时间比例控制型的控制装置的利记博彩app

文档序号:6279838阅读:189来源:国知局
专利名称:时间比例控制型的控制装置的利记博彩app
技术领域
本发明涉及例如适合于对冷却器(cooler)进行导通(ON)·断开(OFF)控制以控制温度的时间比例控制型的控制装置。
背景技术
在恒温槽的温度控制、或注射模塑成形用塑料原料的温度控制等中,要按需分开使用加热器(heater)的加热能力和冷却器的冷却能力。这种控制称为热·冷(heat and cool control)控制,并且其结构特意做成根据由操作人员设定的控制目标温度(设定值SP(set point))和由传感器检测出的控制对象的温度(控制值PV(process value))的偏差,求出对加热器或冷却器的操作量MV(manipulation value),按照该操作量分别控制所述加热器及冷却器的动作(例如参照日本国;特開平5-289704号公报)。具体地说,上述热·冷控制如以上所述地,根据求得的操作量MV,例如导通(ON)·断开(OFF)控制加热器的供电,另外,导通(ON)·断开(OFF)控制冷却器的压缩机动作。
附带说明,上述操作量MV例如可以通过装在反馈控制回路的PID控制运算来求得(例如参照日本国;特開2004-227062号公报)。而且,在上述控制系统中在控制冷却器(压缩机)的动作时,特意采用与所述操作量MV对应的时间比例信号。该时间比例信号根据上述操作量MV使预定周期(循环时间)内输出信号的导通(ON)时间和断开(OFF)时间的比例相应变化。具体为控制冷却器的运转导通(ON)·断开(OFF)的时间比例信号,例如在操作量MV为50%时,输出将1个周期的前半时期作为导通(ON)(高),而后半时期作为断开(OFF)(低)的信号。
还有,在控制冷却器(压缩机)运转时,考虑到冷却控制系统机械可动部件、即执行机构的经久耐用性(寿命),上述时间比例信号的周期设定得较长,例如10~30秒。相反,对于加热器的通电控制,由于不会特意用机械的可动部件来进行,因此其周期可以设定得较短,例如1秒左右。
然而,如同控制冷却器导通(ON)·断开(OFF)运转的情况,在将上述时间比例信号的周期设定得较长的控制系统中,例如在随着控制目标温度(设定值SP)的变化而其操作量MV亦较大地变化时,若该变化的时刻是在上述周期之中,则由于至下一个的周期为止时间比例信号一直不变化,因此不可否认会产生大幅度的控制延迟。具体地说,时间比例信号的周期是30秒,在周期经过10秒后的时刻即使操作量MV较大地变化,到其后20秒的下一个周期开始为止,比例信号不会变化。因此存在的问题是无法获得所要的控制结果。

发明内容
本发明的目的在于提供一种时间比例控制型的控制装置,该装置在时间比例信号的周期长的控制系统中,例如即便是在随着控制目标温度(设定值SP)的变化其操作量亦较大地变化时,仍能跟踪良好地使时间比例信号变化,得到响应性良好的控制结果。
特别是本发明的目的在于提供一种时间比例控制型的控制装置,该装置适用于例如控制冷却器导通(ON)·断开(OFF)运转以对恒温槽等进行温度控制。
为达到上述目的,本发明相关的时间比例控制型的控制装置,为根据对控制对象的控制目标值和表示上述控制对象的状态的值间的偏差,与预定的周期同步相应生成控制所述控制对象的状态用的时间比例信号,该控制装置包括根据对控制对象的控制目标值和表示所述控制对象的状态的值之间的偏差,求得作为控制所述控制对象的设备的操作量的操作量检测部;与预定的周期同步启动,生成与所述操作量检测部求得的操作量对应的时间比例信号、并提供给所述设备的时间比例输出部;以及在所述周期内改变所述控制目标值时,在该改变时刻将所述时间比例输出部的启动定时进行复位,或根据所述操作量的增加部分,再启动所述时间比例输出部的输出控制部。
即,本发明相关的时间比例控制型的控制装置,在改变所述控制目标值时,将所述时间比例信号的生成定时进行复位,与该复位定时同步重新生成所述时间比例信号,或者随着所述控制目标值的改变所述偏差变化时,到该偏差变化时刻为止输出的当前周期内的所述时间比例信号的导通(ON)经过时间中,重新追加生成不足部分的时间比例信号。
