专利名称::一种自适应同步策略的工业过程最优控制系统及方法
技术领域:
:本发明涉及工业过程控制领域,尤其是一种自适应同步策略的工业过程最优控制系统。
背景技术:
:采用最优控制方法来解决工业过程优化控制中的瓶颈问题和挖潜增效,已经越来越受到国内外学术界和工业界的重视。工业过程动态系统的优化模型往往是包含一组复杂的大规模非线性微分方程,此外还包括非线性的等式或不等式路径约束和点约束。因此,最优控制的难点就在于需要在动态模型的基础上寻求目标泛函的最优值,其实质是求解一个无限维的优化问题。通常使用的迭代动态规划法、遗传算法、粒子群算法、随机优化法、模拟退火法等,已经能够找到工业过程最优控制问题的数值解,但是往往出现计算不准确或收敛缓慢的问题,很难既保证所得最优控制结果具有较好的准确性,又满足最优控制求解过程的快速性。
发明内容为了克服已有的工业过程最优控制系统及方法的很难既准确又快速地找到最优解、适用性差的不足,本发明提供了一种能够准确找到复杂非线性最优控制问题的解且收敛速度很高、适用性广的自适应同步策略的工业过程最优控制系统及方法。本发明解决其技术问题所采用的技术方案是一种自适应同步策略的工业过程最优控制系统,包括与工业过程对象连接的现场智能检测仪表、DCS系统和上位机,所述工业过程对象、智能检测仪表、DCS系统和上位机依次相连,所述的上位机包括初始化模块,用于初始参数的设置、状态变量x(t)和控制变量u(t)的离散化与初始赋值,具体步骤如下(1.1)将时域te[t0,tf]分割成NE段[tQ,tJ,[t1;t2],···,[tiptj,其中tNE=tf,设每个时间分段长度为hi;i=1,2,...,NE,用h表示NE维时间分段变量,设其初始值为h°,其中、表示起始时刻,tf表示终止时刻;(1.2)设时间分段te[ti,ti+1]上的配置点个数为K;(1.3)设η维状态变量x(t)的配置系数为Xij,i=1,2,...,NE;j=0,1,...,K,m维控制变量u(t)的离散参数为Ui,i=1,2,...,NE;j=1,2,...,K,并设状态变量系数的初始值为x/j°,控制变量系数的初始值为u/3;(1.4)设置优化的收敛精度为ζ;变量离散模块,用于对状态变量和控制变量进行转换。即在时间分段te[ti_i,tj(i=1,2,...,NE)内,将状态变量转换为多项式(1),并将控制变量离散配置为分段常量式⑵;其中,t=tH+、τ,i=1,2,…,ΝΕ,τe,λ(τ)是状态变量的插值基函数,为K次多项式式(3)中,τ。=0,、为1(阶勒让德多项式的根,j=1,2,...,K;约束处理模块,用于处理控制变量u(t)边界约束,并增强时间分段长度Iii的约束,采取以下步骤来实现(3.1)在每个时间分段te[tH,ti]上,i=1,2,...,NE,对控制变量离散参数的边界值进行约束其中,上标ub、Ib分别表示上下边界,uub、Ulb分别表示设定的控制变量上下边界值;(3.2)设定每个时间分段长度的上下边界值分别为hlb和hub,hlb、hube(0,tf],对分段长度Iii实行约束模型变换模块,用于将最优控制问题的模型离散化,并增加状态变量连续性条件和约束处理模块的约束条件,将无限维的最优控制问题转化为有限维的非线性规划问题,按照以下步骤来实现(4.1)最优控制问题的目标转化为式(7),Ψ表示在终点条件下目标函数的组成部分,Xf表示终端时刻tf的状态变量值(4.2)最优控制问题的状态方程转化为残差方程式(8),F表示函数变量,δ表示时不变参数且状态变量满足以下初始条件,χ(t0)为给定的状态变量初值(4.3)将最优控制问题的状态变量路径约束离散化,G、H均是函数变量^r=1,2,...,NE,j=1,2,...,K(10)(4.4)增加状态变量连续性条件Χ吼ο=Σ+⑴·χμ.i=1,2,...,NE-I(11)(4.5)获取约束处理模块的约束条件式⑷(6),并结合式(7)(11)构成非线性规划问题;求解模块,用于求解模型变换模块得到的非线性规划问题将状态变量配置系数Xij、控制变量离散参数Ui和时间分段长度为h作为优化变量,并以x/u,0和h°为初始解,求解得出最优的状态变量配置系数Xi/、控制变量离散参数U^最优时间分段『,并由式(7)计算出最优目标值J*。