点,用N-R法计算的发动机部件级模型计算一个样 本点约200-300次迭代,耗时5s左右,样本输入量为10维,若每一维度需10个点以保证样本 稠密,则共需1.38 X 107小时,显然难以采样,更难以训练。随着航空发动机输入变量的日益 增多,基于机器学习算法建模遇到的海量样本问题越发棘手,因此极有必要探索能够压缩 样本数量,进而缩短采样时间的方法。
【发明内容】
[0005] 本发明所要解决的技术问题在于克服现有技术不足,提供一种动稳态航空发动机 机载模型构建方法,在动态和稳态条件下均具有更高的精度,并且实时性更好,对数据存储 量的要求更低。
[0006] 本发明具体采用以下技术方案解决上述技术问题:
[0007] 一种动稳态航空发动机机载模型构建方法,包括以下步骤:
[0008] 步骤1、利用以下方法对航空发动机采样数据进行压缩:首先利用相似准则对采样 数据的输入数据进行降维;然后通过采样输出对输入的泰勒展开式中的低阶项数据来逼近 全维数据,将多维采样数据替换压缩为多个低维度的采样数据;
[0009] 步骤2、利用压缩后采样数据中的稳态数据训练BP神经网络,得到航空发动机稳态 机载模型;利用压缩后采样数据中的动态数据训练稀疏自动编码器,得到航空发动机动态 机载模型;
[0010] 步骤3、设置准稳态判断逻辑,用于根据航空发动机当前所处状态调用相应的机载 模型,当航空发动机当前处于稳态时,调用所述航空发动机稳态机载模型,否则,调用所述 航空发动机动态机载模型。
[0011] 优选地,所述利用相似准则对采样数据的输入数据进行降维,具体为:利用T2 = const相似准则,用发动机进口总温Τ2替代采样数据的输入数据中的飞行高度Η与马赫数 Ma〇
[0012] 优选地,所述准稳态判断逻辑根据高压转子相对转速的一组连续采样数据的均方 差来判断航空发动机当前所处状态:如所述均方差小于预设阈值,则航空发动机当前处于 稳态,否则,航空发动机当前处于动态。其中所述阈值优选为0.01。
[0013] 根据相同的发明思路还可以得到一种动稳态航空发动机机载模型,利用以上任一 技术方案所述方法构建。
[0014] 相比现有技术,本发明具有以下有益效果:
[0015]本发明利用相似准则及泰勒展开原理进行采样数据的压缩,在保证机载模型精度 的前提下,极大降低了构建机载模型所需的采样数据量及时间;
[0016]本发明对动态和稳态分别构建相应的模型,其中,对压缩后的稳态样本数据利用 BP网络建立了稳态模型,解决了传统神经网络在维数灾难条件下难以训练及难以保证精度 的问题;对压缩后的动态样本数据利用稀疏自动编码器进行建模,解决了经压缩后动态样 本数据量仍然过大,BP算法难以训练的问题;并设计了相应的准稳态判断逻辑,在动态过程 使用稀疏自动编码器动态模型,在稳态过程使用BP网络稳态模型,解决了稀疏自动编码器 模型的稳态精度较差的问题。
【附图说明】
[0017] 图1为双轴涡扇发动机截面示意图;
[0018] 图2为稀疏自动编码器结构图;
[0019] 图3为所构建的动稳态航空发动机机载模型结构示意图;
[0020] 图4为稳态机载模型测试结果;
[0021 ]图5为动态测试输入设置;
[0022]图6为动态机载模型测试结果;
[0023]图7为加入准稳态逻辑后动稳态机载模型测试结果。
【具体实施方式】
[0024]下面结合附图对本发明的技术方案进行详细说明:
[0025] 针对现有技术不足,本发明的思路是首先利用相似准则及及泰勒展开原理进行采 样数据的压缩,大幅降低采样数据量及时间;然后利用压缩后采样数据中的动态数据和稳 态数据分别训练基于稀疏自动编码器的动态机载模型以及基于BP神经网络的稳态机载模 型,最后设置相应的相应的准稳态判断逻辑,在动态过程使用稀疏自动编码器动态模型,在 稳态过程使用BP网络稳态模型。
