本发明涉及皮肤毛孔检测技术,具体涉及一种基于图像颜色空间的皮肤表面毛孔大小检测方法,属于皮肤图像处理应用软件领域。
背景技术:
:皮肤表面状态检测是皮肤衰老和抗衰老研究的重要手段,也是护肤品客观评价重要指标之一。随着人们生活水平的提高,面部皮肤的美容及护理已经收到人们的广泛关注,如何客观、定量的对皮肤图像进行分析和识别是今年皮肤图像处理领域的研究热点之一,其中一个重要应用就是对皮肤表面毛孔大小的检测。目前国内外皮肤表面状态检测技术还比较落后,传统采用目测方法,存在很大的主观性。因为不同的人对同一幅皮肤图像可能会得出不同的结论,仅凭经验判断会带来很大的误差;且有些皮肤细微纹理,目测无法识别区分。随着计算机图像处理技术的飞速发展,人们开始探讨用数字图像处理技术来提取皮肤图像的特征,以数字图像处理技术为手段,可以使皮肤表面状况评估方法从传统的定性分析上升为精确的定量分析,从而极大地提高测量的精确度。皮肤图像的特征包括颜色、纹理、毛孔、光泽度等,其中毛孔大小特征是一种重要的皮肤度量指标,毛孔数量和大小可衡量皮肤的生理状况。当前评估毛孔大小的图像处理方法很少,还没有定量计算一幅微距皮肤图像表面毛孔大小特征指标的数值方法。目前基于图像的皮肤毛孔检测方法还多采用半手动或纯手动方法,即需要人在图像上手动标记毛孔的方法。图像检测毛孔算法最近几年被提出,目前有基于hsv颜色空间的皮肤图像毛孔检测算法,该方法首先把获取的rgb颜色空间图像转换成hsv颜色空间,然后在此hsv图像基础上对图像做阈值分割和形态学去燥方式实现皮肤毛孔检测,该方法可自动识别毛孔,但没有提供能够评估一幅微距皮肤图像表面毛孔特征的数值指标,也没有剔除毛发、黑斑等引起的误识别毛孔,毛孔检测准确性不高。技术实现要素:本发明的目的在于实现一种基于图像颜色空间(如rgb、hsv)的皮肤表面毛孔大小检测方法,根据皮肤图像rgb颜色空间像素值信息,计算指定一幅图像的表面毛孔大小特征值,实现皮肤图像毛孔大小检测评估。本发明中,皮肤图像来自于数字图像采集设备,可利用微距皮肤采像设备进行采像得到或对常规图像进行预处理得到。目前图像文件多采用rgb颜色空间,本发明算法直接利用rgb颜色空间像素值做毛孔大小检测;通过图像增强方法可减少或避免光照条件影响;有些毛孔会连接有毛发,本文算法通过最小包围矩形区域法可有效去除毛发的影响;通过面积形状方法可去除黑斑等误识别的毛孔、纹理、黑斑等;通过本发明方法,一幅皮肤微距图像计算得出一个毛孔大小特征值,通过这个特征值可准确度高的识别一幅微距皮肤图像表面毛孔大小特征,本发明算法计算速度快,计算的毛孔大小特征值指标准确度高,具有很大市场应用价值。本发明提出的基于图像颜色空间的皮肤表面毛孔大小检测方法可对相同分辨率的皮肤微距数字图像做处理,得到衡量一幅皮肤图像毛孔大小指标参数数值,该数值可标识微距皮肤图像表面的毛孔特征,主要包括如下步骤内容:(1)根据图像路径参数,读取皮肤图像颜色空间(rgb空间)像素矩阵;(2)皮肤图像灰度化并图像增强;(3)皮肤图像三值化处理,既毛孔像素1,毛发像素2,其他像素0;(4)通过毛孔像素四连通方式识别并统计毛孔数量和大小;(5)通过面积形状方法剔除误识别的毛发、纹理、黑斑等;(6)对剔除后剩余的毛孔根据数量统计毛孔大小的均值,该均值可作为皮肤毛孔检测的特征值。通过本发明方法提供的皮肤毛孔大小计算算法,检测皮肤图像毛孔大小准确度高,具有实际应用价值。具体来说,本发明的方法包括下列步骤:a.根据图像路径,读取皮肤图像rgb空间像素颜色值矩阵,具体如下:a1.本算法唯一的参数是存储在硬盘上的图像文件,图像名称作为算法的唯一参数;a2.图像文件可以存放在本地、网络或其他媒体介质上;a3.读取图像文件的rgb值到计算机内存作为后续算法计算的基础;a4.图像文件格式包括但不局限于jpg、bmp、png等;b.皮肤图像灰度化并图像增强,具体步骤如下:b1.对读取的皮肤图像rgb像素值,通过三通道简单平均方法对皮肤图像进行灰度化;b2.计算灰度化后图像的灰度最大值graymax和灰度最小值graymin,计算得到灰度范围graywidth为:graywidth=graymax-graymin;b3.根据灰度范围graywidth拉伸像素灰度值到范围[0,255];c.