进一步,所述的上位机还包括信号采集模块,用于设定采样时间,采集现场智能仪表的信号。再进一步,所述的上位机还包括结果输出模块,用于将求解模块计算出的最优控制变量离散参数Ui*转化为最优控制轨线u*(t),然后将u*(t)和最优目标值J*传输给DCS系统,并在DCS系统中显示所得到的优化结果信息。一种自适应同步策略的工业过程最优控制方法,所述的最优控制方法包括以下步骤()在DCS系统中指定状态变量和控制变量,根据实际生产环境的条件和操作限制的条件设定控制变量的上下边界uub、ulb和DCS的采样周期,并将DCS数据库中相应各变量的历史数据,控制变量上下边界值uub、ulb传送给上位机;2)对初始参数进行设置,并对DCS系统输入的数据进行初始化处理,按照以下步骤完成(2.1)将时域te[t。,tf]分割成NE段[t。,tj,[t1t2],…,[tNE_1tNE],其中tNE=tf,设每个时间分段长度为hi,i=1,2,...,NE,用h表示NE维时间分段变量,并设置其初始值h°,一般可取h°为tf/NE;(2.2)设时间分段te[ti,ti+1]上的配置点个数为K;(2.3)设η维状态变量x(t)的配置系数为Xij,i=1,2,...,NE;j=0,1,...,K,m维控制变量u(t)的离散参数为Ui,i=1,2,...,NE;j=1,2,...,K,并设状态变量系数的初始值为x/,控制变量系数的初始值为u/3;(2.4)设优化的收敛精度为ζ;3)将时间分段te[Wi](i=1,2,...,NE)上的状态变量转换为多项式(1),并将控制变量离散配置为分段常量式(2):u(t)=Uii=1,2,...,NE(2)其中,xu、Ui分别为状态变量和控制变量的离散配置参数,λ(τ)是状态变量的插值基函数式⑶,t经由中间变量τ转换为t=t^+hiτ,i=1,2,...,ΝΕ,τ=,式⑶中,τ。=0,^为1(阶勒让德多项式的根,j=1,2,...,K;4)对控制变量u(t)边界约束进行处理,并增强时间分段长度hi的约束,采取以下步骤来实现8(4.1)在每个时间分段te[t^,tj上,i=1,2,···,NE,对控制变量离散参数的边界值进行约束其中,上标ub、Ib分别表示上下边界,uub、Ulb分别表示设定的控制变量上下边界值;(4.2)设定每个时间分段长度的上下边界值分别为hlb*hub,hlb、hube(0,tf],对分段长度h实行约束NE5)将最优控制问题的模型离散化后增加状态变量连续性条件,并结合约束处理模块的约束条件,将无限维的最优控制问题转化为有限维的非线性规划问题,按照以下步骤来实现(5.1)最优控制问题的目标转化为式(7),Ψ表示在终点条件下目标函数的组成部分,Xf表示终端时刻tf的状态变量值(5.2)最优控制问题的状态方程转化为残差方程式(8),F表示函数变量,δ表示时不变参数且状态变量满足以下初始条件,χ(t0)为给定的状态变量初值Xlj0=x(t0)(9)(5.3)将最优控制问题的状态变量路径约束离散化(G、H均是函数变量)^r=1,2,...,NE,j=1,2,...,K(10)(5.4)增加状态变量连续性条件KΧ吼ο=Σ+⑴·χμ.i=1,2,...,NE-I(11)J=O(5.5)获取约束处理模块的约束条件式(4)(6),并结合式(7)(11)构成非线性规划问题;6)求解模型变换模块得到的非线性规划问题将状态变量配置系数Xij、控制变量离散参数Ui和时间分段长度为h作为优化变量,并以x/u/3和h°为初始解,利用RSQP方法求解,得出最优的状态变量配置系数Xi/、控制变量离散参数1^、最优时间分段『,并由式(7)计算出最优目标值Γ,然后将这些优化结果传给结果输出模块。进一步,所述步骤(1)中,将现场智能仪表所采集的工业过程对象的数据传送到DCS系统的实时数据库中,在每个采样周期从DCS系统的数据库得到的最新数据输出到上位机,并在上位机的初始化模块进行初始化处理。