[0026] 为了便于公众理解,下面以某双轴混排涡扇发动机的发动机机载模型为例来对本 发明技术方案进行详细说明。图1为该型双轴混排涡扇发动机截面图,图中,1截面为发动机 进口,2截面为风扇进口,22截面为风扇出口,13和23截面分别为外涵道、内涵道进口,25截 面为压气机进口,3截面为燃烧室进口,4截面为高压涡轮进口,42截面为高压涡轮出口,45 截面为低压涡轮转子进口,46截面为低压涡轮出口,16截面为外涵道出口,6截面为内涵道 出口及掺混室进口,7截面为加力燃烧室进口,75截面为加力燃烧室出口,8截面为尾喷管喉 道,9截面为尾喷管出口。由于真实发动机数据获取困难,用该双轴混排涡扇发动机的非线 性部件级模型代替真实发动机取得建模数据。输入变量为高度Η,马赫数Ma,燃油流量W fb,尾 喷口喉道面积As,风扇导叶角af,压气机导叶角α。。输出变量为风扇转速N f,风扇进口流量 WA22,风扇喘振裕度Sml,压气机转速N。,压气机喘振裕度Smh,燃烧室进口总温T3,燃烧室进口 总压Ρ 3,高压涡轮进口总温Τ4?,低压涡轮出口总温Τ6,低压涡轮出口总压Τ6,发动机推力F。此 外,需考虑真实发动机退化因素影响,故将发动机主要部件的蜕化因素风扇流量蜕化因子 df、压气机流量蜕化因子dc、燃烧室效率蜕化因子db、高压涡轮效率蜕化因子d h、低压涡轮流 量虫兑化因子di也列为输入量,共计11个输入量,11个输出量。文中出现的cor下标表示换算。
[0027] -、机载模型建模所需样本数据的压缩。
[0028] 1、相似准则的引入及改进
[0029]航空发动机机载模型在精度、实时性以及存储量上均有苛刻的要求,为适应宽包 线、大状态的要求,应借助发动机的固有相似特性对建模数据量进行合理压缩。如NASA在 PSC计划的机载模型使用的相似准则P3c〇r = const,P6cor = const,通过P3cor P6。。!·相似将 (9.14km,0.9Ma)下建立的航空发动机机载模型通过相似变化扩展到大包线,减少了建模数 据量,但其转换精度仍然有所不足,为减少相似转换时精度的损失,需要采用更精确的准 贝1J。依据P3cot = const,P6C〇r = const准则建模精度不高的原因,在于忽略了Ma及绝热指数k对 共同工作的影响,而直接采用四个相似准则数则太过复杂。从发动机进口条件出发来分析, 由于H、Ma、k的变化对发动机共同工作的影响主要体现在进口总温T 2、总压P21,而P2改变 后,发动机各截面的压力成比例变化,不影响压气机的增压比和不同截面上的温度比,对共 同工作并没有显著影响,决定性因素在于T 2。故可采用!^替代Ma及绝热指数k作为准则数,此 时H、Ma可由 T2 替换,输入量由 11 个缩减至 10个,11=[1'2,-_>,<^,€[。,(^,(1。,4,(111,(11]7,常 用输出为Y=[Nfccir,Ncccir,T3 cor , T41cor , T6cor , P3cor , Ρ6cor , WA22cor , SmL , SmH , F cor ]τ,各参数为换算 到标准大气状态的对应值,当扩大到不同包线点时,可根据当前点的飞行条件,经反相似换 算,最终得到输出 Y=[Nf,Nc,T3,T4i,T6,P3,P 6,WA22,SML,SMH,F]T。
[0030] 2、特征采样数据量的压缩
[0031 ]航空发动机任一输出量可由其泰勒展开的低阶项来近似表出,因此可以对线性模 型加入少量泰勒非线性余项来提高模型精度。反过来说,发动机部件级模型的实际输出中 许多高阶项属于冗余信息,对精度提升不大,且浪费了大量的采样时间。由泰勒原理可知, 航空发动机任一输出可由对输入的泰勒展开项表示:如推力?=以12,1^,4 8,<^,€〇,在任 意点其泰勒展开表示后为
[0033]式中(A)项表示基点值,(B)项表示线性项,(C)项表示非线性余项。一个完整的推 力输出由基点值,线性项,二阶到高阶的所有非线性余项表示,由泰勒原理我们知道,泰勒 展开的低阶项即可起到对原输出的逼近表达,那么在采样过程中只需要将低阶次的项数全 部米出。正常情况F = f (T2,Wfb。。!·,As,af,α。)需要技T2,Wfb。。!·,As,af,α。五个变直米出五维度数 据,如取零到三阶次展开项来近似表达推力F的输出,则只需将T 2,Wfbc。:,As,af,按三变量 变化采出句组三维数据,当5个蜕化因子也增广入输入量,输入达到10维,仍可按此法将高 维采样数据压缩到Cg组三维采样数据,样本量最终减少到10维度采样的1.2X10 6分之一。 [0034] 3、特征采样区间的选取
