一种电动汽车转向稳定性的非线性分析方法

文档序号:8319403阅读:404来源:国知局
一种电动汽车转向稳定性的非线性分析方法
【技术领域】
[0001] 本发明涉及一种电动汽车在转向过程中稳定性的非线性分析方法,属于汽车转向 稳定性分析技术领域。
【背景技术】
[0002] 电动汽车在高速和大幅度转向的极限工况下,随着侧向加速度迅速增加,轮胎进 入强非线性区域,转向力与侧偏角间不再满足线性关系,轮胎力呈现饱和状态,汽车的转向 行为不能确定,应用传统的线性分析方法难以精确估计其转向行为及稳定区域,此时电动 汽车的转向特性需要从非线性动力学的角度去研宄。
[0003] 传统的电动汽车转向稳定性的非线性分析方法,大多局限在两自由度转向模型, 不能完全体现出汽车高阶、复杂的转向过程,而高阶非线性系统的李雅普诺夫稳定性分析 方法,构造其李雅普诺夫函数过程极为复杂,分析周期较长。
[0004] 本发明针对电动汽车转向过程,以高阶非线性动力学系统为对象,提出一种分析 其稳定性的非线性方法,通过建立非线性动力学模型,运用非线性降阶与绘制系统相轨迹 结合的方法,对电动汽车转向稳定性进行非线性分析,得出不同初始条件下电动汽车转向 的平衡状态、稳定精度和稳定性,并将分析结果直观的展现出来。