最好要控制所述控制对象的设备是冷却器,所述控制对象是通过上述冷却器的运转而被控制的温度。另外,控制所述控制对象的设备是冷却器及加热器,所述控制对象是通过从上述冷却器或加热器中选择一个运转而被控制的温度。
附带说明,所述时间比例输出部在预定的周期内使控制所述控制对象的设备与规定上述周期的定时同步,经过与所述操作量相当的时间运转后,生成使所述设备停止的信号作为所述时间比例信号。
具体地说,所述时间比例输出部在使冷却器运转控制温度时,在预定的周期内生成规定使上述冷却器运转的导通(ON)时间的比例的信号,作为所述时间比例信号。或者所述时间比例输出部在有选择地使冷却器或加热器运转控制温度时,择一地生成根据上述冷却器的规格所决定的第1周期内规定使所述冷却器运转的导通(ON)时间的比例的信号、或在根据所述加热器的规格所决定的第2周期内规定使所述加热器运转的导通(ON)时间的比例的信号,作为所述时间比例信号。
另外,所述输出控制部的结构做成在所述控制目标值的改变时刻将所述时间比例输出部复位,与该复位时刻同步从所述时间比例输出部得到与新的操作量相当的时间比例信号。
或者所述输出控制部的结构做成随着所述控制目标值的改变,在所述周期内操作量变化时,求出新的操作量、以及到所述操作量变化时刻为止与从所述时间比例输出部输出的所述时间比例信号相当的操作量之差。而且,输出控制部在新的操作量大时,将所述操作量的变化时刻作为同步触发,再次启动所述时间比例输出部,重新生成与所述操作量之差相当的时间比例信号。
特别是所述输出控制部的具体结构做成将到所述偏差变化时刻为止输出的所述时间比例信号的导通(ON)经过时间、与相当于新求出的操作量的导通(ON)时间进行比较。当所述导通(ON)时间比所述导通(ON)经过时间长时,所述输出控制部生成与所述导通(ON)时间和导通(ON)经过时间之差相当的导通(ON)时间的时间比例信号。
上述构成的装置在对控制对象改变控制目标值SP时,将所述时间比例信号的生成定时进行复位,随着上述控制目标值SP的改变和上述复位定时同步生成与新求出的操作量MV对应的时间比例信号,因此,采用本装置能取消依附于时间比例信号周期的控制延迟,得到响应特性良好的控制结果。而且本装置将时间比例信号的周期自身进行复位,仅以该复位定时为基准新生成时间比例信号,所以仅用简单的控制便能有效地提高其控制响应特性。
特别在控制冷却器使其导通(ON)·断开(OFF)动作(运转)进行温度控制时,本装置中不会缩短时间比例信号的周期,利用上述复位处理只是简单地将该周期的导通始时刻错开一点。因而利用本装置,不会牺牲冷却控制系统中执行机构的耐用性(寿命),能改善其控制响应特性。
另外,根据本装置的其它的实施形态,例如改变对控制对象的控制目标值SP,随此在与表示控制对象状态的值间的偏差变化时,在到该偏差的变化时刻为止输出的当前周期内与新的偏差对应的时间比例信号的导通(ON)时间比所述时间比例信号的导通(ON)经过时间还要长时,将所述偏差的变化时刻,作为同步触发,经过与上述导通(ON)时间和所述导通(ON)经过时间之差相当的时间的所述时间比例信号重新生成。即,在周期内,在时间比例信号的导通(ON)时间不足时,本装置中,与该不足时间相称的时间比例信号重新生成并输出。
其结果,因为采用本装置将周期内的时间比例信号的导通(ON)时间的总和作为与变化后的偏差相对应,所以取消依附于时间比例信号的周期的控制延迟,能得到响应特性良好的控制结果。而且采用本装置,由于时间比例信号的周期不会偏移,所以即使在使多个控制对象设备互相同步运转时,也不会打乱控制系统对这些控制对象设备的同步。
尤其在控制冷却器作导通(ON)·断开(OFF)动作进行温度控制时,在本装置中不会缩短时间比例信号的周期,而且不会将周期错开,能使时间比例信号的导通(ON)时间增加,因而利用本装置,例如能确立好与其它设备间的同步保持不变,还几乎不牺牲冷却控制系统中执行机构的经久耐用性(寿命),可改善其控制响应特性。


图1为采用本发明第1实施方式相关的时间比例控制型的控制装置的温度控制系统的概要构成图。
