专利名称::一种大流量水节流阀开口度的控制方法
技术领域:
:本发明属于机电液集成控制领域,具体来讲是一种大流量水节流阀开口度的控制方法,应用于以电液比例换向阀为主的油压控制系统中以精确控制大流量水阀的阀芯位置,从而控制大流量水阀的过流流量。
背景技术:
:挤压是最重要的压力加工方法之一,大型挤压机是目前航天、航空、交通、电子通讯、船舶等工业中必不可少的设备,它是一个国家的工业化程度和经济、国防实力的重要标志之一。挤压速度是铝材挤压过程中需严格控制的一个工艺参数,挤压速度与所挤型材的成分、截面形状、挤压比等因素密切相关。挤压速度过髙或过低都会使生产效率降低甚至使挤压工作无法进行。另外,从挤压工艺的角度看,挤压速度在挤压过程中必须相对稳定,挤压速度的波动将会造成制品表面出现波纹,影响制品质量。目前,大型挤压机的速度控制技术主要有变频驱动容积调速方式、变量泵容积调速方式、电液比例插装阀调速方式,但这些调速方式均只适合应用于油压控制或在国内技术不成熟。巨型液压机所需工作液体量巨大,考虑到经济、污染等多方面因素,工作液体选用乳化液,由于泄漏量大,乳化液费用髙,现传动介质多用水替代。因此我国巨型液压机一般仍为水压机,目前,国外水液压技术的研究已取得实质性进展。水介质的质量控制、元件与系统的磨损与腐蚀控制,以及新材料、新工艺、新的控制技术在现有的水液压元件与系统的研制中得到了充分体现。现在,世界市场上已经有少数系列的水液压元件供应,如表1.1所示,压力主要有10MPa、14MPa、21MPa、32MPa、40MPa等五种等级。但总体而言,现有的水液压元件总体性能与油压元件相差较大,价格也很昂贵。表1.1水液压控制阀的市场供应状况<table>tableseeoriginaldocumentpage4</column></row><table>我国的水液压技术研究也已经起步。现在华中科技大学和浙江大学等髙校已经开展了这项技术的研究工作。二者的研究各有特色。华中科技大学着重研究以海水为介质的水液压技术,主要应用领域着眼于海军装备;浙江大学则着重于以自来水为介质的相关技术,应用领域在于民用。但到目前为止,水液压技术只是进入了实际应用的节流阀实现精确数字控制将是水液压技术的一个重要发展方向。125MN挤压机原有节流阀采用直流电机带动蜗轮蜗杆,经减速器减速后以螵母丝杆副机构驱动传动杠杆,从而控制节流阀阀芯开度,间接控制流量。由于原有系统采用自整角机随动及传动链过长,阀的稳定性差,阀杆位移存在漂移。而且整个系统是一个开环系统,控制精度不髙,控制精度以及压机的生产效率迫切有待提髙。
发明内容本发明的目的在于提供一种大流量水节流阀开口度的控制方法,应用于大型挤压机的大流量水节流阀阀门开口度的髙精度控制。为实现上述目的,本发明的技术方案为一种大流量水节流阀开口度的控制方法,其特征在于,通过调节先导电液比例流量阀的输入电流控制比例伺服油缸中活塞杆的位置,活塞杆与水节流阀阀芯固定联接,从而由活塞杆的运动直接带动大流量水节流阀的阀芯运动,最终实现对大流量水节流阀的开口度的精确控制;控制过程中采用闭环非对称的PID控制方法,输入量为给定的大流量水节流阀开口度值,反馈量为检测到的实际的大流量水节流阀开口度值,给定的大流量水节流阀开口度值和检测到的实际的大流量水节流阀开口度值的差e(t)输入到PID控制器中,PID控制器输出电流信号给先导电液比例流量阀。所述的PID控制器采用非对称参数,具体参数整定过程为设Kp,,K,K^和Kp2,Ki2,IU为e(t)分别取正和负时比例,积分,微分常数;KP1,K,Ka,参数整定方法为设定PID控制的死区值为0.05mm,采用雅格-尼可士方法,首先置K^产K"-0,单独调整比例系数K,此时控制器就为一比例控制器,通过在监控系统中将节流阀的设定开度值设为大于节流阀实际开口度值,即使e(t)>0,然后增大系统比例系数K直至系统开始振荡,记录此时的比例系数K为Km,,则Kn,Ku,IU参数按下式计算得Kw==#&=;式中"m为振荡频率;(当置L=Ku=0化;r时,系统就