对皮肤图像进行三值化处理,得到三值化图像,即毛孔像素1,毛发像素2,其他像素0,具体内容如下:c1.皮肤灰度图像分块(一般可分20-30个分块),每块分别对块内像素求像素灰度均值avgn;c2.每块皮肤图像内像素计算像素灰度值与avgn的差值minusn,该差值带有正负号;c3.设定均值avgn的阈值范围,minusn值低于均值avgn在该设定范围时定义为毛孔,像素值记录为1,minusn值低于avgn值v即毛发像素,像素值记录为2,v值的确定方法取决于子块图像最大灰度值和最小灰度值区间大小,通过式1计算得到:本发明根据实验获得均值avgn的范围为[60,100]。d.毛孔像素四连通方式识别并统计毛孔数量和大小(即每个毛孔的像素数量),具体步骤如下:d1.针对三值化的图像(即毛孔像素1;毛发像素2;其他像素0)做毛孔统计,不同的毛孔像素标记不同的数值no,数值范围3~255;该数值用来标记三值化图像中不同的毛孔(标记后图像像素值分别为0、2、3~255,其中3~255用以标记不同的毛孔;毛孔数量超过253,重复使用3~255数值),标记同时可以统计毛孔的数量。d2.从图像左上角开始遍历三值化图像像素,检测到毛孔像素(像素值为1)后标记该像素值为数字no(数值范围为3~255,用于统计毛孔数量,同一个毛孔的no数值相同,检测到新的毛孔即no值顺序递增1),然后从该像素开始采用四连通压栈方法更改属于该毛孔像素的所有其他像素值为no数值,属于同一个毛孔的所有像素之间是四连通的;标记完成的三值化图像像素值不会有1值,其中,毛孔元素像素值范围为3~255,毛发像素值为2,其他像素值为0;d3.遍历三值化图像像素完成后,可得到皮肤图像的毛孔数量(通过递增的no值获取,属于同一个毛孔的像素的no值相同,下一个毛孔的像素no值递增1,即no+1,以此类推)以及每个毛孔的像素数量;同一个毛孔的所有像素值no是相同的,在遍历三值化图像四连通查找同一个毛孔像素的同时可统计该毛孔像素数量;e.剔除误识别的毛发、黑斑等引起非毛孔影响,具体步骤如下:e1.遍历皮肤图像的所有毛孔,根据每个毛孔像素数量,设定范围阈值,定义数量在该阈值范围内的毛孔为识别真实毛孔的条件之一,不在该范围的为误识别的毛孔,该范围可以但不局限于[4,30];e2.通过面积形状方法,只需简单统计每个毛孔的长宽矩形范围,长条形毛孔为误识别毛孔,如毛发,面积很小为噪声点,面积很大为色斑;通过该方法可剔除误识别毛孔;误识别毛孔的具体判断方法如下:e21.本发明根据实验数据确定毛孔簇最小像素数量poremincount为4,毛孔簇像素数量num不大于该值定义为误识别毛孔(噪声点),如式2所示;poremincount≥num(式2)e22.本发明根据实验数据确定毛孔簇最大像素数量poremaxcount为30,毛孔簇像素数量num大于该值定义为误识别毛孔(色斑),如式3所示;poremaxcount<num(式3)e23.设定每个毛孔最小包围矩形长宽(以像素为单位)分别为spanx、spany,毛孔簇像素数量为num,同时满足式4、式5条件,即识别为毛孔,不满足条件(长条形状)的则表示为误识别毛孔(毛发);spanx*spanx<num*num(式4)spany*spany<num*num(式5)f.对剔除后剩余的毛孔根据数量统计毛孔大小的均值,该均值可作为皮肤毛孔检测的特征值。与现有技术相比,本发明的有益效果是:本发明提供一种基于图像颜色空间的皮肤表面毛孔大小检测方法,根据皮肤图像颜色空间像素值信息,计算指定一幅图像的表面毛孔大小特征值,实现皮肤图像毛孔大小的检测和评估。本发明的优点是直接利用rgb颜色空间像素值做毛孔大小特征值检测,皮肤图像是唯一的参数,读取图像数据并且灰度化,只针对像素级做图像处理分析即可检测皮肤毛孔大小,可有效提出毛发、黑斑等误识别毛孔,图像增强方法可减少或避免光照条件影响,本发明方法检测毛孔大小准确度高,速度快,因此该算法具有良好的市场应用前景和价值。附图说明图1是采用本发明方法的皮肤检测系统的结构框图。图2是本发明提供的皮肤毛孔大小检测方法的流程框图。图3是本发明实施例中检测皮肤毛孔大小的部分皮肤图像。图4是本发明实施例中按皮肤毛孔大小对皮肤图像进行排序的效果图。