一种基于联合数据驱动生产过程的质量故障定位方法

文档序号:10593381阅读:526来源:国知局
一种基于联合数据驱动生产过程的质量故障定位方法
【专利摘要】本发明提供一种基于联合数据驱动生产过程的质量故障定位方法,该方法包括:提取质量因果拓扑图模型;建立联合数据驱动的多模态监测模型;基于贡献率与过程知识建立质量故障诊断的性能评估指标;根据所述多模态监测模型,识别质量故障传播路径,根据所述质量故障诊断的性能评估指标定位质量故障。本发明在拓扑图特征提取、多元统计数据驱动的过程监控与机器学习的基础上,提出了适合于质量监控的联合数据驱动的故障诊断,为基于数据与知识的生产过程质量故障诊断提供新的途径,弥补了传统的统计过程监控难以解决的质量故障传播路径识别与故障定位问题,基于数据与知识的“定量?定性?定量”的联合数据驱动实现了准确、高效的质量故障定位和诊断。
【专利说明】
-种基于联合数据驱动生产过程的质量故障定位方法
技术领域
[0001] 本发明属于生产过程的控制和监测技术领域,具体设及一种基于联合数据驱动生 产过程的质量故障定位方法。
【背景技术】
[0002] 间歇式生产,是对现代化生产过程的分工细化和流程化过程,广泛应用于机械、五 金、塑料、汽配等产业。近年来,为适应市场对多品种、多规格、高质量功能型产品的需求,间 歇工业过程正朝着高效、大型和集成化方向发展,而随着生产规模的扩大W及复杂性增加, 对生产过程的安全性和可靠性要求也越来越高。现代复杂间歇过程往往变量与控制回路众 多且相互关联,一个节点出现故障将直接影响到产品质量和生产效益,甚至引起生产过程 擁痕,对于钢铁、有色、化工等生产企业,若故障不能及时诊断和排除,将造成重大事故。为 保证生产过程的安全性、产品质量的稳定性,对复杂间歇过程进行在线监测,准确地进行故 障诊断,并及时地排除故障,保证最终产品质量符合要求已成为目前过程控制领域的一个 重要研究方向。
[0003] 例如,基于联合数据驱动的现代带钢热连社是一条按订单柔性化生产的高质、高 效的全自动化生产作业线,典型的1700mm带钢热连社年产出约350万吨带钢,社制速度可达 20m/s,成品厚度范围0.8~12.7mm,宽度范围700~1550mm,可覆盖几百个钢种。成品带钢的 表面质量、内部缺陷、板形、厚度、宽度及组织性能直接影响带钢的深加工和材料性能,也直 接影响企业的经济效益。带钢热连社全流程有近15000个过程变量,控制回路数有近300个 控制回路,近一半过程变量直接或间接影响带钢产品质量。运些过程变量和控制回路相互 影响和关联,出现产品质量(尤其是板形、组织性能等质量)波动时很难准确及时判定相关 故障的原因,导致某些企业经常因产品质量用户退货而停产维修(往往是毫无目的的全线 维护)。
[0004] 产生上述困扰的根本原因在于带钢热连社运一复杂间歇过程具有与生俱来的动 态非线性、变量和回路间强禪合、多批次多工况导致的多模态特性、过程的时变特性、随机 噪声产生的不确定性等特点,导致质量故障原因多样、故障演变过程复杂、故障具体位置及 变化方向不确定、故障范围宽泛、故障与原因存在交叉重叠等,而传统的过程监控方法在过 程的描述中过于粗糖,不能充分挖掘过程的先验知识应用于对质量故障的监控,因此,在应 用中具有很大的局限性,不能及时、准确的对生产过程的质量故障进行有效的监控和判断。

【发明内容】

[0005] 本发明实施例的目的是提供一种基于数据联合驱动生产过程的质量故障定位方 法,及时、准确的对生产过程的质量故障进行有效的监控和判断。
[0006] 为解决上述技术问题,本发明的实施例提供一种基于数据联合驱动生产过程的质 量故障定位方法,所述方法包括如下步骤:
[0007] 提取质量因果拓扑图模型;
[0008] 建立联合数据驱动的多模态监测模型;
[0009] 基于贡献率与过程知识建立质量故障诊断的性能评估指标;