[0035]特征采样区间指[12,1&。1^8,(^,(1。,(^,(1。,(11),(^,(11] 1'等各输入的变化区间。采用 了 T2 = const准则后,只需定Η,变Ma或定Ma,变H即可获得所需包线的T2的变化范围,扩展到 不同的H、Ma下。但WfbcOT进行区间划分时,因航空发动机中间状态的W fb/WfbcOT在不同飞行条 件下变化相当大,为减少样本数量,WfbcOT的变化区间越小越好,因此每个TdWfbm分别以当 前点中间状态W fbcOT为基准,取一个小变化范围,As也采用相同的方法选取,其他各输入量正 常选取。由于泰勒展开式有输入量偏离基点越远,精度越差的问题,为确保距离基点足够 近,故将采样区间再分为四个区域,对每个区域分别采样并建模。
[0036]二、机载模型稳态部分的建模。
[0037]用BP算法对压缩后的样本数据进行了机载模型稳态部分的建模。采样压缩后,以 上各子区域的稳态采样数据量均有几 Μ字节的大小,BP算法具有精度高,存储量小的特点, 能胜任此时的建模需求。利用压缩后的稳态采样数据训练ΒΡ神经网络,训练时间5-6min,运 算时间仅lms内,解决了传统神经网络在维数灾难条件下数据量海量增加而难以训练及训 练精度难以保证的问题。
[0038]三、机载模型动态部分的建模。
[0039] 针对机载模型动态部分所需样本数据量巨大,BP算法难以训练的问题,建立了基 于稀疏自动编码器的动态机载模型。反映发动机动态过程的动态模型,需要将输出值的历 史信息作为当前时刻的输入,至少需要前一时刻的历史数据,因此
[0040] u = [T2(k) ,fffbc0r(k) ,As(k) ,af(k) ,ac(k) ,df (k) ,dc(k) ,db(k) ,dh(k) ,di(k) ,Nfc0r (k-1 ) , Nccor (k-1), T3c0r (k~l), Tecor ( k-1 ) , P3cor (k-1), Pecor ( k-1 ) , WA22cor (k-1) ]T, Y = [Nf cor (k),Ncc0r(k),T3cor(k),T41cor(k),T6cor(k),P3cor(k),P6cor(k),WA22cor(k),SML(k),SMH(k),F (k)]T〇
[0041] 即使经过采样数据压缩后,动态数据依然极多,各子区域训练数据达到数G以上, 计算机读取存储出现困难,需要对采样过程进一步压缩,由于动态过程可由各稳态点的过 渡来表示,因此无需分为太多间隔,尽可能减少间隔将训练数据减少到数百M,此时仍难以 用常规的神经网络进行建模处理。为此,本发明采用稀疏自动编码器训练机载模型的动态 部分。
[0042] Hinton对原型自动编码器结构进行改进,进而产生了深度自动编码器,先用无监 督逐层贪心训练算法完成对隐含层的预训练,然后用BP算法对整个神经网络进行系统性参 数优化调整,显著降低了神经网络的性能指数,通过无监督逐层贪心训练算法使大数据量 神经网络建模成为可能,且有效改善了BP算法易陷入局部最小的不良状况。在文献[Bengio Y,Lamb1 in P,Popovici D,et al.Greedy layer-wise training of deep networks[C] .Proceedings of the 20th Annual Conference on Neural Information Processing Sy stem, Whistler, 2006:153-160 ·]中,Ben jio提出稀疏自动编码器的概念,进一步深化了 自动编码器的研究。稀疏自动编码器是目前应用最为广泛的自动编码器,但在航空发动机 领域尚未见使用。稀疏自动编码器能提取高维数据变量的稀疏解释性因子,保留原始输入 的非零特征,增加表示算法的鲁棒性,增强数据的线性可分性,使分类边界变得更加清晰, 并且能在一定程度上控制变量的规模,改变给定输入数据的结构,丰富了原有信息,提高了 信息表述的全面性和准确率。这里基于稀疏自动编码器对动态数据进行训练回归,并建立 了动态机载模型,其结构如图2所示:
[0043] 自动编码器由编码器、由编码器、解码器和隐含层组成。编码器是输入X到隐含表 不h的映射,表不为:
[0044] h = f (x) =Sf (ffx+bn) (2)
[0045] 其中,W为输入到隐含层的权值,bn表示隐含层阈值,&是非线性激活函数,一般为 逻辑函数其表达式为:
[0046] sigmoid(z) = 1/( l+z_1) (3)
[0047] 解码器函数g(h)将隐含层数据映射回重构y,表示为:
[0048] y = g(h) =Sg(ff'h+by) (4)
[0049]其中,W'为隐含层到输出层的权值,by表示输出层阈值,Sg是解码器的激活函数,一 般为线性函数或sigmoid函数。训练自动编码器的过程是在训练样本集D上寻找参数0 = {ff, by,bh}的最小化重构误差,重构误差的表达式为:
[0051] 其中,L为重构误函数,一般可用平方误差函数或交叉熵损失函数,二者分别表示
[0052] L(x,y)=| |x-y| |2 (6)
[0054] 其中,平方误差用于线性Sg,交叉熵损失函数用于sigmoid:
[0055] 稀疏自动编码器在自动编码器的代价函数中增加了稀疏惩罚项,其表达式为:
[0057]其中P为稀疏性参数,P/为隐藏神经元j的平均活跃度,稀疏性参数s2表示隐藏神 经元的数量。此时代价函数为:
[0059]其中,β表示稀疏惩罚项的权重。
[0060]无监督贪心逐层训练算法的训练过程如下:
[0061] 1)首先逐层构建单层神经元,这样每次都是训练一个单层网络。
[0062 ] 2)当所有层训练完后,使用wake -S1 e ep算法进行调优。
[0063]动态训练数据为输入量阶跃激励后的样本数据,与稳态模型采用相同的区域划 分,有四个子区域,各子区域训练数据约200M字节。
[0064]四、准稳态判断逻辑的设计。
[0065] 在训练过程中发现增加层数并未显著提高模型精度,故仍采用单隐含层结构,神 经元个数80-120之间,训练时间小于30s,其具有良好的动态性能及稳态性能,但稳态部分 精度相对上文建立的稳态机载模型有所差距,而用此算法直接对稳态数据进行训练时,发 现训练及测试效果不如常规的BP网络,原因在于深度学习算法对权值阈值的处理方式,使 得其在相同规模数据时不如常规算法精度好,但其优势在能够快速处理海量动态变化数 据。加之多维输入采样的困难,难以获取足够多的稳态数据量,该方案只用于动态机载模型 建模,未能推广到稳态模型建模中。因此,动、稳态模型的统一计算采用准稳态判断逻辑的 方法,通过准稳态逻辑判断稳态与动态的切换,进入动态过程后用动态模型计算动态过程。 准稳态逻辑公式如下:
[0066] f lag=wtpd(Nc) (10)
[0067] 由于高压转子相对转速Nc是评价航空发动机主要动态的一个参数,因此本发明选 择Nc作为判据。通过判断连续20次Nc与其平均值的均方差是否小于阈值σ来判断机载模型 动态过程是否达到了准稳态,未达到准稳态时用动态机载模型计算动态过程输出,达到后 切换为稳态机载模型计算稳态值作为稳态输出。均方差阈值σ的选取既要考虑到简化模型 的建模精度又要考虑到判断精度。σ过小,Nc误差处于机载模型建模精度之外,易出现误判; σ过大,则易过早进入稳态。经反复试验,σ确定为0.01。由此构成了动、稳态机载模型统一计 算。解决了稀疏自动编码器模型稳态精度不如ΒΡ网络模型的问题。
[0068]经过上述过程后,最终构建出的动稳态航空发动机机载模型如图3所示。