图2为表示图1示出的时间比例控制型的控制装置中时间比例周期(循环时间)的复位处理的控制步骤的图。
图3为表示图1示出的时间比例控制型的控制装置中时间比例信号的控制形态的时间图。
图4为表示将本发明相关的时间比例控制效果和现有例子对比的图。
图5为表示在加热器和冷却器一并使用的温度控制系统中PID输出与加热用及冷却用操作量之间的关系的图。
图6为表示在加热器和冷却器一并使用的温度控制系统中时间比例控制型的控制装置主要部分的概要构成图。
图7为采用本发明第2实施方式相关的时间比例控制型的控制装置的温度控制系统的概要构成图。
图8为表示图7示出的时间比例控制型的控制装置中时间比例信号的控制形态的时序图。
图9为表示图7示出的时间比例控制型的控制装置中时间比例信号的生成控制步骤的图。
图10为表示操作量MV改变时控制参数的变更处理的图。
具体实施例方式
实施方式1以下,参照附图对本发明的实施方式相关的时间比例控制型的控制装置,以根据对控制对象进行温度控制的时间比例信号、导通(ON)·断开(OFF)控制冷却器的场合为例进行说明。
图1表示第1实施方式相关的时间比例控制型的控制装置中控制系统的概要构成。图1中,10为以微处理器等为主体构成的时间比例控制型的控制装置(控制部),另外,20是恒温槽等控制对象。利用冷却器21控制该控制对象20的温度(准确地说恒温槽等的温度为控制对象),另外,用温度传感器22检测该温度(控制值PV)。
控制部(时间比例控制型的控制装置)10,基本上具有通过键盘或触摸屏等操作部11由操作人员设定的控制目标温度(目标设定值SP)12。另外,控制部10还具有PID控制部(操作量检测部)14,该控制部根据与通过所述温度传感器22检测出的控制对象20的温度(控制值PV)13间的偏差,例如通过PID运算求出与上述偏差对应的操作量MV,作为PID输出。另外,控制部10还具有时间比例输出部15,该时间比例输出部在每一预定的周期中,求出与上述操作量(PID输出)MV对应的时间比例信号Ton。
顺便说明;上述PID输出例如由与0~100%的操作量MV对应的0~10V的连续电压输出,或4~20mA的连续电流输出组成。另外,时间比例信号Ton例如由使在30秒周期中连续的导通(ON)状态的信号输出时间比例与上述0~100%的操作量MV对应在整个0~100%范围线性变化后为断开(OFF)的信号组成。所述冷却器21根据这种时间比例信号Ton,只在该时间比例信号Ton的导通(ON)期间动作,使控制对象20冷却。
在基本具有这些功能构成的控制部10中,本发明相关的第1实施方式的特征为具有输出控制部16,该输出控制部监视根据所述操作部11设定的控制目标温度(目标设定值SP)21,在改变该控制目标温度(目标设定值SP)12时,将所述时间比例输出部15的周期进行复位。即,该输出控制部16如图2所示,始终监视着所述控制目标温度(目标设定值SP)12是否改变(步骤S1)。而且,在检测出该控制目标温度(目标设定值SP)12的改变时,通过将时间比例信号Ton周期进行复位,从而重新求出与该时刻的操作量MV对应的时间比例信号Tc(步骤S2)。
具体如图3示出的其动作时序那样,输出控制部16在改变控制目标温度(目标设定值SP)12时,不管周期的时间经过如何,将该周期复位,将该复位时刻作为新的周期的开始时刻进行设定。而且依照在上述设定时刻求出的PID输出(操作量MV)生成新的时间比例信号Ton,并将其输出。
这样,将时间比例信号的周期进行复位,从该复位时刻导通(ON)开始生成新的时间比例信号Ton,利用上述构成的时间比例控制型的控制装置,尽管改变控制目标温度(目标设定值SP)12,但根据该改变后的控制目标温度(目标设定值SP)12和控制对象20的温度(控制值PV)13之间的偏差,能迅速控制冷却器21的动作。因此,能消除其控制响应迟缓、得到跟踪特性良好的所要的控制结果。而且,通过只增加使时间比例信号Ton的周期复位那样简单的控制算法,保持对冷却器12的控制规格(周期)不变,能提高其控制响应特性。
