专利名称:表用的二极式步进电机的利记博彩app
技术领域:
本发明涉及用于模拟式电子表的表用二极式步进电机。
背景技术:
由于模拟式电子表作为动力源使用电池,所以如果连续使用一定时间则成为电池用尽而停止工作。因此由于必须定期地更换电池,所以这对使用者来说非常麻烦。
而且,由于该电池的更换作业不得不依赖专业人员,所以想要使用时电池已经不足时,因为无法立即更换电池故非常不方便。
这样一来,因为模拟式电子表的电池不足对使用者来说是很大的问题,故近年来正在进行这种模拟式电子表中的电池的长寿命化的研究,或者把携带中随着使用者的运动而动作的发电机内装于表内,内装太阳能电池等发电机构,完全不用更换电池的表的开发。
可是,虽然这种发电机构内装式的模拟式电子表靠储存在内装的电容器或者蓄电池中的电力来驱动表,但是因为使用者使用表的条件有所不同,故有时难以始终产生必要的足够的电力。
因此,为了使表在使用中不停地稳定地工作,在这种发电机构内装式的表中也有必要谋求减少电力消耗。
另一方面,就电池来说,虽然如果能够使用尺寸加大而容量大的电池则可以谋求长寿命化,但是因为表的设计上的制约所以有时不能过分地加大电池的尺寸。因而,如果谋求电池的长寿命化,则有必要减少表中消耗电力。
这里,如果概略说明模拟式电子表的机构,则是遵循靠晶体振子等产生的基准信号间歇驱动表用二极式步进电机,经由齿轮把步进电机的运动传递到指针,借此来进行时刻显示的结构。
因此,在这种模拟式电子表中,电力大致上分别在包含晶体振子并产生基准信号的电路部分和使指针旋转的步进电机部分中被消耗。
然而,在现在的模拟式电子表中,由于电路部分被集成电路化而消耗电力正在变小,所以归根到底电力的大部分消耗于运针用的步进电机的驱动。因此,该步进电机的消耗电力的减少对于整个表的减少消耗电力给出的效果很大。
图22是表示现有技术的表用二极式步进电机的概略结构的俯视图。
此一表用二极式步进电机(以下也单称为“步进电机”)包括把导线7b卷绕在由高导磁率的材料制成的磁心7a上的线圈7,和靠螺钉8、8分别结合并磁性上连接于该线圈7的磁心7a两端的定子201。
在该定子201上,几乎在中央形成转子孔202,在该转子孔201中能够旋转地配置着转子3。
该转子3由转子磁铁3a和转子轴3b组成,转子磁铁3a由强磁性材料制成并形成尺寸小的圆柱形。而且,把成为旋转轴的转子轴3b沿垂直于纸面的方向嵌入在该转子磁铁3a的中心形成的轴孔中成为一体,把转子磁铁3a沿直径方向充磁成二极。
该转子3靠省略了图示的轴承分别旋转自如地支承转子轴3b的两端部,位于转子孔202的中心。在该转子轴3b的端部形成齿轮,成为旋转运动经由该齿轮传递到表的指针的构成。
进而,在转子孔202的内周上设置保持力矩设定机构,在步进电机未驱动时靠该保持力矩设定机构使转子磁铁3a的磁极位于初始相位角θ1的一定方向上,以规定的保持力矩使转子3停止并保持在该位置上。
此一步进电机通过施加驱动电压而使正、负电流交替地流过线圈7,根据流过的电流的大小在转子孔202的内侧产生与正负相对应的方向的磁场,使该磁场作用于预先充磁的转子磁铁3a而使转子3沿图22中逆时针旋转方向每次旋转180°(1步)。
下面说明该步进电机的1步的运动。
在使电流流过图22中所示的线圈7的场合令产生的磁通使转子孔202的内部产生的磁场的方向为励磁方向线12时,在电流未流过线圈7的状态下,借助于由转子磁铁3a的磁极与定子201的磁性作用产生的保持力矩设定机构的保持力矩,转子3被保持并停止于成为转子磁铁3a的磁化方向并连接两个磁极的线4在图22中相对于励磁方向线12沿逆时针旋转方向转过初始相位角θ1的位置上。
在此一状态下,如果转子3正转的方向的电流流过线圈7,则在线圈7中产生磁通,在转子孔202的内部产生磁场,转子3借助于此一磁场与转子磁铁3a的永久磁化量的相互作用而受到旋转力矩,克服上述保持力矩而开始旋转。而且,如果电流仅在适当的时间流过线圈7,则转子3旋转180°到下一个停止位置停止。
可是,在这种构成的步进电机中,其单位时间中的消耗电力由流过励磁用的线圈7的电流与施加的电池电压之积来表示。而且,因为当时所施加的电池电压几乎一定,所以减少步进电机的消耗电力就在于在满足对步进电机所要求的驱动特性的同时如何减小流过线圈7的电流。
此外,由于此一步进电机是在电流流过线圈7时在转子3中产生旋转力矩,克服保持力矩使转子3旋转的,所以如果减小保持力矩则旋转力矩也可以与之成比例地减小。
由于该流过线圈7的电流与旋转力矩成比例所以如果可以减小保持力矩则可以减小流过线圈7的电流,结果能够实现表用步进电机的减少消耗电力。