具体实施方式下面结合附图,通过实施例进一步描述本发明,但不以任何方式限制本发明的范围。本发明提供一种基于图像颜色空间的皮肤表面毛孔大小检测方法,根据皮肤图像rgb颜色空间像素值信息,计算指定一幅图像的表面毛孔大小特征值,实现皮肤图像毛孔大小检测评估。采用本发明方法实现了一套皮肤检测系统实施,该系统配置如表1:表1本发明实施实现的皮肤表面毛孔大小检测系统的配置名称设备型号数量皮肤采像设备微距皮肤采像设备,获取相同分辨率相同长宽皮肤图像5云服务器windowsserver2012、mysql5.7.16、opencv2.4.101客户端手机android客户端5皮肤检测系统由皮肤采像设备硬件设备,服务器端和手机客户端构成,其结构图如图1所示,皮肤毛孔大小检测流程如图2所示,具体包括如下实施步骤:(1)客户端手机登录;(2)皮肤采像设备采像,专用的皮肤采像设备可保证每次采像的图像分辨率相同,图像大小一致,避免对皮肤图像做光源一致性预处理;(3)皮肤图像上传到服务器端,服务器端数据库记录相关采像信息;(4)服务器端计算采用本发明方法计算皮肤毛孔大小的数值;(5)根据毛孔大小数值反馈毛孔文字描述信息如毛孔粗大、无毛孔等给客户端显示;本发明提供的皮肤毛孔大小检测方法只需要一个图像全路径作为参数,具体实施包括如下步骤:1)将该路径下的皮肤图像文件的rgb像素信息读取到计算机内存,对rgb像素做灰度化并图像增强处理,灰度化处理即采用像素灰度值等于像素rgb三个颜色通道的均值方法即可,图像灰度化后,统计最大灰度值和最小灰度值;再正比例拉伸图像灰度值范围方法做图像增强处理;2)皮肤图像三值化处理,具体设置毛孔像素为1,毛发像素为2,其他像素为0,处理方法是分块并每块分别做三值化处理,根据子块皮肤灰度均值avgn,以及子块皮肤灰度化后的像素值与avgn的差值minusn,采用阈值方法识别,本实例给出的阈值为minusn范围为[60,100]即毛孔像素,minusn大于一定阈值v即毛发像素,v值的确定方法取决于子块图像最大灰度值和最小灰度值区间大小;3)三值化皮肤图形后,根据毛孔像素四连通方式标记毛孔并统计毛孔数量和大小,每个毛孔像素根据毛孔的位置可分别标记为3~255,毛孔数量超过253,则从3开始重新使用3~255的数值来标记属于不同毛孔的像素;4)识别并标记毛孔后,根据每个毛孔的像素数量方法剔除误识别的噪声点、黑斑等,本实施实例定义像素数量范围[4,30]的为真正毛孔必要条件之一,其它为误识别的毛孔,误识别的毛孔不做毛孔统计处理;5)计算每个毛孔的最小包围矩形长宽,剔除长条形毛孔为误识别毛孔,如毛发;6)针对剔除误识别毛孔后剩余的毛孔,根据毛孔数量统计毛孔大小的均值,该均值可作为皮肤毛孔检测的特征值;通过这个皮肤毛孔大小检测算法,检测到的皮肤图像毛孔大小准确度高,具有实际应用价值。实施例结果表明,按照本发明的方法实现的基于图像rgb空间的皮肤表面毛孔大小检测方法,检测结果快速且检测结果准确度高。本实施例针对165幅图片的毛孔大小进行排序,具体地,5个不同客户端可分别登录并微距采像皮肤图像后上传到服务器,针对获取的165幅微距皮肤图像(近距离对皮肤拍摄得到的图像),采用本发明方法计算了每幅图像的毛孔大小,图3是其中的部分图像,相应的毛孔大小计算得到数值见表2,按照计算得到的毛孔大小排序皮肤图像,从排序结果看,毛孔大小计算准确度高,结果如图4,本发明算法计算速度快,165幅图像毛孔大小的计算时间总共不到2分钟。表2采用本发明方法计算得到的每幅图像的毛孔大小及其相应感官描述2)毛孔大小数值分段描述通过人眼观察皮肤毛孔大小和本发明计算的毛孔大小数值的关系,毛孔大小数值可分成四段,分别文字表述为毛孔粗大、毛孔较粗大、正常、无明显毛孔,分段数值和文字表述关系如表3所示:表3毛孔数值大小及其相应的文字描述毛孔大小数值毛孔大小文字表述>100毛孔粗大60~100毛孔较粗大30~60正常<30无明显毛孔需要注意的是,公布实施例的目的在于帮助进一步理解本发明,但是本领域的技术人员可以理解:在不脱离本发明及所附权利要求的精神和范围内,各种替换和修改都是可能的。因此,本发明不应局限于实施例所公开的内容,本发明要求保护的范围以权利要求书界定的范围为准。当前第1页12