是采用一个比例环节控制,KP1、K、Knh即为下文中提到的比例系数,K为比例系数的总称,KM1为开始震荡时刻的比例系数,KP1为将KM1乘以0.6后用于PID控制中的比例系数)Kre,Ki2,L参数整定方法为设定PID控制的死区值为0.05mm,采用雅格-尼可士方法,首先置KaH(fO,此时控制器为一个比例控制器,通过在监控系统中将节流阀的设定开度值设为小于节流阀实际开口度值,即使e(t)〈O,然后增大系统比例系数K直至系统开始振荡,使系统处于负的阶跃响应,然后增大比例系数直至系统开始振荡,记录此时的比例系数为Km2,Kre,Ki2,Ka2参数按下式计算得<formula>formulaseeoriginaldocumentpage6</formula>;式中^"为振荡频率。应用本方法的大流量水节流阀控制系统,包括大流量水节流阀及其液压驱动系统、状态信号检测系统、PLC控制系统、上位机实时监控系统,并采用工业现场总线技术实现系统信号的全数字化通讯高。所述的系统所采用的是直接的数字输入,模拟棒图调节以及数字显示相结合的操作方式。能实现将节流阀设定开口度的精确数字量输入与检测到的实际开口度(数字量输入)和阀前、阀后压力(该信号用于为设定开口度提供参考,为模拟量输入)结合,实现对节流阀阀芯开口度的数字化精确闭环控制,其控制精度在O.l咖。所述的大流量水节流阀控制系统,节流阀阀芯的位移检测范围为060mm,针对其在阀芯上升和下降过程中的非对称动态特性,为了在上升和下降过程中都得到较短的调整时间和低超调量,通过实验在控制系统中对节流闳开启和关闭过程设置不同的参数,对其采用非对称动态参数调节,采用Ziegler-Nichols(雅格-尼可士法)方法,对其进行参数整定(详细整定过程见具体实施方案),从而使节流阀在开启和关闭过程中都具有较理想的动态特性,通过实验得知节流阀在开启过程中,其响应时间为0.6s,几乎无超调,釆用非对称动态参数设置和调节,解决节流阀在开启和关闭的过程阀芯的动态特性会不一样的问题。所述的大流量水节流阀控制系统,通过数字式髙精度磁致伸缩位移传感器检测阀芯开口度位移值。所述的大流量水节流阀控制系统,其特征在于,采用压力传感器同时采集节流阀前后压差,该压差对节流阀开度设定值有一定的参考作用。所述的大流量水节流阀控制系统,其特征在于,采用Profibus工业现场总线技术实现系统检测信号、控制信号的全数字化通讯。一种大流量水节流阀精确控制方式,其特征在于通过调节先导比例换向阀的输入电流,精确控制比例伺服油缸中活塞杆的位置,再通过活塞杆驱动大流量水节流阀阀芯运动,从而精确控制该阀阀芯的位置,最终实现其流量的精确控制。所述的大流量水节流阀,通过进水口的液流分为两路,一路通过阀芯与阀杯之间形成的流道与出水口连通。另一路通过阀体上的管道与水节流阀上腔连通,以平衡阀芯的开启压力。阀芯和阀杯之间、阀芯和压盖之间都用密封圈进行直接密封,有效解决了水节流阀泄漏的问题。水节流阀阀芯上端通过螺纹连接与比例伺服油缸内的活塞杆相连,由活塞杆的运动直接带动水节流阀阀芯运动。在活塞杆上安装有磁质伸缩位移传感器。本发明的优点与效果本发明设计了一种大通径、大流量水节流阀精确控制方法,该方法应用于125MN挤压机的控制系统改造项目上,用于控制挤压速度,项目已于2008年3月顺利通过验收,一年多的生产运行表明,节流阀过流流量随阀口开度的变化呈近似线性关系,说明在整个调节范围内流量变化均匀,微量调节性能好,节流阀阀芯开度动态响应特性曲线如图5,图中的横坐标为采样时间(s),由图5可知节流阀阀芯位移对先导阀阀芯阶跃信号的响应时间在0.6s左右,几乎无超调,控制精度在0.1mm。有效解决了该压机原来因挤压速度不稳定、可控性差等因素引起的生产效率低,模具寿命低问题。