即,图4表示利用本发明相关的时间比例控制的响应特性X和利用现有的时间比例控制的响应特性Y的对比,采用本发明,则在改变目标设定值SP的时刻迅速产生新的时间比例信号Ton。因此,无时间延迟地使冷却器21动作,对控制对象20的温度进行控制,并能迅速追随新的目标设定值SP动作。因此能提高对目标设定值SP变更的响应特性。
然而,在对控制对象20的温度进行控制时,有时一并使用冷却器21的冷却能力和加热器的加热能力。在这种情况下,例如如图5所示,将以0~100%的操作量MV形式提供的PID输出以50%为界限,分别变换成0~100%的加热控制用操作量MVheat、和0~100%的冷却控制用操作量MVcool,根据这些操作量MVheat、MVcool可以在加热器及冷却器中择一使其动作。而且,即使在这种场合,例如如图6中示出的其主要部分的构成那样,分别根据上述各操作量MVheat、MVcool,相应地分别求出其时间比例信号Th、Tc在规定的每个周期(循环时间)对加热器及冷却器进行导通(ON)·断开(OFF)控制。
但如以上所述,对加热器按照短周期进行时间比例控制,只对冷却器21按照长周期进行时间比例控制。因而控制响应的迟缓成问题主要是对冷却器21的时间比例控制。所以,如以上所述,随着其操作量MV较大的变化改变时间比例信号Ton时,只要将冷却器21的周期进行复位便可。
另外,在对这种加热器和冷却器一并使用对控制对象(恒温槽等)20的温度进行控制时,所述PID输出在50%附近变化时,需要冷却器21利用0%的时间比例信号Tc从正在休止的状态开始迅速动作。具体地说,从操作量以55%使加热器动作的状态开始上述操作量MV变化成45%,随此要取代上述加热器使冷却器21动作。即使在这样的状况下,利用本发明相关的时间比例控制装置随着操作量MV较大的变化时间比例信号Tc对冷却器21的周期能如以上所述地进行复位。因而,能在控制方式从加热变成冷却的时刻迅速地利用时间比例控制使冷却器21进行动作。所以能有效地防止该控制方式的切换迟滞,能无延迟地得到所要的控制结果。
财务,通过具有上述的周期的复位功能,例如在实施前面说过的日本国;特開2004-227062号公报所揭示的自动调整时,该实施时刻即使在时间比例周期之中仍能无迟滞地将该时间比例信号变更设定成100%。因而能高效地执行自动调整。
还有,例如利用计数器的溢出控制时间比例周期(循环时间),同时将该计数器的计数值和PID输出值比较生成时间比例信号时,通过将该计数器进行复位,便可执行时间比例周期(循环时间)的复位。
另外,在将时间比例信号的周期复位时,根据此时时间比例周期的经过时间对新生成的时间比例信号进行校正,可以制止时间比例信号激烈变化。另外,改变控制目标温度(目标设定值SP)12时,可以判定伴随其的操作量MV的变化大小与此相适应地执行前述的时间比例周期的复位。具体地说,只在操作量MV的变化大于规定阈值时才执行时间比例周期的复位,在上述操作量MV的变化小时,可以省略上述复位处理。另外,在对上述的温度以外的控制对象进行时间比例控制时,当然本发明也能同样地适用。
实施方式2以下,对本发明涉及的时间比例控制型的控制装置的第2实施方式进行说明。
该第2实施方式的控制系统的概要构成示于图7。如图中所示,其结构做成在输出控制部16,改变由所述操作部11设定的控制目标温度(目标设定值SP)12时,或PID控制部14求出的操作量MV(PID输出)较大变化时,时间比例输出部15的动作如以下所述地进行控制。尤其是其结构做成输出控制部16控制所述时间比例输出部15的动作,该时间比例输出部15在该周期内应追加与上述操作量(PID输出)MV的变化部分相当的导通(ON)时间的时间比例信号。
具体地说,上述时间比例输出部15例如在操作量(PID输出)MV是30%的状态下,输出与周期30%相当的时间宽度的时间比例信号Ton后,在上述操作量(PID输出)MV改变为50%时,输出控制部16控制所述时间比例输出部15的动作,将该改变时刻作为同步启动追加与所述操作量(PID输出)MV的变化部分20%相当的时间宽度的时间比例信号Ton。而且利用该时间比例信号Ton的追加输出,使该周期中综合的时间比例信号的输出时间(导通(ON)时间)为50%,通过这样,就能迅速地追随上述操作量(PID输出)MV的变化而动作。