可是,表用步进电机的保持力矩发挥这样的作用,即表在跌落等中受到冲击时不发生蹿针地保持指针从而能够显示正确的时间,并且克服表内的轴承或齿轮中产生的摩擦力矩而使指针落在正确的停止位置。
因而,为了实现减少消耗电力单纯地减小保持力矩是不行的,该保持力矩有必要设定成满足维持表的功能所需的最低限度的保持力矩。
关于此一表所需的保持力矩,像国际申请公开WO98/30939号公报中所公开的那样,如果由于冲击在指针上产生的动能小于由转子的保持力矩产生的保持势能,也就是磁性势能之差则不发生蹿针。
而且,因为冲击时指针所受到的动能与指针具有的惯性矩的二次方成比例,所以如果采用减小了惯性矩的指针,则可以减小保持势能,也就是保持力矩。
因此,把所需最低限度的保持力矩设定成通常的表用步进电机的保持力矩的几分之一左右的极小的值成为可能,能实现步进电机的减少消耗电力。
接下来,就现有技术的表用步进电机的设在定子上的保持力矩设定机构进行说明。
作为现有技术的表用步进电机的设在定子上的保持力矩设定机构,主要有如以下说明的两种结构。
其一是把图22中所示的表用步进电机中的定子形状如图23中所示,由高导磁率的材料来形成定子201,在其纵长方向的两端分别形成结合于线圈7的磁心7a的两端用的孔6、6。
为了设定保持力矩和初始相位角θ1(图22),在该定子201的几乎中央形成的转子孔202取为由相互错开中心的两个半圆组合的形状。
而且,通过把该两个半圆错开进行组合,分别形成错开量G的两个阶梯部204a、204b。在此一定子201中通过调节该错开量G可以把保持力矩设定成想要的值。
再者,在定子201的转子孔202上形成这种阶梯部204a、204b的结构,在例如日本特开昭49-132507号公报有记载。
此外,下文中把像这样在定子的转子孔上形成阶梯部的定子称为错开型定子。
接下来参照图24就另一种保持力矩设定机构的结构进行说明。再者,根据需要关于部分通用的零件使用图22中说明的标号来进行说明。
此一定子211,作为赋予转子3的保持力矩和初始相位角用的保持力矩设定机构,在转子孔212的内周上把一对凹部205a、205b设在相对于转子孔212的中心轴对称的位置上。
而且,通过这些凹部205a、205b的各自的中心的直线24取为相对于转子孔212的励磁方向21倾斜角度θ11。
在此一定子211中,令通过凹部205a、205b的中心的直线24与通过转子孔212的中心轴并垂直于定子211的励磁方向的直线27的夹角为以逆时针旋转方向为正值的凹部205a、205b的设置角度θ12,制成通过调节该设置角度θ12来设定转子3的初始相位角θ1(图22) 。
在具有这种定子211的结构的表用步进电机中,靠一对凹部205a、205b来确定转子3的保持力矩。
再者,这种在定子211的转子孔212上形成凹部205a、205b的结构,记载在例如日本特开昭51-1908号公报中。
此外,下文中把像这样在定子的转子孔上形成凹部的定子称为缺口型定子。
像以上说明的那样,在使用现有技术的错开型定子的步进电机的场合,可以通过改变转子孔的阶梯部的错开量来调节保持力矩的大小和初始相位角。
因此,在通常的表用步进电机中,由于转子孔的平均直径为1700μm左右,所以如果把定子的阶梯部的错开量取为40~50μm左右,则可以把最大保持力矩设定成300nNm左右。
可是,由于如果为了减少消耗电力而打算更大幅度地减小保持力矩,则不得不把错开量极端地减小到10μm左右,所以为了产生稳定的保持力矩,定子的加工精度方面变得困难。
此外,如果像这样极端地减小错开量,则连带地初始相位角(参照图22的θ1)也减小,因为在驱动转子之际需要大的消耗电力,故结果成了无法减少消耗电力。
进而,在错开型定子的结构的场合,虽然通过加大转子孔的直径能够在同一错开量下不改变初始相位角而把保持力矩设定得小一些,但是如果像这样加大转子孔的直径,则转子孔内产生的磁场与转子磁铁的相互作用减弱。
也就是说,这样一来因为电气机械结合系数减小,故使电流流过线圈而在转子上产生的旋转力矩减小。
因此,减少了由上述保持力矩所形成的保持势能,即使适当地设定了初始相位角,也由于为了补充电气机械结合系数的减小引起的旋转力矩的减小量,不得不增加流过线圈的电流,所以结果抵销了把保持力矩设定得小一些带来的节电效果,无法实现减少消耗电力。
