专利名称:读取多个射频标识标签的防冲突协议的利记博彩app
背景技术:
为了识别和/或防盗而给商品加上标签早已是人人皆知。例如,许多商品都利用条形码来识别,该条形码上有编码信息,通过令条形码经过一个扫描仪的视场中就可以将编码信息读出来。许多商品还有一个谐振标签用于防盗。最近开发了一些无源谐振安全标签,它们返回唯一或半唯一识别码。这些安全标签通常都有存储识别码的一个集成电路。这种“智能”安全标签可以提供关于贴上了该标签的商品的信息,在询问器的作用区域内可以检测到它。需要这种标签是因为可以从远处迅速地询问它们。美国专利第5446447号(Carney等)、第5430441号(Brickley等)和第5347263号(Carroll等)公布了智能标签的三个实例。
智能标签有利于商品的制造、分配和销售。也就是说,在储存、上架、展览和盘存商品的任何地方,智能标签都能真正降低成本。例如,分配中心的一个职能是接收成批地包装运输的商品,并将这些商品重新打包成较小的“搬运”箱。在一个搬运箱里常常要装多种产品。重新打包的过程中盘存差错的代价很高,而且还可能将产品错误地运到别的零售商那里。智能标签系统可以用一个询问器或指读器(point reader)迅速地检查搬运箱的内容,并准确地确认到底是在将什么运往每一个零售商处。
今天的雇员要花费很多时间用手工清点商品以进行存货控制,还要用手工来检查产品的失效期。智能标签避免了这样的手工清点和失效期手工检查。雇员不是手工清点多种商品,而是用一个智能标签读码器指向货架上的一批批产品,在几分钟里完成对全部产品的扫描。雇员还可以利用智能标签扫描一批产品,搞清它们的失效日期从而避免损失,减少存货并保持连续的存货账目。
需要使用智能标签的另一个场合是图书馆。手工整理藏书既费钱又耗时。如今的整理如此耗费金钱和时间,以至于多数图书馆不会按需要经常、全面地整理藏书或者根本不全面地整理藏书。因此图书馆雇员需要一些系统来有效地整理图书馆的藏书或者根本不全面地整理藏书。智能标签正好能满足这一需要。
在读码器的询问区里读取多个射频标识(RFID)标签的问题在于,读码器或询问器可能几乎同时激活多个标签,这样两个或更多的标签可能会几乎同时发射它们的标识信息给读码器,从而导致信息冲突,破坏信息,妨碍读码器读取需要的信息。为了避免这样的数据冲突,一些询问器包括一种装置,用于控制单个标签的数据发射,例如发射完响应信号后关闭单个标签一段预定时间。然而询问器要发射信号关闭单个标签,要求这样的信号强度超过管理当局,如联邦通信委员会(FederalCommunication Commission,FCC)规定的电平。其它系统里的标签用一种电路来检测是否有多个标签在同时发射数据。检测到这样的情况以后,这些标签退出发射并在再发射前等待一段预定的时间,通常使用随机数来控制这一段时间。但该方法要求标签里安装有检测电路和电池,它们都会增加标签的成本。所以,需要一种方法,来检测同一询问区里是否有多个标签在以同样的频率同时发射数据,并为这样的多个发射采取补偿措施,以便准确地读出每一个标签发射的数据。
本发明提供一种方法,用于同时读取询问天线场里的多个RFID标签,其基础是这些标签周期性地发射信号,前后两次发射之间维持一段很长的间歇期。间歇期对一个给定的标签来说是固定的,但对不同的标签来说则是随机的,这种随机性由制造公差产生,这样一来,根本不需要询问天线的发射配合。
发明概述简而言之,本发明包括一种方法,它利用一种单边协议,从询问区内的多个智能射频装置读取数据,这些装置从不停止工作。第一步,询问装置发射连续的询问信号。该询问信号包括频率为第一预定射频的一个电磁场,该电磁场的强度决定了询问区的大小。第二步,电磁场激活该询问区里多个智能射频装置。该电磁场在每一个智能装置里都感应出一个电压,这一电压为智能装置提供电能。