再进一步,所述步骤(6)中,将得到的最优控制变量离散参数Λ将通过结果输出模块转换为最优控制曲线u*(t),并在上位机的人机界面上显示u*(t)和最优目标值J*;同时,最优控制曲线将通过数据接口传给DCS系统,并在DCS系统中显示所得到的优化结果信息。本发明的有益效果主要表现在能够准确、稳定地寻找到工业过程非线性系统的最优控制策略,而且具有求解效率高、适用性好的优点,因此在工业过程最优控制的各个领域都具有广泛的应用前景。图1是本发明所提供的工业过程最优控制系统的硬件结构图;图2是本发明上位机实现最优控制方法的原理结构图。具体实施例方式下面根据附图具体说明本发明。实施例1参照图1、图2,一种自适应同步策略的工业过程最优控制系统,包括与工业过程对象1连接的现场智能仪表2、DCS系统以及上位机6,所述的DCS系统由数据接口3、控制站4、数据库5构成;现场智能仪表2、DCS系统、上位机6通过现场总线依次相连,所述的上位机6包括初始化模块8,用于初始参数的设置、状态变量x(t)和控制变量u(t)的离散化与初始赋值,具体步骤如下(2.1)将时域te[t。,tf]分割成NE段[t。,tj,[t1t2],…,[tNE_1tNE],其中tNE=tf,设每个时间分段长度为Mi=1,2,...,NE),用h表示NE维时间分段变量,设其初始值为h°,其中、表示起始时刻,tf表示终止时刻;(2.2)设时间分段te[t^,ti+1]上的配置点个数为K;(2.3)设η维状态变量x(t)的配置系数为Xij,i=1,2,...,NE;j=0,1,...,K,m维控制变量u(t)的离散参数为Ui,i=1,2,...,NE;i=1,2,...,K,并设状态变量系数的初始值为x/,控制变量系数的初始值为u/3;(2.4)设置优化的收敛精度为ζ(当优化目标值迭代误差小于收敛精度时,停止迭代)变量离散模块9,用于对状态变量和控制变量进行转换。即在时间分段te[ti_i,ti]内,i=1,2,...,NE,将状态变量转换为多项式(1),并将控制变量离散配置为分段常量式⑵;u(t)=Uii=1,2,...,NE(2)其中,t=、-外τ,i=1,2,...,NE,τe,λ(τ)是状态变量的插值基函数,为K次多项式式(3)中,τ。=0,τ」为K阶勒让德多项式的根,j=1,2,···,K。约束处理模块10,用于处理控制变量u(t)边界约束,并增强时间分段长度Iii的约束,采取以下步骤来实现(4.1)在每个时间分段te[、,tj上,i=1,2,···,NE,对控制变量离散参数的边界值进行约束Ulb彡Ui彡Uubi=1,2,···,NE(4)其中,上标ub、Ib分别表示上下边界,uub、Ulb分别表示设定的控制变量上下边界值;(4.2)设定每个时间分段长度的上下边界值分别为hlb*hub,hlb、hube(0,tf],对分段长度h实行约束hlb^^^hub,i=1,2,...,NE(5)NE^h1=tf(6)i=l模型变换模块11,用于将最优控制问题的模型离散化,并增加状态变量连续性条件和约束处理模块10的约束条件,将无限维的最优控制问题转化为有限维的非线性规划问题,按照以下步骤来实现(5.1)最优控制问题的目标转化为式(7),Ψ表示在终点条件下目标函数的组成部分,Xf表示终端时刻tf的状态变量值KminJ=Ψ(xf),其中,x/=Σ4(^xNE,;(7)J=O(5.2)最优控制问题的状态方程转化为残差方程(式(11),F表示函数变量,δ表示时不变参数)K·J^Ak(Tj)Xjk-H1-F(Xy5Ui^)=O,i=1,2,···,ΝΕ,j=1,2,···,K(8)k=Q且状态变量满足以下初始条件,XUtl)为给定的状态变量初值Xlj0=x(t0)(9)(5.3)将最优控制问题的状态变量路径约束离散化,G、H均是函数变量^r=1,2,...,NE,j=1,2,...,K(10)(5.4)增加状态变量连续性条件KXi.代ο刀+⑴·3^i=1,2,...,NE-I(11)J=O(5.5)获取约束处理模块10的约束条件式(4)(6),并结合式(7)(11)构成非线性规划问题。