[0010] 根据所述多模态监测模型,识别质量故障传播路径,根据所述质量故障诊断的性 能评估指标定位质量故障。
[0011] 上述方案中,所述提取质量因果拓扑图模型,进一步为基于数据联合驱动的过程 知识与历史数据提取质量因果拓扑图模型。
[0012] 上述方案中,所述提取质量因果拓扑图模型,具体包括如下步骤:
[0013] 步骤101,分析质量因果拓扑图变量相关性;
[0014] 步骤102,设计变量间相关性指标的阔值;
[0015] 步骤103,专家知识指导下提取因果拓扑图。
[0016] 上述方案中,所述分析质量因果拓扑图变量相关性进一步包括:
[0017] 利用相关性统计分析与机器学习方法对生产过程中相关变量对应的时间序列进 行特征选择,生成质量因果拓扑图模型的d-分离等价类;
[0018] 对于d-分离等价类中的因果拓扑图模型,利用独立性测试的方法判别变量间的因 果方向;
[0019] 利用相关算法对相关变量对应的时间序列间的协方差进行分解,结合Granger因 果关系及统计检验理论,确定变量间的相关性指标;
[0020] 结合系统运行机理和先验知识,对所述变量间的因果方向及相关性指标进行修 正。
[0021] 上述方案中,所述建立联合数据驱动的多模态监测模型,进一步为:
[0022] 根据所述质量因果拓扑图模型,建立监测质量故障演变过程的联合数据驱动的监 测模型,并进一步建立联合数据驱动的多模态监测模型,并设定所述多监测模型的自适应 过程。
[0023] 上述方案中,所述建立联合数据驱动的多模态监测模型,并设定所述多监测模型 的自适应过程,具体包括如下步骤:
[0024] 步骤201,分析生产过程中数据的多模态;
[0025] 步骤202,采用贝叶斯理论分析新数据的模态识别与添加,建立新的相似度指标和 灵敏度指标;
[0026] 步骤203,对每一个模态下的相应数据建立多模态的质量因果拓扑图;
[0027] 步骤204,考虑单一模态下的质量因果图相关性指标;
[0028] 步骤205,根据所述多模态的质量因果拓扑图建立多批次多模态质量监测模型;
[0029] 步骤206,设定多批次、多模态的生产过程质量监测模型的自适应过程,并利用实 验室远程监控平台进行验证和测试。
[0030] 上述方案中,所述基于贡献率与过程知识建立质量故障诊断的性能评估指标,具 体包括如下步骤:
[0031] 步骤301,将所述质量因果拓扑图模型、多模态监测模型应用于生产过程,收集质 量故障数据,计算质量故障检测的故障检测率、误检率和时变特性数据;
[0032] 步骤302,根据质量故障检测的延迟特性,建立预期故障检测延迟性指标 (Expected Detection Delay Index,,EDDI),引入公式
[0033]
(I)
[0034] 其中,E孤I为式(I)的数学期望,FDR(Fault Detection Rate)为故障检测率;
[0035] 步骤303,对所述故障检测率、误检率、时变特性数据和延时特性指标加权,设计质 量故障诊断的性能评估指标。
[0036] 上述方案中,所述定位质量故障,具体包括如下步骤:
[0037] 步骤401,建立统一的联合监测投影子空间和质量故障检测流程;
[0038] 步骤402,识别质量故障的传播路径,定位质量故障。
[0039] 本发明提供一种基于联合数据驱动生产过程的质量故障定位方法,该方法包括: 提取质量因果拓扑图模型;建立联合数据驱动的多模态监测模型;基于贡献率与过程知识 建立质量故障诊断的性能评估指标;根据所述多模态监测模型,识别质量故障传播路径,根 据所述质量故障诊断的性能评估指标定位质量故障。本发明在拓扑图特征提取、多元统计 数据驱动的过程监控与机器学习的基础上,提出了适合于质量监控的联合数据驱动的故障 诊断,为基于数据与知识的生产过程质量故障诊断提供新的途径,弥补了传统的统计过程 监控难W解决的质量故障传播路径识别与故障定位问题,基于数据与知识的"定量-定性- 定量"的联合数据驱动实现了准确、高效的质量故障定位和诊断。