有了感应电压提供的电能,询问区里的多个智能装置中的每一个智能装置读取预先存储的相应数据段,并以第二预定射频周期性地重复发射该数据段里存储的信息,这一重复周期是预先确定的,在前后两次发射期之间都有一固定的间歇期。间歇期远比发射期长。询问装置读取每一个智能装置发射的信息。由于不同智能装置的固定的间歇时间不同以及间歇期远远长于信号发射期,因此大大降低了两个或多个智能装置同时发射它们的相应信息(即发射期重叠)的可能性。
本发明还提供一种智能射频装置,它包括存储数据的一个集成电路;与该集成电路相连的天线,其中将该天线置于第一预定射频的电磁场中可以在该天线中产生感应电压,从而给该集成电路提供电能,这样可以从集成电路里读出存储的数据,再以第二射频重复发射出去;一个预定的发射期,在这一发射期里以第二预定谐振频率重复地发射集成电路里的数据;以及预定的发射期之间的一个固定的等待期,其中该等待期远比发射期长。
本发明还包括一个射频标识装置,它包括存储数据的一个集成电路;与该集成电路相连的天线,该天线包括一个电感器和一个电容器,将该天线置于第一预定射频的电磁场中可以在电感里产生感应电压,从而给集成电路提供电能以便读出其中存储的数据,并提供一个连续的数据输出信号;一个发射机,用于以第二预定射频重复发射数据输出信号;和一个定时器,用于在数据发射期之间建立一个固定的间歇期,其中间歇期的时间远比发射期的时间长。
附图简述参考附图,可以更好地理解前面的概述以及下文中对本发明一个优选实施例的详细介绍。为了说明本发明,附图中介绍了一个优选实施例,但应当明白,本发明并不局限于公布的这些实施例。其中
图1是本发明一个优选实施例中一个谐振频率标识(RFID)装置的等效电路原理图;图2是本发明中一个询问器和一个RFID标签的原理框图;图3a是RFID装置发射数据的协议的时序图;图3b是RFID装置发射数据的优选协议的时序图;图4a是本发明的一个优选实施例里,多个标签中的每一个标签响应询问信号输出数据信号的时序图;图4b是图4a中时序图的续图;图5a是读取多个RFID装置的概率与时间的关系;和图5b是在规定的时间内读取多个RFID装置的概率图。
发明详述在下文中使用一些特定术语只是为了方便,而不具有限制性。“顶部”、“底部”、“往下”和“往上”这些词表示要参考的图中的方向。所用术语包括上面特别介绍的词、由它们导出的词以及其它类似的词。
本发明涉及同时读取多个RFID标签或智能装置的一种方法。该方法是利用标签来实现的,只要这些标签处在询问区以内,它们就连续发射它们各自的标识信息。每发射一次数据之后,都有一段固定时间长度的等待期或间歇期。等待期的时间最好是数据发射期的十倍以上。制作标签时每一个标签的电路元件都有规定的制作公差,这样,尽管对每一个标签来说间歇期的长度是固定的,对不同的标签来说该间歇期的长度并不相同,其差别至少在规定的公差之内。不同标签之间间歇期长度的变化使得询问区内不同标签间的发射期相互错开,即不会重叠。也就是说,很可能没有任何两个标签会同时开始发射数据然后在同一时刻结束发射(从而引起冲突)。更进一步,经过一段时间以后,例如经过一个标签的四个发射周期以后,询问器成功地收到每一个标签的标识信息的可能性将增大。也就是说,经过每个标签的几个发射周期以后,询问装置就可以成功地读出每一个标签的标识信息。
现在参考附图,所有的附图中同样的元部件都用同样的数字标记。图1是本发明一个优选实施例的一个谐振频率标识(RFID)标签即装置(10)的等效电路的原理图。RFID标签用途广泛,已是众所周知。美国专利第5430441号公布了一个转发标签,它响应询问信号发射一个数字编码信号。该标签有一个硬基底,由多个介电层和导电层组成,还有一个集成电路,完全嵌在基底中的一个孔里,用接头跟导电薄层焊接在一起。装置10包括与集成电路(IC)14电连接的天线12。天线12最好包括一个谐振电路,它以对应于一个相关询问装置的射频的预先确定的射频(RF)谐振,下文中将详细介绍。