求解模块12,用于求解模型变换模块11得到的非线性规划问题将状态变量配置系数X『控制变量离散参数Ui和时间分段长度为h作为优化变量,并以x/u/3和为初始解,求解得出最优的状态变量配置系数Xi/、控制变量离散参数1^、最优时间分段『,并由式(7)计算出最优目标值Γ,然后将这些优化结果传给结果输出模块13。所述的上位机6还包括信号采集模块7,用于设定采样时间,采集现场智能仪表211的信号;以及结果输出模块13,用于将求解模块12计算出的最优控制变量离散参数u广转化为最优控制轨线,然后将u*(t)和最优目标值J*传输给DCS系统,并在DCS系统中显示所得到的优化结果信息。实施例2参照图1和图2,一种自适应同步策略的工业过程最优控制方法,按照以下步骤实施1)、在DCS系统中指定状态变量和控制变量,根据实际生产环境的条件和操作限制的条件设定控制变量的上下边界uub、ulb和DCS的采样周期,并将DCS数据库5中相应各变量的历史数据,控制变量上下边界值uub、ulb传送给上位机。2)在上位机的初始化模块8中,对初始参数进行设置,并对DCS系统输入的数据进行初始化处理,按照以下步骤完成(2.1)将时域te[t。,tf]分割成NE段[t。,tj,[t1t2],…,[tNE_1tNE],其中tNE=tf,设每个时间分段长度为Mi=1,2,...,NE),用h表示NE维时间分段变量,并设置其初始值h°,一般可取h°为tf/NE;(2.2)设时间分段te[tH,ti+1]上的配置点个数为K;(2.3)设η维状态变量x(t)的配置系数为Xij,i=1,2,...,NE;j=0,1,...,K,m维控制变量u(t)的离散参数为Ui,i=1,2,...,NE;j=1,2,...,K,并设状态变量系数的初始值为x/,控制变量系数的初始值为u/3;(2.4)设优化的收敛精度为ζ(一般可取为10_6)32)在上位机的变量离散模块9中,将时间分段te[t^,tj(i=1,2,...,NE)上的状态变量转换为多项式(1),并将控制变量离散配置为分段常量式(2)Kχ(0=Σ/1;(ΓΚ;(!)J=Ou(t)=Uii=1,2,...,NE(2)其中,Xij、Ui分别为状态变量和控制变量的离散配置参数,λ(τ)是状态变量的插值基函数(式(3)),t经由中间变量τ转换为t=t^+hiτ(i=1,2,...,ΝΕ),τ=,式(3)中τ。=0,τ」为1(阶勒让德多项式的根,j=1,2,...,Κ。Mt)=Πlz^(3)k=Q,Tj—Tk3)在上位机的约束处理模块10中,对控制变量u(t)边界约束进行处理,并增强时间分段长度h的约束,采取以下步骤来实现(3.1)在每个时间分段te[t^,tj上,i=1,2,...,NE,对控制变量离散参数的边界值进行约束Ulb彡Ui彡Uub(i=1,2,...,NE)(4)其中上标ub、Ib分别表示上下边界,uu\Ulb分别表示设定的控制变量上下边界值;(3.2)设定每个时间分段长度的上下边界值分别为hlb*hub,hlb、hube(0,tf],对分段长度h实行约束hlb彡Iii彡hub,i=1,2,···,NE(5)4)在上位机的模型变换模块11中,将最优控制问题的模型离散化后增加状态变量连续性条件,并结合约束处理模块10的约束条件,将无限维的最优控制问题转化为有限维的非线性规划问题,按照以下步骤来实现(4.1)最优控制问题的目标转化为式(7),Ψ表示在终点条件下目标函数的组成部分,Xf表示终端时刻tf的状态变量值(4.2)最优控制问题的状态方程转化为残差方程式(1),F表示函数变量,δ表示时不变参数且状态变量满足以下初始条件,XUtl)为给定的状态变量初值Xlj0=x(t0)(9)(4.3)将最优控制问题的状态变量路径约束离散化(G、H均是函数变量)^r=1,2,...,NE,j=1,2,...,K(10)(4.4)增加状态变量连续性条件KXi代ο刀+⑴·3^i=1,2,...,NE-I(11)J=O(4.5)获取约束处理模块10的约束条件式⑷(6),并结合式(7)(11)构成非线性规划问题。5)在上位机的求解模块12中,用于求解模型变换模块11得到的非线性规划问题将状态变量配置系数X『控制变量离散参数Ui和时间分段长度为h作为优化变量,并以χ/u/3和h°为初始解,求解得出最优的状态变量配置系数Xi/、控制变量离散参数ιιΛ最优时间分段『,并由式(7)计算出最优目标值J*,然后将这些优化结果传给结果输出模块13。