【附图说明】
[0040] 图1是本发明实施例1的带钢热连社生产过程工艺布置图;
[0041] 图2是本发明实施例1的基于联合数据驱动生产过程的故障定位方法实施路线图;
[0042] 图3是本发明实施例1的带钢热连社机架的多模态质量因果拓扑图。
【具体实施方式】
[0043] 为使本发明要解决的技术问题、技术方案和优点更加清楚,下面将结合附图及具 体实施例进行详细描述。
[0044] 本发明针对联合数据驱动的生产过程,提出了一种质量故障的定位方法,力求克 服现有的数据联合驱动方法对过程描述过于粗糖的不足,本发明按照"定量-定性-定量"的 研究路线,采用基于数据与知识的联合数据驱动方法,深入研究了变量间的关联特性,精确 地掲示了质量相关故障即质量故障的传播路径和故障源,实现了质量相关故障的准确定 位,从而实现质量的及早检测、诊断与维护。
[0045] 下面结合实施例1及附图对本发明做进一步说明。
[0046] 本实施例W数据联合驱动的带钢热连社生产过程为例。需要说明的是,本发明的 故障定位方法并不局限于带钢热连社过程,也适用于其他的数据联合驱动的生产过程,如, 汽车配件生产过程。
[0047] 图1是本实施例的带钢热连社生产过程工艺布置图。如图1所示,本实施例数据联 合驱动的带钢热连社生产过程,为一个典型的间歇式生产过程,生产流水线包括加热炉、粗 社机组、传送带和飞剪、精社机组、层流冷却、卷取机组。运个复杂的生产过程,具有高维、非 线性、时变、变量禪合、时序相关性、多模态、大规模、间歇等特性,质量故障可能会出现在任 何一个环节,而对质量故障的及早监测和判断,则可W保证生产过程的顺利进行。
[0048] 图2是本发明实施例1的基于联合数据驱动生产过程的故障定位方法实施路线图。 如图2所示,在图1所示的带钢热连社运一实际工程应用驱动的基础上,本实施例的基于数 据联合驱动的质量故障定位方法包括如下步骤:
[0049] 步骤SI,提取质量因果拓扑图模型。
[0050] 在本实施例中,所述提取质量因果拓扑图模型,进一步为基于数据驱动方法提取 带钢热连社生产过程的质量因果拓扑图模型,设计合适的拓扑图阔值实现数据驱动的质量 因果拓扑图的修剪和优化,从而得到了规模适度的质量因果拓扑图。
[0051] 上述拓扑图的提取过程,尤其适用于复杂间歇生产过程。具体的,上述拓扑图的提 取过程,包括如下步骤:
[0052] 步骤101,研究质量因果拓扑图变量相关性分析方法。
[0053] 首先,利用相关性统计分析与机器学习方法对复杂间歇生产过程中相关变量对应 的时间序列进行特征选择,生成质量因果拓扑图模型的d-分离等价类;
[0054] 其次,对于d-分离等价类中的因果拓扑图模型,利用计算似然度等独立性测试的 方法判别变量之间的因果方向;
[0055] 然后,利用相关算法对相关变量对应的时间序列间的协方差进行分解,结合 Granger因果关系及统计检验理论,确定变量间的相关性指标;
[0056] 最后,结合系统运行机理、过程知识及专家经验等先验知识,对W上得到变量间的 因果方向及相关性指标进行修正。从而,为分析复杂间歇过程多变量的信息传播途径奠定 基础。
[0057] 进一步的,可W通过W下过程实现提取:
[005引根据Granger因果关系等相关理论,本发明采用时间序列分析方法获取了带钢热 连社变量之间的因果关系。
[0059] 设X和Y为带钢热连社生产过程中的两个随机变量,其对应的时间序列分别表示为 {xi,x2,...,xt}、{yi,y2,...,yt},其中,{xt-k,xt-k+i,...,xt-i}、{yt-k,yt-k+i,...,yt-i}分别表示过 去k时段对应的历史观测值,考虑如下两个回归式:
[0060] Cl)
[0061 ] (2)