这里参照图8示出的时序图,依照图9及图10中分别示出的控制步骤对根据上述输出控制部16的控制所述时间比例输出部15中的时间比例信号Ton的生成进行说明。
所述时间比例输出部15例如具有在1个周期内对与0~100%相当的值计数的计数器。而且,时间比例输出部15的结构做成如图2所示,通过对表示0~100%的值的上述操作量(PID输出)MV和上述计数器的计数值TC比较,从而操作量MV在大于上述计数值TC的期间生成成为导通(ON)的信号作为所述的时间比例信号Ton,并进行输出。
而且在周期之中改变设定值SP时,或操作量(PID输出)MV较大变化时,时间比例输出部15接受输出控制部16的控制,如以后将说明的那样将上述操作量MV的变化时刻作为同步启动新生成与上述操作量MV的变化部分相当的时间宽度的时间比例信号Ton。
具体地说,时间比例输出部15的时间比例运算首先如图9所示,取得上述计数器的计数值TC作为当前的周期经过时间(%)(步骤S1)。然后,判定该计数值TC是否到达1个周期(100%),也就是1个周期是否结束(步骤S2)。而且,在上述计数值TC到达100%时,将所述计数器复位并将其计数值TC初始化为零(步骤S3)。再将追加生成时间比例信号的控制用的参数STC、TAT、TR分别初始设定成‘0’,同时,将时间比例信号Ton的导通(ON)的履历(标志)初始设定成断开(OFF)(步骤S4)。
还有,上述时间比例信号的导通(ON)的履历(标志),是表示在1个周期内是否已输出时间比例信号Ton的信息。通常,在该时间比例信号的导通(ON)的履历为导通(ON)‘1’时,禁止在该周期内生成新的时间比例信号Ton。另外,参数STC为表示使时间比例信号Ton导通(ON)时的经过时间(导通(ON)时间)的信息。参数TAT为表示现在正在输出的时间比例信号Ton在1个周期内是否追加过、或者是否正指示追加时间比例信号Ton的信息(标志)。另外,参数TSC为表示将一次时间比例信号Ton作为导通(ON)的时间之总和的信息。而且,参数TR是表示在1个周期内的时间比例信号Ton的输出累计时间的信息。
如上所述,随着1个周期的结束初始化处理完成后,或者在当前的周期经过时间,即上述计数值TC不满1个周期时,首先,将该时刻的PID输出作为用于生成(输出控制)时间比例信号Ton的操作量MV而取得(步骤S5)。顺便说明,PID输出例如以比考虑到使冷却器21导通(ON)·断开(OFF)的执行机构的寿命假设为30秒等设定得足够长的1个周期还要短的周期,例如可每隔0.1秒逐次求出。换言之,图9示出的处理过程为与求PID输出的周期同步反复高速地执行。
如上所述,若已取得操作量(步骤S5),则接着判定在1个周期内是否发生调整时间比例信号Ton用的条件(同步触发)(步骤S6)。这一判定例如可以通过检查前述的参数TAT来进行。该参数TAT例如如图10所示,随着设定值SP的改变更新操作量MV时可作为导通(ON)‘1’进行设定,在这一操作量MV更新时将所述的时间比例信号Ton的导通(ON)的履历(标志)强制设成断开(OFF)。通过将该导通(ON)的履历(标志)强制设成断开(OFF),例如即使在1个周期内已输出时间比例信号Ton时,依旧能再度允许在该周期内生成时间比例信号Ton。
而且,参数TAT为‘0’,在确认没有特别产生调整时间比例信号Ton的时间宽度用的条件(同步启动)时,不改变操作量MV,因而不必重新生成时间比例信号Ton,所以将所述计数值原封不动地作为前述的参数STC取入(步骤S7)。再将当前的操作量MV作为后述的操作量MV*就这样地求得(步骤S8)。而且管理当前周期管理开始以后至当前时刻的经过时间,执行来自后述的步骤S10的处理。
与此相反,参数TAT为‘1’,在调整时间比例信号Ton的时间宽度用的条件(同步启动)成立时(步骤S6),即在1个周期中操作量MV变化时,根据在该时刻新取得的操作量求出与该操作量MV变化部分相当的时间比例信号Ton用的操作量MV*(步骤S9)。