[0069]为了验证本发明所提出的样本数据的压缩方法及本建模方法所构建的稳态机载 模型的建模精度,对ΒΡ网络模型在建立包线范围内选择与训练数据不同的点作为测试,由 于训练的数据是采样压缩后的三变量数据,且经过相似转换,只是一部分包线点的数据,而 测试的数据为大包线全维数据,因此测试效果的好坏很能反应压缩采样数据思路的正确与 否。经测试,阶平均相对误差绝对值为0.13%其为0.068%,1' 3为0.0660%山1为0.072%,1'6 为0.089%,卩3为0.096%,卩6为0.092%,職22为0.16%,5^1为0.46%,5-为0.41%,卩为 0.099%。稳态模型输出如图4所示,限于篇幅,不再全部列出。
[0070]图4测试结果表明,采样数据进行压缩后,所建立的神经网络模型依旧能很好地逼 近发动机部件级模型。因此,输出量的泰勒展开保留低阶非线性项处理方法,及利用优选相 似准则对多维数据量进行简化压缩是必要且可行的。
[0071 ]为了验证本建模方法所构建的动态机载模型的建模精度及准稳态逻辑建立的价 值,
[0072]进行了动态、稳态模型的仿真测试。测试包线点为(H=12km,Ma=1.29)。测试输入 为斜坡变化,用发动机部件级模型数据代替真实发动机试车数据。将动态、稳态机载模型的 输出值与发动机部件级模型进行对比。发动机初始状态为中间状态,即PLA = 70°。各输入激 励如图5所示。
[0073] 在86s之前,为发动机额定状态或部件未蜕化时的仿真。在发动机运行稳定后:
[0074] 在t = 2s引入WfbcOT0~0.03、斜率为0.2/s的斜坡信号;
[0075] 在t = 10s引入WfbcOT = 0 · 03~0、斜率为-0 · 2/s的斜坡信号;
[0076] 在t = 18s引入A8 = 0~-0.03、斜率为0.19/s的斜坡信号;
[0077] 在t = 28s引入Α8 = -0·03~0、斜率为-0.19/s的斜坡信号 [0078] 在t = 38s引入af = 〇°~3°、斜率为5°/s的斜坡信号;
[0079] t = 46s引入af = 3°~0°、斜率为_5°/s斜坡信号;
[0080] t = 54s引入ac = 〇°~-3°、斜率为5°/s斜坡信号;
[0081] t = 62s引入ac = -3°~0°、斜率为_5°/s斜坡信号;
[0082] t = 7〇s引入Wfbcor = 〇~-〇·〇2,Α8 = 0~0.03,af = 0。~-3。,ac = 〇~3。的叠加斜坡信 号、斜率同前;
[0083] t = 78s引入·\^?Γ = -0·02~0,Α8 = 0·03~0,af = -3。~0。,ac = 3。~0。的叠加斜坡 信号、斜率同前;
[0084] 86s后为发动机部件性能蜕化后的仿真:
[0085] t = 86s引入叠加的部件性能蜕化信号,即df = 0~+2%、斜率为l%/s,dc = 0~2%、 斜率为1%/S,db = 0~2%、斜率为l%/s,dh = 0~2%、斜率为l%/s,di = 0~2%、斜率为 1%/s;
[0086] t = 94s引入叠加的控制量斜坡信号,即WfbcoFO~-0·02,Α8 = 0~0.03,af = 0°~-3°,ac = 〇°~3°,斜率同前;
[0087] t=102s引入各输入量的叠加斜坡信号,SPdf = 2%~0,dc = 2%~0,db = 2%~0, 也=2%~0,(11 = 2%~0,'\^挪=-0.02~0,八8 = 0.03~0,圯=-3。~0。,〇。= 3。~0。,各输入 参数变化的斜率同前。
[0088]在同样的输入激励条件下,用本发明建立的机载模型与发动机部件级模型对应输 出进行了对比,仿真结果如图6所示。机载模型各输量的测试精度如下:Nf平均相对误差为 0.18%,1为0.0395%,了3为0.0660%,了41为0.1042%,了6为0.1215%,?3为0.083%,卩6为 0.054%,WA22为0· 1168%,Sml为0· 1714%,Smh为0· 1502%,F为0· 1134%。阶最大相对误差为 0.67%,~为0.28%,丁3为0.20%,丁41为0.45%,丁6为0.31%,?3为1.06%,卩6为0.89%,歡22为 0.65%,SiS3.65%,SmhS3.73%,FS〇.53%。