[0062] 式中,片(0、JMO分别表示两个回归式中的回归拟合值,UK分别表示yt、xt的滞 后期数,ai、bk为回归系数,et、%为回归误差。如果在F统计量下得到的置信度式(2)的预测 误差比式(1)的预测误差小,那么表明Xt与yt间的因果关系为xt^yt。
[0063] 本发明将W上的Xt与yt间的因果关系分析作为带钢热连社生产变量间因果关系的 一种理论支撑,在时间序列数据中的预测、异常检测等方面起到了很大的作用。但运种因果 关系在实施的过程中过度依赖历史数据,导致了冗余甚至错误的因果关系。因此,本发明结 合系统运行机理、过程及专家经验等先验知识,将不完全信息或不确定性条件下变量相关 性指标考虑进来,获取了较为准确的变量之间的因果关系。
[0064] 步骤102,设计变量间相关性指标的阔值。
[0065] 针对质量因果拓扑图模型提取过程中在无监督模式下阔值的自动选择存在鲁棒 性不强等问题,对复杂间歇生产过程中相关变量对应的时间序列的替代数据进行分析和处 理,然后利用k近邻算法估计运些数据的互信息,采用显著性检验的方法,结合过程及专家 知识,考虑复杂间歇过程有色噪声及干扰等不确定性因素,实现有监督条件下相关性指标 的阔值设计。
[0066] 具体的,可W通过W下过程实现上述过程:
[0067] 针对W上质量因果拓扑图模型提取过程中在无监督模式下阔值的自动选择鲁棒 性不强等问题,利用k近邻算法估计了运些数据的互信息,采用显著性检验的方法,结合过 程及专家知识,考虑了复杂间歇过程有色噪声及干扰等不确定性因素,实现有监督条件下 相关性指标的阔值设计问题。
[0068] 步骤103,实现专家知识指导下的因果拓扑图提取。
[0069] 基于数据提取的质量因果拓扑图会存在较多的冗余连接,而基于知识提取的质量 因果拓扑图会导致大量不直观或不重要信息的缺失。基于此,本实施例设计了合适的修正 算子,利用相关过程知识及专家经验等先验知识对上述提取的质量因果拓扑图进行修剪与 优化,W保证修剪及优化后的因果拓扑图为规模适度的有向无环图,实现知识指导下的数 据驱动的质量因果拓扑图模型的构建问题。
[0070] 步骤S2,建立联合数据驱动的多模态监测模型。
[0071] 在本实施例中,利用多元统计数据驱动方法对质量因果拓扑图中的相关性指标进 行时间序列分析,建立了监测质量故障演变过程的联合数据驱动的监测模型,同时与质量 相关的模态分析相结合,建立了一个统一的联合数据驱动的多模态监测模型,并提出了监 测模型的自适应方法。
[0072] 进一步的,上述过程包括如下步骤:
[0073] 步骤201,复杂间歇过程数据的多模态分析。
[0074] 分析带钢热连社生产过程数据的多模态特性,并采用基于样本几何结构的聚类有 效性指标一类间-类内划分(Between-Within Propcxrtion,BWP)指标,结合聚类算法确定多 模态的最佳模态数。
[0075] 带钢热连社过程批次之间由于生产计划的不同、产品指标的改变、产品种类的变 动、环境的变化等导致过程数据呈现多批次、多模态、动态、非高斯等特性,多模态分析的依 据是同一模态内部具有相似的相关性关系,不同模态之间具有明显不同的相关性关系。在 模态特征提取中,一方面质量数据(数据标签)可能不完备,另一方面考虑未知的故障可能 没有包含在训练数据中。针对W上问题,本发明采用半监督混合判别分析和贝叶斯理论,在 过程知识监督下完成了模态特征的提取。在对多模态处理过程中,训练数据的合理聚类(即 确定出最佳模态数)对故障检测与诊断至关重要,故本发明从距离测度考虑,引入了一种基 于样本几何结构的聚类有效性指标--类间-类内划分(Between-Within P;ropo;rtion, BWP)指标:
[0076]
C3)
[0077] 式中,表示第m类的第P个样本,表示第j类的第q个样本,表示第j类的第 i个样本;b(j,i)定义为第j类的第i个样本的最小类间距离,w(j,i)定义第j类的第i个样本 的类内距离。通过该指标,结合聚类算法确定了多模态的最佳模态数。