图1为水节流阀及其附件结构示意图;图l标号说明1、阀座2、去工作缸3、阀芯4、比例油缸5、活塞杆6、阀杆位移检测装置7、第一控制油口8、第二控制油口9、自髙压水图2为电气控制结构图3为大流量水节流阀阀芯位置控制框图4为大流量水节流阀液压驱动系统液压原理图4标号说明10、节流油泵11、DN40先导电液比例流量阀12、DN80先导电液比例流量阀13、高压水管道14、阀前压力检測表15、DN40水节流阀16、DN40比例油缸17、DN80水节流阀18、DN80比例油缸19、阀后压力检测表20、主控制分配器21、主工作缸22、活动横梁图5为大流量水节流阀阀芯在开启过程中的实际应用过程中的动态响应曲线图。具体实施方式实施例1:图2描述了本发明大流量水节流闽控制系统组成结构,其中包括大流量水节流阀及其液压驱动系统、状态信号检测系统、PLC控制系统、上位机(触摸屏)实时监控系统。操作者可在上位机(触摸屏)监控系统上以数字量形式精确设定节流阀开口度,并可根据实际情况通过模拟棒图对其进行连续调节,通过监控系统还可对由磁质伸缩位移传感器检测到节流阀实际开口度(数字量输入)进行实时监控,通过PLC程序将设定开口度与实际开口度比较之后得到一信号差,将该信号差输入PID功能块,通过比例放大器后得到的一电流或电压信号,再通过该电信号去控制先导电液比例阀的流量和方向,由信号差的方向确定通过先导阀的油液的方向,由信号差的大小确定先导阀油液流量的大小,在图4中,当先导阀(12)(图4中提到有DN40和DN80两个水阀,是用于分段调节速度的,本发明主要是对DN80的水节流阀进行研究,对于DN40的水阀不进行详细介绍)右侧电磁铁得电时,先导控制由由第二控制油口(见附图1中的8)进入比例油缸,使活塞杆上移,水节流阀阀芯上端通过嫘纹连接与比例伺服油缸内的活塞杆相连,由活塞杆的运动直接带动水节流阀阀芯运动,因此,当先导阀右侧电磁铁得电时,水节流阀阀芯上移,节流阀开口度增大,阀通流量增大。从而对节流阀阀芯位置实现精确闭环控制,其控制框图如图3所示。位移传感器用来测阀芯开口度值本发明的关键技术在于如何得到先导电液比例阀的输入电信号,前面已经提到是由实际开口度和给定开口度差再经PID功能块和比例放大器后所得,所以对PID功能块的参数设置是本发明的关键技术,由于节流阀阀芯及其它随动部件自身重力和阀芯、活塞杆与配合件之间与摩擦力的影响,节流阀在开启和关闭的过程阀芯的动态特性会不一样,即该系统是一个非对称动态系统,针对这个特征,通过实验在控制系统中对节流阀开启和关闭过程设置不同的参数。PID控制器参数的取值是为了提供短的响应时间ts和低超调量Ms,但是对应的正负阶跃响应是不同的,这一点合乎正常的逻辑。由此出现的问题是如何确定当需要控制器参数交换时的时刻。dYa(t)/dt(这里Ya(t)是指节流阀实际开口度)可以是一个参考的标准。但是,因为设备dYa(t)响应的死区时间,会导致dYa(t)/dt反应的延迟。正因为如此,控制器参数值的变换也就是取决于控制系统在延迟期间前一个参数的取值。这样一来,就可能会增加控制系统运作的不确定性。Ya(t)的变动直接影响着e(t)(e(t)为设定开口度和实际开口度的差值)的值。因此,e(t)的表现可以视为控制系统状态的指示器,当e(t)发生变化时,控制参数也应该变化。根据这个思路,在e(t)为正负,各参数取值不同的情况下,PID控制的算法可以用下式表示rf。欲~(,)=A:卢《(r)=W=^,卜(f)20(1),=,,=尺,2W)-Ue"X0其中Kp"K,K^和Kp2,K12,L为e(t)取正负时比例,积分,微分常数。t。为算式计时的初始点。当e(t)符号发生改变时,比例,积分,微分三个常数也会各自发生改变。因此,比例,积分,微分不是真正的常数,而是在式(1)中随时间改变的。在一般情况下,对于e(t)取正负,基于式(1)算法的PID控制器对设备的影响是不同的,也就是说这种PID控制器是不对称的。参数调整过程如下1)根据系统精度要求设定PID控制功能块的死区值为0.05mm。