[0089] 由图6还进一步得到,机载模型的最大仿真误差处于稳态部分,Nc为0.28%,SMH为 2.73%,了 41为0.45 %,F为0.53%。结果表明,所建立的基于稀疏自动编码器的机载模型的动 态精度较高,稳态精度相对较差。
[0090] 当稳态部分计算采用BP网络模型来代替,机载模型计算仿真结果如图7所示。可以 看出,模型稳态精度明显得到了提升具最大仿真误差降低到0.11%,S MH降低到2.45%,T41 降低到0.19%,F降低到0.23%。
[0091] 为了测试所建立机载模型的包线适应性,进行了包线内的大量测试,结果类似,不 再赘述。典型测试点的模型误差见表1:
[0092]表1不同包线点的参数精度验证
[0095]由表1的测试结果可以看出,结合稀疏自动编码器和BP算法所构成的机载发动机 自适应模型,在未蜕化情和蜕化情况下,大部分参数平均测试精度均在〇 . 2 %以内,最大误 差不超过1 %,个别参数如Sml,Smh略高,但也在允许的范围内。实时性方面,计算设备主频 2GHz时一次模型计算时间在lms内,存储量不大于100kb。与国外动态机载模型 [14]相比,该 模型动、静态精度更高,与非线性部件级模型相比,实时性大为提升,与分段线性模型及支 持向量机等相比,存储量显著减小,因此可作为发动机在线性能趋势监控及气路故障诊断 机载模型建模的一种有效设计方案。此外,本文仅是针对工程急需提升性能的包线区域进 行了仿真研究,实际上亚声速区非线性程度更低,实现更为简单。
[0096]本发明可用于多变量、高精度发动机机载模型的建模,在未蜕化情和蜕化情况下, 大部分参数平均测试精度均在0.2%以内,最大误差不超过1 %,个别参数如Sml,Smh略高,但 也在允许的范围内。实时性方面,计算设备主频2GHz时一次模型计算时间在lms内,存储量 不大于100kb。与现有动态机载模型相比,该模型动、静态精度更高,与非线性部件级模型相 比,实时性大为提升,与分段线性模型及支持向量机等相比,存储量显著减小,因此可作为 发动机在线性能趋势监控及气路故障诊断机载模型建模的一种有效设计方案。
【主权项】
1. 一种动稳态航空发动机机载模型构建方法,其特征在于,包括以下步骤: 步骤1、利用以下方法对航空发动机采样数据进行压缩:首先利用相似准则对采样数据 的输入数据进行降维;然后通过采样输出对输入的泰勒展开式中的低阶项数据来逼近全维 数据,将多维采样数据替换压缩为多个低维度的采样数据; 步骤2、利用压缩后采样数据中的稳态数据训练BP神经网络,得到航空发动机稳态机载 模型;利用压缩后采样数据中的动态数据训练稀疏自动编码器,得到航空发动机动态机载 丰旲型; 步骤3、设置准稳态判断逻辑,用于根据航空发动机当前所处状态调用相应的机载模 型,当航空发动机当前处于稳态时,调用所述航空发动机稳态机载模型,否则,调用所述航 空发动机动态机载模型。2. 如权利要求1所述动稳态航空发动机机载模型构建方法,其特征在于,所述利用相似 准则对采样数据的输入数据进行降维,具体为:利用T 2 = const相似准则,用发动机进口总 温!^替代采样数据的输入数据中的飞行高度Η与马赫数Ma。3. 如权利要求1所述动稳态航空发动机机载模型构建方法,其特征在于,所述准稳态判 断逻辑根据高压转子相对转速的一组连续采样数据的均方差来判断航空发动机当前所处 状态:如所述均方差小于预设阈值,则航空发动机当前处于稳态,否则,航空发动机当前处 于动态。4. 如权利要求3所述动稳态航空发动机机载模型构建方法,其特征在于,所述一组连续 采样数据的采样点个数为20。5. 如权利要求3所述动稳态航空发动机机载模型构建方法,其特征在于,所述阈值为 0.01ο6. 如权利要求1所述动稳态航空发动机机载模型构建方法,其特征在于,所述稀疏自动 编码器为单隐含层结构。7. -种动稳态航空发动机机载模型,利用权利要求1~6任一项所述方法构建。
【文档编号】G06F17/50GK105868467SQ201610184251
【公开日】2016年8月17日
【申请日】2016年3月28日
【发明人】李永进, 居新星, 陈浩颖, 刘明磊, 杜瑶, 张海波
【申请人】南京航空航天大学