[0078] 步骤202,针对新数据的模态识别与添加问题,采用贝叶斯理论,建立新的相似度 指标和灵敏度指标,计算新数据属于各模态的概率并定义一个合适的阔值,若长时间内超 出阔值,就可初步判断为新的模态,并考虑在模态库中增加新模态特征。
[0079] 针对带钢热连社生产的新数据的模态识别与添加问题,本发明采用贝叶斯理论, 建立新的相似度指标和灵敏度指标,计算了新数据属于各模态的概率并定义了一个合适的 阔值,若长时间内超出该阔值,就可初步判断为新的模态。
[0080] 步骤203,在上述模态表征、划分与识别的基础上,在每一个模态下的相应数据建 立多模态的质量因果拓扑图。
[0081] 在上述模态表征、划分与识别的基础上,在每一个模态下的相应数据建立多模态 的质量因果拓扑图。
[0082] 步骤204,考虑单一模态下的质量因果图相关性指标用CKCorrelation Index, Cl)描述,并仅考虑因果拓扑图中有联系的Cl,考虑两个时间序列:p(t) = [CIT(t-l),CIT(t- 2), …]T 与 ^〇=[(:1了(0,(:1了(*+1),-,^,其中,*时刻的(:1(0是111维向量,利用规范变量分 析(Canonical化riate Analysis,CVA)方法对上述两个时间序列进行分析,建立基于质量 传播的相关性指标的动态监测模型。
[0083] 步骤205,结合上述质量因果拓扑图,在多批次、多模态因果拓扑图基础上建立多 批次多模态质量监测模型。
[0084] 步骤206,研究多批次、多模态的带钢热连社过程质量监测模型的自适应技术,并 利用实验室远程监控平台进行验证和测试。
[0085] 图3是本发明实施例1的带钢热连社机架的多模态质量因果拓扑图。如图3所示,将 =维的多批次过程数据通过模态分析将数据划分为若干模态,在每一个模态下建立质量因 果拓扑图。
[0086] 在前面研究内容的基础上,考虑单一模态下的质量因果图相关性指标用CI (Correlation Index,Cl)描述,并仅考虑因果拓扑图中有联系的Cl,考虑了下面两个时间 序列:口(0 =阳了(*-1),(:1了(*-2),.'']了与^〇 =阳了(〇,(:1了(*+1),.'']\其中,*时刻的(:1 (t)是m维向量,利用规范变量分析(化nonical化riate Analysis,CVA)方法对上述两个时 间序列进行了分析,建立了基于质量传播的相关性指标的动态监测模型。结合上述质量因 果拓扑图则可W在多批次、多模态因果拓扑图基础上,建立多批次、多模态质量监测模型。
[0087] 步骤S3,基于贡献率与过程知识建立质量故障诊断的性能评估指标。
[0088] 在本实施例中,定义了质量相关的故障诊断性能评价指标,并对所提出的联合数 据驱动的带钢热连社质量故障传播路径的辨识与故障定位方法与传统故障诊断方法从质 量相关故障检测的滞后性、故障检测率和误检率等进行评估,对提出的质量相关故障诊断 方法进行了定量分析和评价,经改进和提高后,确定了实验室试验社机和工业应用验证方 案,完成了带钢热连社生产现场应用。
[0089] 步骤S3进一步包括如下步骤:
[0090] 步骤301,将W上研究内容中得到的主要理论成果和算法在带钢热连社生产线进 行应用验证,针对质量相关故障诊断性能的评价指标,不仅要考虑传统的故障检测率和误 检率,而且要考虑时变特性故障。
[0091] 步骤302,针对质量相关故障检测的延迟特性,提出了一个新的预期故障检测延迟 性指标化 xpected Detection Delay Index,,邸 DI),引入公式
[0092] (4)
[0093] 其中,E孤I为式(4)的数学期望,FDR(Fault Detection Rate)为故障检测率。