天线12可以包括与一个或多个电容元件电相连的一个或多个电感元件。在一个优选实施例中,天线12由一个串联环组成,该串联环由一个电感元件、电感器或线圈L,和一个电容元件、或电容器CANT电相连形成。如同本领域里众所周知的那样,该天线12的工作频率取决于电感器线圈L和电容器CANT的值。电感器L的尺寸和电容CANT的值由天线12需要的谐振频率确定。在本发明的一个实施例里,装置10工作在13.56MHz。尽管装置10最好谐振在13.56MHz,它也可以谐振在其它频率。本发明并不限定装置10的确切谐振频率。所以对本领域的普通技术人员来说,很显然天线12还可以工作在除13.56MHz以外的其它射频,如微波频率。另外,虽然装置10只包括一个电感元件L和一个电容元件CANT,实际上还可以采用多个电感器和电容器。例如,人们都知道在电子安全和监视技术里使用了有多个元件的谐振电路,如第5103210号、名称为“电子安全系统里使用的可激活/可关闭的安全标签”的美国专利所说明的那样,这里将该专利引作参考。虽然这里介绍的是一个优选的天线,但对于本领域的普通技术人员来说,很显然可以采用将能量耦合到集成电路14/从集成电路14耦合出来的任何装置。
集成电路14最好有一个可编程存储器18,例如一个64位或128位存储器,用于存储标识数据位,虽然更大或更小一点的可编程存储器也是可行的。有足够的电能时,集成电路14输出一个数据流,其中包括64(或128)位数据。存储在可编程存储器18里的数据位或数字值可以用于多个目的,如用于识别安装了装置10的某个物体或携带它的人。存储器18可以包括一个或多个数据段,用来存储一个或多个数字编码信息。对每一个装置10来说存储的数字值可以是唯一的,或在某些情况下,可能需要两个或更多的装置存储同样的数字值。除了识别一个物体以外,存储在存储器18里的数据还可以用来存放产品标识信息、产品保证信息以及其它信息,如产品是什么时候、什么地点制造的等等。这样感应电压给装置10供上电时,集成电路14就输出存在可编程存储器18里的数据。然后这些数据以一个预先确定的射频发射出去,该信号可以被询问装置20(图2)检测到。在这里装置10发射数据这一段时间叫做发射期。
集成电路14最好还包括一个定时器电路19,它确定间歇期的长短,这样每一个发射期后紧跟一个间歇期。在间歇期里,装置10不发射或辐射信号。在本发明里,间歇期的时间长度一般是固定的。也就是说定时器电路19建立的是一个单独、固定的间歇期。发射完数据以后,定时器电路19要求装置10等待长度固定的一段时间,然后才能继续发射数据。所以每个发射期后都紧跟长度固定的一个间歇期。间歇期可以通过定时器电路19产生一个允许信号允许装置10发射数据来建立。另外,定时器电路19可以跟存储器18相互作用,使得只在固定的时间段里选通或读取存储器18。
定时器电路19是用来在每个发射期或每次存储器18访问以后为预先确定的一个固定时间段定时或计数的。如本领域的普通技术人员所知道的那样,定时器19可以用多种电子元件或装置来制作。具体用什么方法来设计定时器19以及用什么元器件来制作它并不重要。换言之,定时器电路19可以正数、倒数或仅仅是一个简单的延时电路。虽然定时器19最好作为集成电路14的一部分,而且定时器19跟存储器18相互作用,但是定时器19也可以跟集成电路的一个输出相互作用,而不是跟存储器18相互作用。还有,定时器19还可以制作在集成电路14之外。应当明白,定时器19的重要性就在于保证数据发射期以后紧跟一个长度固定的间歇期。
使用了一种接近式读码器(a proximity reader)或询问器装置20(图2)来检测并读取装置10发射的信息。工作时,读码器/询问器20在天线12的谐振频率上或附近建立一个电磁场。当装置10离读码器/询问器20足够近进入它的电磁场里时,在电感线圈L上会感应出一个电压,这一电压通过集成电路14的ANT输入端为集成电路14供电。更好的方法是在集成电路14的内部对ANT输入端的感应交流电进行整流,得到一个内部的直流电压源。当内部直流电压达到一个电平能保证集成电路14正常工作时,集成电路14就通过它的MOD输出端输出存储在可编程存储器里的数字值。