即,例如,在随着设定值SP的改变操作量MV增加时,除已输出的时间比例信号Ton外,还应生成与该增加量相当的时间宽度的时间比例信号Ton,在新取得的操作量MV上加上所述参数STC的值之同时,还通过减去表示过去输出的时间比例信号Ton的时间宽度的所述参数TR的值MV*=MV+STC-TR以上式求出应该新生成的时间比例信号的操作量MV*(步骤S9)。
这一处理将改变操作量MV的时刻作为同步触发通过和前述的计数值TC间的比较追加生成新的时间比例信号Ton,通过增加从该周期的开始时刻起至操作量MV的改变时刻为止的经过时间即参数STC的值,从而意味着对所述计数值TC校正其时间经过部分。但在通过这样校正的值和前述的计数值TC比较,新生成时间比例信号Ton时,就与改变了其时间宽度的操作量MV相当。
通过从加上参数STC校正后的值(MV+STC),减去在该周期已输出的时间比例信号Ton的时间宽度(参数TR),以(MV+STC-TR)算式求出仅加上与所述操作量MV的变化量相当的校正量后的操作量MV*。然后将利用这样的处理求出的操作量MV*供与前述的计数值TC比较。
然后,判定时间比例信号的导通(ON)的履历是否是导通(ON)‘1’、或前述的计数值TC是否大于操作量MV*(步骤S10)。然后在时间比例信号的导通(ON)的履历为断开(OFF)‘0’,并且操作量MV*大于计数值TC时,因满足输出时间比例信号Ton的条件,所以先使时间比例信号Ton导通(ON)后进行输出(步骤S 11),使时间比例信号的导通(ON)的履历为导通(ON)‘1’(步骤S12)。而且更新前述的参数STC的值,管理上述时间比例信号Ton的导通(ON)时间(继续时间)(步骤S13)。
与此相反,在时间比例信号的导通(ON)的履历是导通(ON)‘1’时,或前述的计数值TC大于操作量MV/MV*、即在操作量MV/MV*不满计数值TC时(步骤S10),意味着不满足输出时间比例信号Ton的条件。因此在这种情况下,首先将时间比例信号Ton断开(OFF),中止其输出(步骤S14)。而且在上次处理过程中时间比例信号Ton为导通(ON)‘1’,在本次处理过程中判定上述时间比例信号Ton是否为断开(OFF)‘0’(步骤S15)。
而且,在本次处理过程中,在上述时间比例信号Ton开始成为断开(OFF)时,通过在表示前述的时间比例信号Ton的累计导通(ON)时间的参数TR上加上表示本次时间比例信号Ton的总输出时间的参数TSC,更新上述参数TR(步骤S16)。而且,将上述参数TSC初始化为‘0’(步骤S17)。在上述参数TSC初始化后,或在所述的步骤S14即使在上次的处理过程判定时间比例信号Ton为导通(ON)时,将前述的计数值TC作为参数STC重新设定,从周期的导通(ON)开始时刻起更新时间比例信号Ton成为导通(ON)的经过时间(步骤S18)。
通过依次反复执行这样的处理过程,在1个周期中改变操作量MV时,将该操作量MV的改变时刻作为同步触发追随上述操作量MV的改变而动作,追加生成与该变化量相当的时间宽度的时间比例信号Ton。具体地说,操作量MV和计数值TC比较输出与上述操作量MV相当的时间宽度的时间比例信号Ton后,在该周期内改变操作量MV时,将该改变时刻作为同步触发,重新生成与该变化量相当的时间宽度的时间比例信号Ton并进行输出。其结果,在该周期内时间比例信号T0n的总输出时间与改变后的操作量MV相当,这里,不管循环时间的周期如何,而是随着操作量MV的改变迅速修正时间比例信号Ton。
因此,利用上述时间比例控制装置,即使改变控制目标温度(目标设定值SP)12,也能根据该改变后的控制目标温度(目标设定值SP)12和控制对象20的温度(控制值PV)13之间的偏差,迅速地控制冷却器21的动作。因此,能消除其控制响应迟缓,跟踪性能良好地得到所要的控制结果。而且,仅通过增加简单的控制算法,该算法追加生成与操作量MV的变化部分相当的时间宽度的时间比例信号Ton,就能保持对冷却器21的控制规格(周期)不变,提高其控制响应特性。
因此,与前述的图5示出的情形一样,根据本发明,由于在改变目标设定值SP的时刻能迅速产生新的时间比例信号Ton,所以能无时间延迟地对控制对象进行控制,尽快追随新的目标设定值SP进行动作。因此,能提高对于目标设定值SP之改变的响应特性。