[0094] 步骤303,对W上评价指标加权,设计最终的质量相关的故障诊断方法的性能评估 指标。
[00M]步骤304,确定实验室试验社机和工业应用验证方案,完成带钢热连社生产现场的 应用,取得了良好的效果。
[0096] 步骤S4,根据所述多模态监测模型,识别质量故障传播路径,根据所述质量故障诊 断的性能评估指标定位质量故障。
[0097] 在本实施例中,实现联合数据驱动的质量相关故障检测、故障传播途径识别及故 障定位方法,具体实现步骤如下:
[0098] 步骤401,建立统一的联合监测投影子空间和质量相关的故障检测方法。
[0099] 在获得了多批次多模态质量监测模型后,就可W对多模态复杂间歇过程进行在线 监测和故障诊断。由于复杂间歇过程每个稳定模态运行时间较短、采样数据也较少、过渡模 态运行时间更短、采样数据更少,而且往往要在不同模态之间进行切换。运样传统监测方法 无法满足批次方向上高斯分布的假设条件,也不能满足批次方向上潜在相关特性缓慢变化 的工程要求,无法满足批次方向上正态分布的前提假设,也无法满足批次方向上潜在相关 特性缓慢波动的实际要求,便显得不能适用,效果不佳。针对W上问题,本发明提出了一种 基于CVA的联合故障检测方法,利用上述多模态质量监测模型的综合信息,建立了统一的监 测模型,实现了多模态数据的实时监测,避免了监测模型的频繁切换。
[0100] 步骤402,质量相关故障的传播路径识别与故障定位方法。
[0101] 将过程及专家知识作为先验概率,利用贝叶斯理论将知识融入到相对贡献率中, W-定的捜索策略辨识质量相关故障的传播路径,将分为单一故障和多故障两种情况分别 进行相关研究,最终解决多故障的传播路径识别,从而实现故障定位。
[0102] 为了清晰地表示各相关性指标(故障路径)对检测指标的影响程度,充分地诊断质 量相关的故障,本发明利用相对贡献率法实现质量相关的故障诊断。具体步骤为:传统方法 通常是利用T2统计监测质量相关的故障,Q统计监测过程噪声,但由于过程噪声的变动可能 会影响产品质量变量,故可将Q作为T2的补充,即用T2及Q合成的检测指标(1)检测质量相关的 故障,通过计算4的概率密度函数求得控制限,并从4函数的一阶泰勒展开式和核函数梯 度出发,研究各相关性指标对检测指标4的影响程度,即为质量相关故障的相对贡献率。
[0103] 同时,本发明将过程及专家知识作为先验概率,利用贝叶斯理论将知识融入到相 对贡献率中,W-定的捜索策略辨识质量相关故障的传播路径,将分为单一故障和多故障 两种情况分别进行了相关研究,最终解决了多故障的传播路径识别问题,从而实现了故障 定位。
[0104] 本发明提出了一种联合数据驱动的带钢热连社质量故障传播路径的辨识与故障 定位方法,该方法包括:基于生产过程数据与工艺知识,提出了复杂间歇过程的质量因果拓 扑图提取方法;建立了联合数据驱动的复杂间歇过程质量相关的故障监测模型;构建了基 于联合数据驱动的复杂间歇过程质量相关的故障诊断性能分析与评价指标;建立了联合数 据驱动的带钢热连社过程质量相关的故障监测、故障传播路径识别和故障定位的一体化框 架,为复杂间歇过程质量相关的故障诊断提供了一套新技术和解决方案。
[0105] 本实施例将在已有的数据驱动的拓扑图特征提取、多元统计数据驱动的过程监控 技术与机器学习的理论研究基础上,提出了适合于质量监控的联合数据驱动的故障诊断技 术。本发明所提供的基于联合数据驱动生产过程的故障定位方法,将为基于数据与知识的 带钢热连社生产过程质量相关的故障诊断提供新的思路和途径,弥补了传统的统计过程监 控难W解决的质量相关故障传播路径识别与故障定位W及多故障的诊断问题,本发明提出 的基于数据与知识的"定量-定性-定量"的联合数据驱动方法为质量相关的故障诊断提供 了新技术和手段。