在这一优选实施例里,天线12有一个谐振电路。一个调制电容CMOD与集成电路14的MOD输出端和谐振电路(天线)12相连。MOD输出端的数据输出脉冲通过将电容CMOD跟地接通和断开而将该电容接入谐振电路或从谐振电路12断开,从而根据存储的数据来改变谐振电路12的总电容,这样谐振电路12的谐振频率得到改变,使它从主要工作频率变到一个预先确定的较高频率。因此装置lO的数据脉冲是通过调谐和解调谐谐振电路12而产生的。读码器/询问器20检测到它的电磁场中能量消耗的变化,从而确定集成电路14输出的数据。虽然这里公布的用于输出或发射数据给询问器20的是一种特定的方法和电路,但是,用其它装置,如别的调制技术,将存储的数据发射给询问器20,并没有超出本发明的范围。
集成电路14也可以有一个接地即GND端,以及一个或多个额外的输入端16,这些输入端用来对集成电路14利用一般的方法进行编程(即将数字值存入其中或修改其中的数字值)。在这一优选实施例中,集成电路14有128位永久性存储器。当然,对于本领域的一般技术人员来说,可编程存储器18显然可以拥有更大或更小的存储容量。现在参考图2,其中说明了询问器20的原理框图,它适合用于图1中示出的RFID标签即装置10。询问器20与RFID装置10之间利用本领域众所周知的电感耦合来进行通讯。询问器20包括发射机22、接收机24、天线26以及数据处理和控制电路28,每一个都有输入和输出。发射机22产生一个询问信号给天线26,让它以第一预定射频产生一个电磁场。该电磁场的强度决定了可以给RFID装置10供电并检测到它们的区域(即询问区)的大小。接收机24检测RFID装置10发射数据输出信号引起的电磁场的变化。发射机22的输出端与接收机24的第一输入端和天线26的输入端相连。天线26的输出端与接收机24的第二输入端相连。数据处理和控制电路28的第一和第二输出端与发射机22的输入端和接收机24的第三输入端分别相连。此外,接收机24的输出端与数据处理和控制电路28的输入端相连。具有这样的总体布局的询问器可以使用美国专利第3726960、3816708、4103830和4580041号的电路来制作,在这里这些专利都被全部引作参考。但更好的方法是,对这些专利里的询问器的数据处理和控制电路进行修改,让它们增加日期和时间数据(例如时间标志)。在数据处理和控制电路28里有一个时钟30,用来添加日期和时间数据。询问器20最好是一个手持装置。当然,询问器20的其它物理形式都属于本发明的范围之内,如托架结构(pedestalstructure)。而且,除了接收机24与接收天线以及发射机22与发射天线以外,询问器20还可以包括一个独立于发射机22的结构和相关的天线,以及独立于接收机的结构和相关的天线,这在本领域里众所周知。
询问器20可以检测置于询问区内的多个装置10(以及与它们相关的商品)发射的信号。多数情况下,每一个装置10都在不同的时刻接收到询问信号并做出响应,即使装置10在空间上都互相靠近。处理返回的信号串,从中将每一个装置10的信号分离出来。但当两个装置10发射数据信号的时间完全相同或部分重叠时,询问器20可以检测到这一现象,并舍弃这一数据信号。这样的检测电路很常见,本领域的一般技术人员都知道。根据本发明,询问器20产生的询问信号一般是连续信号,与周期信号和脉冲信号不同。如前所述,对询问器20来说询问信号是一个内部信号,它被提供给天线26来产生一个电磁场。询问区是电磁场内的一个区域,置于其中的智能装置10会得到一个感应电压,该电压足以为集成电路14供电。所以,询问区的大小取决于电磁场的强度。