2)采用Ziegler-Nichols方法,首先置K^-Ki产0,此时系统为一个PID控制器就为一比例控制器,通过在监控系统中将节流阀的设定开度值设为大于节流阀实际开口度值,即使e(t)〉0,然后增大系统比例系数K直至系统开始振荡,记录此时的比例系数K为Knh,KP1,Ku,ICu参数按下式计算得^=0.6^&,=^4o—;r式中,Km,为系统开始振荡时的K值;^为振荡频率,通过实验,得出节流闽开启时系统的Km产15,fl^4"rad/s,然后用Z-N方程即^^=()'6《"化《-:^k求出参数。得i^=9,《1=36,J^=0.6;在此参数调节下,由上位机里读出的节流阀开启开度实际响应动态曲线见图5,可以看出,节流阀阀芯位移动态仿真曲线可知节流阀阀芯位移对先导阀阀芯阶跃信号的响应时间在0.6s左右,由于在实际系统中采用了非对称PID控制策略使系统基本无超调。同样对节流阀在关闭过程中采用同样的参数调整法,即用Ziegler~Nichols实验方法(雅格-尼可士法),首先置K^Ki产0,通过在监控系统中将节流阀的设定开度值设为小于节流阀实际开口度值,即使e(t)〈O,然后增大系统比例系数K直至系统开始振荡,使系统处于负的阶跃响应,然后增大比例系数直至系统开始振荡,记录此时的比例系数为Km"Ki2,Kd2参数按下式计算得^2=0风2&2=,《2=^^;化;r通过实验,得节流阀关闭时系统开始出现稳定振荡时的K值即(2=13,om=4"rad/s,再根据Ziegler-Nichols方程得sXp,=8,=32,=0.8。权利要求1.一种大流量水节流阀开口度的控制方法,其特征在于,通过调节先导电液比例流量阀的输入电流控制比例伺服油缸中活塞杆的位置,活塞杆与水节流阀阀芯固定联接,从而由活塞杆的运动直接带动大流量水节流阀的阀芯运动,最终实现对大流量水节流阀的开口度的精确控制;控制过程中采用闭环非对称的PID控制方法,输入量为给定的大流量水节流阀开口度值,反馈量为检测到的实际的大流量水节流阀开口度值,给定的大流量水节流阀开口度值和检测到的实际的大流量水节流阀开口度值的差e(t)输入到PID控制器中,PID控制器输出电流信号给先导电液比例流量阀。2.根据权利要求1所述的大流量水节流阀开口度的控制方法,其特征在于,所述的PID控制器采用非对称参数,具体参数整定过程为设Kp,,K,K^和Kp2,Ki2,K^为e(t)分别取正和负时比例,积分,微分常数;KP1,K",Kd,参数整定方法为设定PID控制的死区值为0,05mm,采用雅格-尼可士方法,首先置Ka产Ki产O,单独调整比例系数K,此时控制器就为一比例控制器,通过在监控系统中将节流阀的设定开度值设为大于节流阀实际开口度值,即使e(t)>0,然后增大系统比例系数K直至系统开始振荡,记录此时的比例系数K为Km,,则Kp,,K",参数按下式计算得尺w==#&=;式中气为振荡频率;Kp2,Ki2,IU参数整定方法为设定PID控制的死区值为0.05mm,釆用雅格-尼可士方法,首先置K^-K^O,此时控制器为一个比例控制器,通过在监控系统中将节流阀的设定开度值设为小于节流阀实际开口度值,即使e(t)〈O,然后增大系统比例系数K直至系统开始振荡,使系统处于负的阶跃响应,然后增大比例系数直至系统开始振荡,记录此时的比例系数为Knb,KM,Ki2,&2参数按下式计算得《f2=0.6&2&2=#《2=;式中气为振荡频率。全文摘要本发明提供了一种大流量水节流阀开口度的控制方法,其特征在于,通过调节先导电液比例流量阀的输入电流控制比例伺服油缸中活塞杆的位置,再由活塞杆驱动大流量水节流阀的阀芯运动,从而最终控制大流量水节流阀的开口度;而活塞杆与水节流阀阀芯通过螺纹固定联接;控制过程中采用闭环非对称的PID控制方法,输入量为给定的大流量水节流阀开口度值,反馈量为检测到的实际的大流量水节流阀开口度值,给定的大流量水节流阀开口度值和检测到的实际的大流量水节流阀开口度值的差e(t)输入到PID控制器中,PID控制器输出电流信号给先导电液比例流量阀。本方法控制精度高,安装、操作方便,实用性强,可靠性高。文档编号G05D3/12GK101634862SQ20091004401公开日2010年1月27日申请日期2009年7月31日优先权日2009年7月31日发明者周俊峰,文跃兵,汪顺民,谭建平申请人:中南大学