本实施例的系统投运过程为Α.利用定时器,设置好每次数据检测和采集的时间间隔;B.现场智能仪表2检测工业过程对象1的数据并传送至DCS系统的实时数据库5中,得到最新的变量数据;C.在上位机6的初始化模块8中,根据实际生产需求和操作限制条件对各模块相关参数和变量进行初始化处理,将处理的结果作为变量离散模块9、约束处理模块10和求解模块12的输入;D.在上位机6的变量离散模块9中,对状态变量和控制变量同时进行离散配置,结果作为模型变换模块11和结果输出模块13的输入;E.在上位机6的约束处理模块10中,增强控制变量和时间分段变量的边界约束,将处理的结果作为模型变换模块11的输入;F.在上位机6的模型变换模块11中,根据变量离散模块9的变量离散方程对优化模型进行转换,并结合约束处理模块10的约束条件,得出问题传给求解模块12处理;G.上位机6的求解模块12,依据初始化模块8的初始值对模型变换模块11输入的问题进行求解,并将优化的结果传给结果输出模块13;H.上位机6的结果输出模块13,根据变量离散模块9的变量离散方程,将求解模块12得出的优化结果进行转换,然后将所得的最优控制结果信息传输给DCS系统,并显示于上位机6的人机界面和DCS系统的控制站4,同时通过DCS系统和现场总线将所得到的优化结果信息传输到现场工作站进行显示,并由现场工作站来执行最优操作。上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。权利要求一种自适应同步策略的工业过程最优控制系统,包括与工业过程对象连接的现场智能检测仪表、DCS系统和上位机,所述工业过程对象、智能检测仪表、DCS系统和上位机依次相连,其特征在于所述的上位机包括初始化模块,用于初始参数的设置、状态变量x(t)和控制变量u(t)的离散化与初始赋值,具体步骤如下(2.1)将时域t∈[t0,tf]分割成NE段[t0,t1],[t1,t2],…,[tNE-1,tNE],其中tNE=tf,设每个时间分段长度为hi,i=1,2,...,NE,用h表示NE维时间分段变量,设其初始值为h0,其中t0表示起始时刻,tf表示终止时刻;(2.2)设时间分段t∈[ti,ti+1]上的配置点个数为K;(2.3)设n维状态变量x(t)的配置系数为xij,i=1,2,...,NE;j=0,1,...,K,m维控制变量u(t)的离散参数为ui,i=1,2,...,NE;j=1,2,...,K,并设状态变量系数的初始值为,控制变量系数的初始值为;(2.4)设置优化的收敛精度为ζ;变量离散模块,用于对状态变量和控制变量进行转换。即在时间分段t∈[ti-1,ti]内,i=1,2,...,NE,将状态变量转换为多项式(1),并将控制变量离散配置为分段常量式(2);<mrow><mi>x</mi><mrow><mo>(</mo><mi>t</mi><mo>)</mo></mrow><mo>=</mo><munderover><mi>Σ</mi><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mi>K</mi></munderover><msub><mi>λ</mi><mi>i</mi></msub><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow><msub><mi>x</mi><mi>ij</mi></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow>u(t)=uii=1,2,...,NE(2)其中,t=ti-1+hiτ,i=1,2,...,NE,τ∈,λ(τ)是状态变量的插值基函数,为K次多项式<mrow><msub><mi>λ</mi><mi>j</mi></msub><mrow><mo>(</mo><mi>τ</mi><mo>)</mo></mrow><mo>=</mo><munderover><mi>Π</