只要询问区内有一个装置10,它就会连续地发射或输出它的数据。为了让询问器20能够检测并接收到询问区内多个装置10发射的数据,某一个装置10在发射完数据以后,如前所述,它就等待一段固定长度的时间,然后才再一次发射它的数据。
现在参考图3a,其中说明的是RFID装置10发射数据的协议的时序图。RFID装置10输出数据流,该数据流包括存储器数据32,随后是不发射任何数据的长度固定的一段间隙34。存储器数据部分32包括装置10发射的信息。该信息可以包括存储在可编程存储器18里的所有信息位者只包括其中的一部分数据位。注意,只要RFID装置10在询问区里而且电磁场产生的感应电压足够高,它就连续地发射它的输出数据流。这一信息还可以包括没有存储在数据存储器18里的其它信息位,例如用于差错检测和纠错,或者其它控制目的,这对本领域的技术人员来说显而易见。
如图3a所示,输出数据流里的存储器数据部分32比间隙即间歇期34时间长。图3b是发射RFID装置10里存储的数据的一个优选协议的时序图。与图3a里的协议相似,输出数据流包括一个存储器数据部分36,和随后长度固定的一个间隙即间歇期38,只要装置10在询问区里而且由电磁场感应的电压足够高,那么RFID装置10就连续发射数据流。图3a和图3b两个协议之间的差别是,图3b中间歇期38的长度比存储器数据部分36长。最好是间歇期38的长度远比存储器数据部分36长,例如100倍长。间歇期的长度由定时电路19来控制。例如,数据发射期可以是大约1毫秒,而间歇期则可以是大约100毫秒。
如上所述,定时电路19决定了间歇期38的长度,这一长度最好是大体固定的。但是已经确定,如果制造定时电路19所使用的电子元件具有一个预定的公差值,如+/-20%的公差,那么,尽管对某一个特定装置来说间歇期38的长度是固定的,多个装置间歇期的长度却各不相同,这减少了两个或多个装置在同一时刻发射它们的存储器数据36的可能性。也就是说,改变不同装置10中间歇期38的长度,就可以使装置10的发射不同步。相反,如果制作定时电路19的电子元件公差较小,如+/-5%,那么不同装置里的定时电路就更可能产生长度相同的间歇期,从而在询问区里两个或多个装置同时发射它们的存储器数据36的可能性就大得多,因此导致数据冲突。所以,询问区里每一个装置10在理论上同时发射它的存储器数据36,而实际上,制作定时电路19的电子元件的差异却使得这些装置发射存储器数据36的时间段至少稍有不同。另外,尽管一开始有两个或多个装置10发射存储器数据36的时间相同或部分重叠,但因为间歇期38远长于发射期36,不同装置的间歇期38长度之间的差别足够大,所以每一个装置10下一次发射期36很可能开始于不同的时刻。让间歇期38远长于发射期36,并使不同装置10的长度固定的间歇期38的公差不同,足以保证当询问器20的询问区内装置10的个数小于预定询问时间除以单个信息的发射时间时,将检测到询问区内所有装置10或很大一部分装置10,并将它们的数据读出来。
现在参考图4a,其中说明了本发明一个优选实施例中,多个装置即标签10响应询问信号输出数据信号的时序图。该图说明了四个标签(标签1、标签2、标签3、标签4)发射的输出数据。“TX”表示一个数据发射期,随后是“等待”,即相对来说时间较长的间歇期,然后是下一个发射期(TX)。“读”线表示从某一个标签发射数据给询问器20。
在时刻T1,标签1和标签2都分别发射它们的数据信息(表示为TX)。同样在时刻T1,询问器20试图读取数据信息,但发生了冲突(表示为X),因此没能读出任何标签数据。在时刻T2,标签3发射它的数据信息。因为在时刻T2没有任何其它标签发射信号,询问器20读取标签3的数据信息。相似地,在时刻T3,标签4发射它的数据信息,并被询问器20读出。可能有许多原因使标签3和标签4发射数据信息的时间比标签1和标签2晚,例如标签3和标签4在空间上离询问器20更远一些,这样在标签3和标签4里感应出足够的电压需要较长的时间,或者因为元件具有+/-20%的公差,访问可编程存储器18的时间可能稍微长一些。