【发明内容】

[0005] 本发明的目的是提出一种电动汽车转向过程中稳定性的非线性分析方法,能够为 电动汽车转向稳定性的非线性控制提供系统稳定区域,适用于电动汽车转向稳定性非线性 控制器开发。
[0006] 为实现上述目的,本发明一种电动汽车转向稳定性的非线性分析方法,包括以下 步骤:
[0007] 1、建立非线性动力学模型
[0008] 对车辆动力学进行理论分析,建立能够反映电动汽车转向的非线性动力学模型, 构造系统微分方程。
[0009] 2、对非线性系统进行降阶处理
[0010] 针对建立的四轮驱动转向非线性动力学微分方程,运用绝热消去原理判断出对系 统影响不大的快弛豫变量,令其对时间一阶导数为零,将得到的关系式带入原非线性微分 方程,进行降阶,得到新的非线性微分方程,与原非线性微分方程等价,达到降阶简化目的。
[0011] 3、绘制非线性系统相轨迹针对降阶后的非线性微分方程进行首一化处理,根据等 倾斜线原理,采用多步递推法求得相平面上的相轨迹点,绘制出电动汽车转向非线性 系统相平面上的相轨迹图。其中X为系统状态变量,i为系统状态变量对时间一阶导数。
[0012] 与现有技术相比,本发明具有如下有益效果:
[0013] 1、本发明不仅可以运用在低阶非线性动力学系统中,高阶复杂的动力学系统也同 样适用;
[0014] 2、本发明可以缩短非线性动力学稳定性分析周期,提高分析效率;
[0015] 3、本发明可以比较直观准确地反映出系统的平衡状态、稳定精度和稳定性,以及 初始条件和参数变化对系统运动的影响。
【附图说明】
[0016] 图1电动汽车在转向稳定性的非线性分析方法实现流程图。
[0017] 图2电动汽车转向车辆模型。
[0018] 图中β为质心侧偏角;γ为横摆角速度;Φ为质心侧偏角;m,msS汽车总质量和 悬挂质量;l f,I1?为质心到前、后轴的距离;δ fl, δ 为汽车前左轮转角和前后轮转角;h, h。 为悬挂质量质心到侧倾轴的距离和质心到地面距离;Ffl,F&为汽车前左轮和前后轮转向 力;F rl, Frr为汽车后左轮和后右轮转向力;F zl, Fzr为汽车后左轮和后右轮正压力;a y为横向 加速度;g为重力加速度。
【具体实施方式】
[0019] 以下结合附图和实施例对本发明作进一步详细说明。
[0020] 图1为电动汽车在转向稳定性的非线性分析方法实现流程图,确定分析对象,建 立图2所示电动汽车转向非线性动力学模型,构造非线性微分方程,通过消去非线性系统 中快弛豫参量对系统进行降阶处理,根据等倾斜线原理,运用多步递推法绘制系统相轨迹, 得出不同初始条件电动汽车转向过程中系统的平衡状态、稳定精度和稳定性。
[0021] 1、建立非线性动力学模型
[0022] 基于极限工况下轮胎进入非线性区域,采用"魔术公式"轮胎模型,考虑转向时侧 倾力矩在前后轴上的分布、侧倾载荷的转移和垂直载荷的变化。建立包含横向运动、侧向运 动、横摆运动和侧倾运动等能反应电动汽车转向的高阶非线性动力学模型,构造系统微分 方程。
[0023] 系统可以写成微分方程的形式:
[0024] X=/(Χ,θ) (1)
[0025] 其中X为系统状态变量,Θ为系统参数。
[0026] 2、对非线性系统进行降阶处理
[0027] 针对系统建立的非线性转向动力学微分方程(1)展开成线性部分Ax和非线性部 分f (X)表示:
[0028] X = Ax + f(x) (2)
[0029] 其中:
[0030]
【主权项】
1. 一种电动汽车转向稳定性的非线性分析方法,其特征在于:该方法的实施步骤如 下,Sl建立非线性动力学模型 基于极限工况下轮胎进入非线性区域,采用"魔术公式"轮胎模型,考虑转向时侧倾力 矩在前后轴上的分布、侧倾载荷的转移和垂直载荷的变化;建立包含横向运动、侧向运动、 横摆运动和侧倾运动等能反应电动汽车转向的高阶非线性动力学模型,构造系统微分方 程; 系统可以写成微分方程的形式: X = f{X,e) (1) 其中X为系统状态变量,Θ为系统参数; S2对非线性系统进行降阶处理 针对系统建立的非线性转向动力学微分方程(1)展开成线性部分Ax和非线性部分 f (X)表示: X = ^4x + /(x) (2) 其中:
将Cl1 ( λ ),d2 ( λ ),…dr ( λ )进行一次分解,得到
其中λ 1,λ 2,…λs互不相同,k ij为非负整数,1彡i彡r,l彡j彡S ;对应的Jordan 块为:
其中 kn+ka+···+!^= η 运用绝热消去原理判断,当A的特征值具有负实部时,其对应的系统变量为快弛豫变 量,令其对应的时间一阶导数为零,代入(1)式,得到新的非线性动力学方程,与原系统的 非线性动力学方程等价,实现非线性系统降阶; S3绘制系统相平面轨迹 降阶处理后的电动汽车转向非线性动力学系统可以表示成如下微分方程:
其中F(x)为系统的非线性函数叫(X),(i = 1,2, ···,]!)系统参数;X⑴为η阶可微, 且微分方程均进行首一化处理; 初始条件为 Cl1XcZdt1, (i = 1,2,…,η),设 Xtl= X Q; 首先,由过相平面上初始点(Cr2xcZdtnIcr1xcZdt lri)和原点(〇,〇)直线的斜率k1= Wn-1Wdtn-1) Adn-2XcZdtn-2),确定经过初始点(d n-2X(l/dtn-2, (T1xcZdtn-1)相轨迹的切线斜率
然后,根据初始点和斜率k2做一条短直线,并根据相轨迹按顺时针方向运动的特点,在 短直线上取一点作为相轨迹的第二点(两点间的距离决定了作图精度的大小),即得到相 轨迹的第二点位置坐标(cf'/dt1^ 2, ; 最后,根据等倾斜线原理不断递推绘制出降阶后的电动汽车转向非线性动力学系统相 平面上的相轨迹,从而比较直观准确的反映出系统的平衡状态、稳定精度和稳定性,以及初 始条件和参数变化对系统运动的影响。
【专利摘要】一种电动汽车转向稳定性的非线性分析方法,通过建立能够描述电动汽车转向的非线性动力学模型,构造非线性微分方程,然后运用绝热消去原理对构造的电动汽车转向非线性微分方程进行降阶处理,消去系统中快弛豫参量,得到简化后的非线性微分方程,最后根据等倾斜线原理,采用多步递推法绘制出电动汽车转向非线性动力学系统的相轨迹,将系统的平衡状态、稳定精度和稳定性直观的反映出来,分析出不同车速和转角下电动汽车转向过程中的稳定性。
【IPC分类】G06F19-00
【公开号】CN104636591
【申请号】CN201410748985
【发明人】冯能莲, 陈升鹏, 米磊, 张杨, 宾洋
【申请人】北京工业大学
【公开日】2015年5月20日
【申请日】2014年12月9日
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1