mi><mrow><mi>k</mi><mo>=</mo><mn>0</mn><mo>,</mo><mo>≠</mo><mi>j</mi></mrow><mi>K</mi></munderover><mfrac><mrow><mi>τ</mi><mo>-</mo><msub><mi>τ</mi><mi>k</mi></msub></mrow><mrow><msub><mi>τ</mi><mi>j</mi></msub><mo>-</mo><msub><mi>τ</mi><mi>k</mi></msub></mrow></mfrac><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></mrow>式(3)中,τ0=0,τi为K阶勒让德多项式的根,j=1,2,...,K;约束处理模块,用于处理控制变量u(t)边界约束,并增强时间分段长度hi的约束,采取以下步骤来实现(4.1)在每个时间分段t∈[ti-1,ti]上,i=1,2,...,NE,对控制变量离散参数的边界值进行约束ulb≤ui≤uubi=1,2,...,NE(4)其中,上标ub、lb分别表示上下边界,uub、ulb分别表示设定的控制变量上下边界值;(4.2)设定每个时间分段长度的上下边界值分别为hlb和hub,hlb、hub∈(0,tf],对分段长度hi实行约束hlb≤hi≤hub,i=1,2,...,NE(5)<mrow><munderover><mi>Σ</mi><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>NE</mi></munderover><msub><mi>h</mi><mi>i</mi></msub><mo>=</mo><mi>tf</mi><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>6</mn><mo>)</mo></mrow></mrow>模型变换模块,用于将最优控制问题的模型离散化,并增加状态变量连续性条件和约束处理模块的约束条件,将无限维的最优控制问题转化为有限维的非线性规划问题,按照以下步骤来实现(5.1)最优控制问题的目标转化为式(7),ψ表示在终点条件下目标函数的组成部分,xf表示终端时刻tf的状态变量值minJ=ψ(xf),其中<mrow><msub><mi>x</mi><mi>f</mi></msub><mo>=</mo><munderover><mi>Σ</mi><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mi>K</mi></munderover><msub><mi>λ</mi><mi>j</mi></msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><msub><mi>x</mi><mrow><mi>NE</mi><mo>,</mo><mi>j</mi></mrow></msub><mo>-</mo><mo>-</mo><mo>-</mo><mrow><mo>(</mo><mn>7</mn><mo>)</mo></mrow></mrow>(5.2)最优控制问题的状态方程转化为残差方程式(8),F表示函数变量,δ表示时不变参数<mrow><munderover><mi>Σ</mi><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mi>K</mi></munderover><msub><mover><mi>λ</mi><mo>·</mo></mover><mi>k</mi></msub><mrow><mo>(</mo><msub><mi>τ</mi><mi>j</mi></msub><mo>)</mo></mrow><msub><mi>x</mi><mi>ik</mi></msub><mo>-</mo><msub><mi>h</mi><mi>i</mi></msub><mo>·</mo><mi>