等待了固定长度的一段预定时间以后,在时刻T4,标签1和标签2又一次分别发射它们的数据信息(表示为TX)。注意,在时刻T4,标签2的数据发射时间比标签1的数据发射时间略晚。这一延迟是由相应标签里的定时电路18的差别引起的,如前所述,该差别的原因则是标签里元件的制造公差。在时刻T4,询问器20又试图读出数据信息,但又一次碰到了冲突(记作XX),因此没有读到任何标签数据。在时刻T5,标签3发射它的数据信息。既然在时刻T5没有任何其它标签发射信号,询问器20就读出了标签3的数据信息。同样在时刻T6,标签4发射它的数据信息,询问器20也读出了标签4的数据信息。在这一优选实施例里,从同样的标签读出的重复读数被舍弃。但是,可以理解,这样的重复读数可以用于其它目的,如差错检测。
图4b是图4a中时序图的续图,但尺寸较大。在图4b中,画出了标签1、标签2、标签3和标签4的6个发射周期。从时序图可见,在每一个新的数据发射周期里,标签1和标签2的数据发射的起始时间之间的差别逐步增大,到了时刻T13和T14,询问器20已经可以成功地分别读出标签1和标签2发射的数据。这样,在一段相对较短的时间里,询问器20可以成功地分别读出每一个标签即装置10发射的数据信息。图4a和图4b里的时序图说明定时器电路19里的相对微小差别是如何将多个标签即装置的数据发射期错开的,这种微小差别最好是由其中电子元件的细微差别产生的。例如,如果在图4b里每一个数据发射期大约是1.3毫秒(用80千比特每秒的速度传输142比特),每一等待期大约是100毫秒,那么询问器20就可以在大约410毫秒的时间里成功地读出每一个标签(标签1-4)发射的数据信息。所以在不到半秒钟的时间里,询问器20就可以读出所有4个标签。
现在参考图5a,对于根据这一实施例(用80千比特每秒的速度传输142比特和大约100毫秒的间歇期)应用本发明的协议的装置,图中画出了从多个RFID装置10,这里是50个装置,中读出一个装置10的概率与时间的关系。在大约0.8秒的时候,读出装置10发射的信息的概率是80%。在大约1.1秒的时候,读出装置10发射的信息的概率是90%,大约3秒钟后,这一概率达到1(100%)。
图5b说明在与图5a相同的条件下,在1秒钟内读出多个RFID装置发射的数据的概率。根据这个图,在1秒钟内读出50个标签即装置10发射的信号的概率大约是0.87。在1秒钟内读出45个标签发射的数据的概率大约是0.9。在1秒钟内读出32个标签发射的信号的概率大约是0.96,在1秒钟内读出25个标签发射的信号的概率大约是0.98。因此图5b说明,询问器20可以在一段相对较短的时间里,读出多个标签即装置10发射的信号。
RFID装置10有许多的应用,包括加了标签的商品的库存控制,如图书馆里的书、工厂的原料或零售的商品。对本领域的技术人员来说装置10很显然能用于许多其它商业行为。虽然介绍本发明时参考了谐振电路标签,特别是由射频询问信号供电的射频标识(RFID)标签,本领域的普通技术人员应当明白,这一发明公布的概念还可以用于其它装置,从而受益于这里公布的输出协议。因此本发明并不是只局限于RFID标签。
除了RFID装置10以外,本发明还包括在装置10的内在差异和装置10响应询问信号的能力的基础上,同时读多个RFID装置10的一种方法。本领域的技术人员应当明白,可以对本发明的上述实施例作一些变动,而没有偏离本发明的概念。因此应当明白,本发明并不局限于公布的特殊实施例,而是涵盖了所有的变动,这些变动仍然在本发明的范围之内,没有偏离本发明的精神,正如下面的权利要求所说明的一样。
权利要求