此外,本发明不限于上述的实施方式。例如在对上述的温度以外的控制对象进行时间比例控制时,本发明当然也能同样地适用。另外,在操作量MV改变时,对于新生成时间比例信号Ton的算法当然可作各种的变形。总之,只要在不背离本发明的宗旨的范围,可作各种变形并加以实施。
权利要求
1.一种时间比例控制型的控制装置,其特征在于,包括根据对控制对象的控制目标值和表示所述控制对象的状态的值之间的偏差,求得作为控制所述控制对象的设备的操作量的操作量检测部;与预定的周期同步启动,生成与所述操作量检测部求得的操作量对应的时间比例信号、并提供给所述设备的时间比例输出部;以及在所述周期内改变所述控制目标值时,在该改变时刻将所述时间比例输出部的启动定时进行复位,或根据所述操作量的增加部分,再启动所述时间比例输出部的输出控制部。
2.如权利要求1所述的时间比例控制型的控制装置,其特征在于控制所述控制对象的设备是冷却器,所述控制对象是通过所述冷却器的运转而被控制的温度。
3.如权利要求1所述的时间比例控制型的控制装置,其特征在于控制所述控制对象的设备是冷却器及加热器,所述控制对象是通过从所述冷却器或加热器中选择一个运转而被控制的温度。
4.如权利要求1所述的时间比例控制型的控制装置,其特征在于所述时间比例输出部在预定的周期内,使控制所述控制对象的设备与规定所述周期的定时同步,经过与所述操作量相当的时间运转后,生成使所述设备停止的信号,作为所述时间比例信号。
5.如权利要求4所述的时间比例控制型的控制装置,其特征在于所述时间比例输出部在使冷却器运转控制温度时,在预定的周期内生成规定使所述冷却器运转的导通(ON)时间的比例的信号,作为所述时间比例信号。
6.如权利要求4所述的时间比例控制型的控制装置,其特征在于所述时间比例输出部在有选择地使冷却器或加热器运转控制温度时,择一地生成根据所述冷却器的规格所决定的第1周期内规定使所述冷却器运转的导通(ON)时间的比例的信号、或在根据所述加热器的规格所决定的第2周期内规定使所述加热器运转的导通(ON)时间的比例的信号,作为所述时间比例信号。
7.如权利要求1所述的时间比例控制型的控制装置,其特征在于所述输出控制部在所述控制目标值的改变时刻,将所述时间比例输出部进行复位,并与该复位时刻同步,从所述时间比例输出部得到与新的操作量相当的时间比例信号。
8.如权利要求1所述的时间比例控制型的控制装置,其特征在于所述输出控制部随着所述控制目标值的改变,在所述周期内操作量变化时,求出新的操作量、以及到所述操作量变化时刻为止与从所述时间比例输出部输出的所述时间比例信号相当的操作量之差,在新的操作量大时,将所述操作量的变化时刻作为同步触发,再次启动所述时间比例输出部,重新生成与所述操作量之差相当的时间比例信号。
9.如权利要求8所述的时间比例控制型的控制装置,其特征在于所述输出控制部将到所述偏差变化时刻为止输出的所述时间比例信号的导通(ON)经过时间、与相当于新求出的操作量的导通(ON)时间进行比较,当所述导通(ON)时间比所述导通(ON)经过时间长时,所述输出控制部生成与所述导通(ON)时间和导通(ON)经过时间之差相当的导通(ON)时间的时间比例信号。
全文摘要
本发明揭示一种在时间比例信号的周期长的控制系统、例如采用冷却器的温度控制系统中使用的控制装置,在这种控制装置中即使在随着控制目标值SP的改变对上述冷却器的操作量较大变化时,也能通过在该变化时刻将时间比例输出部的启动时进行复位,重新生成时间比例信号Ton。或者在上述变化时刻,根据上述操作量MV的增加部分,相应再启动时间比例输出部,生成时间比例信号Ton不足的部分,从而跟踪良好地使时间比例信号Ton变化。
文档编号G05B13/02GK1834826SQ20061006733
公开日2006年9月20日 申请日期2006年3月16日 优先权日2005年3月16日
发明者平山博文, 菅原文仁 申请人:株式会社山武
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1