F</mi><mrow><mo>(</mo><msub><mi>x</mi><mi>ij</mi></msub><mo>,</mo><msub><mi>u</mi><mi>i</mi></msub><mo>,</mo><mi>δ</mi><mo>)</mo></mrow><mo>=</mo><mn>0</mn><mo>,</mo></mrow>i=1,2,...,NE,j=1,2,...,K(8)且状态变量满足以下初始条件,x(t0)为给定的状态变量初值x1,0=x(t0)(9)(5.3)将最优控制问题的状态变量路径约束离散化,G、H均是函数变量<mfencedopen='{'close=''><mtable><mtr><mtd><mi>G</mi><mo>[</mo><msub><mi>x</mi><mi>ij</mi></msub><mo>,</mo><msub><mi>u</mi><mi>i</mi></msub><mo>,</mo><mi>δ</mi><mo>]</mo><mo>=</mo><mn>0</mn></mtd></mtr><mtr><mtd><mi>H</mi><mo>[</mo><msub><mi>x</mi><mi>ij</mi></msub><mo>,</mo><msub><mi>u</mi><mi>i</mi></msub><mo>,</mo><mi>δ</mi><mo>]</mo><mo>≤</mo><mn>0</mn></mtd></mtr></mtable></mfenced>i=1,2,...,NE,j=1,2,...,K(10)(5.4)增加状态变量连续性条件<mrow><msub><mi>x</mi><mrow><mi>i</mi><mo>+</mo><mn>1,0</mn></mrow></msub><mo>=</mo><munderover><mi>Σ</mi><mrow><mi>j</mi><mo>=</mo><mn>0</mn></mrow><mi>K</mi></munderover><msub><mi>λ</mi><mi>j</mi></msub><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>·</mo><msub><mi>x</mi><mrow><mi>i</mi><mo>,</mo><mi>j</mi></mrow></msub></mrow>i=1,2,...,NE-1(11)(5.5)获取约束处理模块的约束条件式(4)~(6),并结合式(7)~(11)构成非线性规划问题;求解模块,用于求解模型变换模块得到的非线性规划问题将状态变量配置系数xij、控制变量离散参数ui和时间分段长度为h作为优化变量,并以和h0为初始解,求解得出最优的状态变量配置系数xij*、控制变量离散参数ui*、最优时间分段h*,并由式(7)计算出最优目标值J*。FDA0000022890890000011.tif,FDA0000022890890000012.tif,FDA0000022890890000031.tif,FDA0000022890890000032.tif2.根据权利要求1所述的自适应同步策略的工业过程最优控制系统,其特征在于所述的上位机还包括信号采集模块,用于设定采样时间,采集现场智能仪表的信号。3.如权利要求1或2所述的自适应同步策略的工业过程最优控制系统,其特征在于所述的上位机还包括结果输出模块,用于将求解模块计算出的最优控制变量离散参数u广转化为最优控制轨线,然后将u*(t)和最优目标值J*传输给DCS系统,并在DCS系统中显示所得到的优化结果信息。4.