1.一种方法,用于从一个询问区内的多个智能射频装置里读取数据,包括以下步骤询问装置发射基本上是连续的询问信号,该询问信号包括频率为第一预定射频的电磁场,该电磁场的强度限定了询问区;置于询问区内的多个智能射频装置受到电磁场的作用,该电磁场在每一个智能装置上感应出一个电压,该电压为上述智能装置供电;询问区内的多个智能装置中的每一个读取预先存储的相应数据段,并在预定的周期性时间段里以第二预定射频重复发射存储在其中的信息,发射期之间都有时间长度固定的一个间歇期,其中间歇期的长度远长于信息发射期;和该询问装置读取每一个智能装置发射的信息,由于各个不同的智能装置的长度固定的间歇期的长度互不相同,而且间歇期远长于信息发射期,因此降低了两个或更多智能装置同时发射它们各自的信息的可能性。
2.权利要求1的方法,其中每一装置都发射一个唯一的信息。
3.权利要求1的方法,其中的信息与预先存储的数据直接相关。
4.权利要求1的方法,其中由于决定间歇期长度的电子元件存在制造公差,每一智能装置间歇期的长度都互不相同。
5.权利要求4的方法,其中电子元件的制造公差约为+/-20%。
6.权利要求4的方法,其中电子元件的制造公差约为+/-5%。
7.权利要求1的方法,其中间歇期的长度至少比信息发射期的长度长100倍。
8.权利要求1的方法,其中间歇期至少比信息发射期长10倍。
9.权利要求1的方法,其中询问区内的多个智能装置少于询问信号的预定长度与单个信息发射时间的比。
10.权利要求1的方法,其中询问信号的作用范围是有限的,因此限制了询问区的大小,从而也限制了其中智能装置的数目。
11.权利要求1的方法,其中第二预定射频与第一预定射频相同。
12.一种智能射频装置,包括用于存储数据的集成电路;天线,与上述集成电路连接,将天线置于第一射频电磁场中则在其中感应出一个电压,该电压为集成电路提供电能,从而从集成电路里读出存储在其中的数据,并用第二预定射频重复地发射这些数据;一个预先确定的发射期,在其中用第二预定射频重复地发射集成电路里的数据;和预定发射期之间的一个固定的等待期,其中等待期远长于发射期。
13.权利要求12的装置,其中多个装置之间长度固定的间歇期互不相同。
14.权利要求13的装置,其中不同装置之间等待期长度不同的原因是决定等待期长度的电子元件的制造公差。
15.权利要求14的方法,其中电子元件的制造公差约为+/-20%。
16.权利要求14的方法,其中电子元件的制造公差约为+/-5%。
17.权利要求12的装置,其中集成电路装置里包括可编程永久性存储器。
18.权利要求12的方法,其中第二预定射频与第一预定射频相同。
19.一种射频标识装置,包括用于存储数据的集成电路;与上述集成电路相连的天线,该天线包括一个电感器和一个电容器,将该天线置于频率为第一预定射频的电磁场里则在电感器上感应出一个电压,该电压为集成电路提供电能,从而读出其中存储的数据并连续输出数据信号;以第二预定射频重复发射输出数据信号的发射机;和定时器,用于在数据发射期之间建立一个长度固定的间歇期,其中间歇期的长度远长于发射期。
20.权利要求19的装置,其中长度固定的间歇期对多个不同装置来说长度不同。
21.权利要求20的装置,其中定时器包括多个电子元件,这些电子元件的制造公差导致了不同装置中间歇期长度的不同。
22.权利要求19的装置,其中长度固定的间歇期与发射期的长度比大约是100∶1。
全文摘要
读取置于询问天线(26)场中多个RFID标签(10)的一种方法,它依靠这些标签周期性地发射信号,发射期之间有很长的间歇期。对于一个给定的标签该间歇期的长度是固定的,但对不同的标签来说则是随机的,其原因是制造标签的电子元件存在制造公差,从而不需要询问天线的发射配合。
文档编号G06K7/00GK1246947SQ98802301
公开日2000年3月8日 申请日期1998年1月22日 优先权日1997年2月7日
发明者约翰·H·鲍尔斯, 约翰·纳尔逊·戴格尔, 拉德·彼得罗维奇 申请人:检查点系统有限公司