[0106] W上所述是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员 来说,在不脱离本发明所述原理的前提下,还可W做出若干改进和润饰,运些改进和润饰也 应视为本发明的保护范围。
【主权项】
1. 一种基于数据联合驱动生产过程的质量故障定位方法,其特征在于,所述方法包括 如下步骤: 提取质量因果拓扑图模型; 建立联合数据驱动的多模态监测模型; 基于贡献率与过程知识建立质量故障诊断的性能评估指标; 根据所述多模态监测模型,识别质量故障传播路径,根据所述质量故障诊断的性能评 估指标定位质量故障。2. 根据权利要求1所述的故障定位方法,其特征在于,所述提取质量因果拓扑图模型, 进一步为基于数据联合驱动的过程知识与历史数据提取质量因果拓扑图模型。3. 根据权利要求2所述的故障定位方法,其特征在于,所述提取质量因果拓扑图模型, 具体包括如下步骤: 步骤101,分析质量因果拓扑图变量相关性; 步骤102,设计变量间相关性指标的阈值; 步骤103,专家知识指导下提取因果拓扑图。4. 根据权利要求3所述的故障定位方法,其特征在于,所述分析质量因果拓扑图变量相 关性进一步包括: 利用相关性统计分析与机器学习方法对生产过程中相关变量对应的时间序列进行特 征选择,生成质量因果拓扑图模型的d-分离等价类; 对于d-分离等价类中的因果拓扑图模型,利用独立性测试的方法判别变量间的因果方 向; 利用相关算法对相关变量对应的时间序列间的协方差进行分解,结合Granger因果关 系及统计检验理论,确定变量间的相关性指标; 结合系统运行机理和先验知识,对所述变量间的因果方向及相关性指标进行修正。5. 根据权利要求1所述的故障定位方法,其特征在于,所述建立联合数据驱动的多模态 监测模型,进一步为: 根据所述质量因果拓扑图模型,建立监测质量故障演变过程的联合数据驱动的监测模 型,并进一步建立联合数据驱动的多模态监测模型,并设定所述多监测模型的自适应过程。6. 根据权利要求5所述的故障定位方法,其特征在于,所述建立联合数据驱动的多模态 监测模型,并设定所述多监测模型的自适应过程,具体包括如下步骤: 步骤201,分析生产过程中数据的多模态; 步骤202,采用贝叶斯理论分析新数据的模态识别与添加,建立新的相似度指标和灵敏 度指标; 步骤203,对每一个模态下的相应数据建立多模态的质量因果拓扑图; 步骤204,考虑单一模态下的质量因果图相关性指标; 步骤205,根据所述多模态的质量因果拓扑图建立多批次多模态质量监测模型; 步骤206,设定多批次、多模态的生产过程质量监测模型的自适应过程,并利用实验室 远程监控平台进行验证和测试。7. 根据权利要求1所述的故障定位方法,其特征在于,所述基于贡献率与过程知识建立 质量故障诊断的性能评估指标,具体包括如下步骤: 步骤301,将所述质量因果拓扑图模型、多模态监测模型应用于生产过程,收集质量故 障数据,计算质量故障检测的故障检测率、误检率和时变特性数据; 步骤302,根据质量故障检测的延迟特性,建立预期故障检测延迟性指标(Expected Detection Delay Index,,EDDI),引入公式其中,EDDI为式(1)的数学期望,FDR(Fault Detection Rate)为故障检测率; 步骤303,对所述故障检测率、误检率、时变特性数据和延时特性指标加权,设计质量故 障诊断的性能评估指标。8.根据权利要求1所述的故障定位方法,其特征在于,所述定位质量故障,具体包括如 下步骤: 步骤401,建立统一的联合监测投影子空间和质量故障检测流程; 步骤402,识别质量故障的传播路径,定位质量故障。
【文档编号】G05B23/02GK105955241SQ201610391112
【公开日】2016年9月21日
【申请日】2016年6月3日
【发明人】彭开香, 马亮, 董洁, 张凯
【申请人】北京科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1