一种如权利要求1所述的自适应同步策略的工业过程最优控制系统实现的最优控制方法,其特征在于所述的最优控制方法包括以下步骤1)在DCS系统中指定状态变量和控制变量,根据实际生产环境的条件和操作限制的条件设定控制变量的上下边界uub、ulb和DCS的采样周期,并将DCS数据库中相应各变量的历史数据,控制变量上下边界值uub、ulb传送给上位机;2)对初始参数进行设置,并对DCS系统输入的数据进行初始化处理,按照以下步骤完成(2.1)将时域tG[t0,tf]分割成NE段其中tNE=tf,设每个时间分段长度为hyi=1,2,...,NE,用h表示NE维时间分段变量,并设置其初始值h°,一般可取h°为tf/NE;(2.2)设时间分段tG[、,ti+1]上的配置点个数为K;(2.3)设n维状态变量x(t)的配置系数为Xij,i=1,2,...,NE;j=0,1,...,K,m维控制变量u(t)的离散参数为Ui,i=1,2,...,NE;j=1,2,...,K,并设状态变量系数的初始值为x/,控制变量系数的初始值为u/3;(2.4)设优化的收敛精度为4;i=1,2,...,NE并将(1)X)是状态变量的插值.,NE,TG,式(3)3)将时间分段te[、,tj上的状态变量转换为多项式(1),控制变量离散配置为分段常量式(2)其中,x『Ui分别为状态变量和控制变量的离散配置参数,入(基函数式⑶,t经由中间变量X转换为t=、為丁,i=1,2,.(3)中,%=0,、为K阶勒让德多项式的根,j=1,2,...,K;缺)=n^4)对控制变量u(t)边界约束进行处理,并增强时间分段长度、的约束,采取以下步骤来实现(4.1)在每个时间分段te[、,tj上,i=1,2,...,NE,对控制变量离散参数的边界值进行约束ulb^Ui^uubi=l,2,...,NE(4)其中,上标ub、lb分别表示上下边界,uu\ulb分别表示设定的控制变量上下边界值;(4.2)设定每个时间分段长度的上下边界值分别为hlb和hub,hlb、hub(0,tf],对分段长度比实行约束5)将最优控制问题的模型离散化后增加状态变量连续性条件,并结合约束处理模块的约束条件,将无限维的最优控制问题转化为有限维的非线性规划问题,按照以下步骤来实现(5.1)最优控制问题的目标转化为式(7),V表示在终点条件下目标函数的组成部分,xf表示终端时刻tf的状态变量值(5.2)最优控制问题的状态方程转化为残差方程式(8),F表示函数变量,5表示时不变参数且状态变量满足以下初始条件,x(t0)为给定的状态变量初值Xl,0=X(t0)(9)(5.3)将最优控制问题的状态变量路径约束离散化,G、H均是函数变量4(5.5)获取约束处理模块的约束条件式(4)(6),并结合式(7)(11)构成非线性规划问题;6)求解模型变换模块得到的非线性规划问题将状态变量配置系数Xij、控制变量离散参数Ui和时间分段长度为h作为优化变量,并以,x/u/3和h°为初始解,利用RSQP方法求解,得出最优的状态变量配置系数Xi/、控制变量离散参数U^最优时间分段『,并由式(7)计算出最优目标值Γ,然后将这些优化结果传给结果输出模块。5.如权利要求4所述的最优控制方法,其特征在于所述步骤(1)中,将现场智能仪表所采集的工业过程对象的数据传送到DCS系统的实时数据库中,在每个采样周期从DCS系统的数据库得到的最新数据输出到上位机,并在上位机的初始化模块进行初始化处理。6.如权利要求4或5所述的最优控制方法,其特征在于所述步骤(6)中,将得到的最优控制变量离散参数ιιΛ将通过结果输出模块转换为最优控制曲线U*(t),并在上位机的人机界面上显示u*(t)和最优目标值J*;同时,最优控制曲线u*(t)将通过数据接口传给DCS系统,并在DCS系统中显示所得到的优化结果信息。全文摘要一种自适应同步策略的工业过程最优控制系统,包括与工业过程对象连接的现场智能仪表、DCS系统和上位机,工业过程对象、现场智能仪表、DCS系统、上位机依次连接,所述的上位机包括信号采集模块、初始化模块、变量离散模块、约束处理模块、模型变换模块、求解模块和结果输出模块;本发明还提供了一种自适应同步策略的工业过程最优控制方法,将控制变量分段离散配置并对时域分段长度进行自适应调整。本发明在处理复杂非线性工业过程最优控制问题的过程中,求解稳定、快速,而且计算准确性高,是一种具有广泛适用性的最优控制系统和方法。文档编号G05B19/418GK101887260SQ20101021398公开日2010年11月17日申请日期2010年6月30日优先权日2010年6月30日发明者刘兴高,陈珑申请人:浙江大学