另一方面,在缺口型定子的结构的步进电机的场合,由于可以由一对凹部的设置角度来设定初始相位角,并且通过增减在转子孔内周上形成的凹部的面积和来调节保持力矩,所以如果为了减少消耗电力而打算比现状更大幅度地减小保持力矩,则不得不极端地减小一对凹部的面积和,也就是凹部的尺寸。因而,在定子的加工精度方面,得到稳定的保持力矩变得困难了。
进而,在此一缺口型定子中也是,虽然通过加大转子孔半径能够不改变凹部的面积和而设定小的保持力矩,但是这样一来与错开型定子的场合同样,由于使电气机械结合系数减小所以无法减少消耗电力。
如上所述,由于如果为了实现消耗电力的进一步减小而大幅度地把保持力矩设定得小些,则在上述现有技术的定子结构中,不得不极端地减小在定子上形成的阶梯部的错开量,或者极端地减小在定子上形成的凹部的尺寸,所以定子的加工精度上是困难的。因而,难以设定稳定的保持力矩。
因此,在使用这种现有技术的结构的定子的表用步进电机中,难以实现减少消耗电力。
发明的公开本发明是鉴于这种技术背景而做成的,其目的在于通过在定子的结构上动脑筋来解决上述课题,提供一种适于减少消耗电力,而且制作容易的表用二极式步进电机。
本发明为了实现上述目的,是一种表用二极式步进电机,包括由转子磁铁和转子轴组成的转子,有设置该转子用的转子孔并由高导磁率材料制成的定子,以及导线卷绕在由高导磁率材料制成的磁心上,上述磁心的两端磁性上与定子的两端连接的励磁用的线圈,其中上述定子在转子孔的内周上按在其圆周方向上以不同的设置角度有多个保持力矩设定机构。
这里,所谓保持力矩设定机构的设置角度是指针对垂直于定子的励磁方向的方向的配置角度,该配置角度之差相差180°的场合看成是同一设置角度。
如果用此一表用二极式步进电机,则即使是因为在定子的转子孔的周围形成环串的轴孔或固定销用的孔无法为了得到作为目标的初始相位角和保持力矩而在所需的设置角度上设置单一的保持力矩设定机构的场合,也可以通过把由多个保持力矩设定机构所形成的保持力矩分别进行向量分解,把对应于该分解的各向量的两个以上的保持力矩设定机构以不同的设置角度设置在避开上述轴孔或固定销用的孔的位置上,而得到作为目标的初始相位角和保持力矩。
此外,上述定子可以经由由低导磁率或者非磁性的材料制成的连接部把分别由高导磁率材料制成的第1定子零件和第2定子零件结合起来构成。
这样一来,定子成为磁性上分离成两个部分的结构,由于借助于靠线圈励磁的磁通可以效率更高地产生使转子旋转用的转子孔的内部磁场,所以可以减小流过线圈的电流而实现减少消耗电力。
此外,定子由于由低导磁率材料或者非磁性材料来形成连接部,所以没有必要把连接部极端地做细,故可以确保所需的机械强度。
进而,在上述表用二极式步进电机中,把第1定子零件与第2定子零件连接起来的连接部成为多个保持力矩设定机构中的至少一个,并且该连接部以外的其他保持力矩设定机构可以配置在转子孔的内周的与上述连接部不同的设置角度上。
进而,上述多个保持力矩设定机构可以是分别在转子孔的内周上形成的一对凹部或者一对凸部。此外,上述其他保持力矩设定机构制成在转子孔的内周上形成的一对凹部或者一对凸部时,可以包含形状关于上述转子孔的中心为非对称者。
这样一来,通过改变凹部或者凸部的大小可以调节保持力矩,此外通过改变凹部或者凸部的设置位置可以调节初始相位角。
而且,该保持力矩设定机构当中形状关于转子孔的中心为非对称者,可以是夹着转子孔的中心把一对凹部或者凸部对峙地设置在两侧的转子孔内周上者,也可以是相对于转子孔的中心仅在一方侧的转子孔内周上设置凹部或者凸部者。
进而,上述多个保持力矩设定机构可以包含方式不同的并且转子孔的圆周方向的设置角度彼此不同者的组合。
而且,该保持力矩设定机构当中方式不同者的组合,可以制成前述错开型方式与缺口型方式的组合,也可以制成下文述及的长圆型方式与前述缺口型方式的组合。
再者,也可以是在包括包含形状关于转子孔的中心为非对称者在内的多个保持力矩设定机构的表用二极式步进电机中,经由由低导磁率材料或者非磁性材料制成的连接部把第1定子零件与第2定子零件连接起来,该连接部成为多个保持力矩设定机构中的至少一个。
此外,也可以是在包括方式不同的上述多个保持力矩设定机构的表用二极式步进电机中,同样经由由低导磁率材料或者非磁性材料制成的连接部把第1定子零件与第2定子零件连接起来,该连接部成为多个保持力矩设定机构中的至少一个。
附图的简要说明
图1是表示根据本发明的表用二极式步进电机的第1实施例的概略结构的俯视图。
图2是表示同样该表用二极式步进电机中的定子的结构的俯视图。
图3是表示图1的表用二极式步进电机的保持力矩与消耗电力的关系的曲线图。
图4是表示同样该表用二极式步进电机中的初始相位角与消耗电力的关系的曲线图。
图5是表示根据本发明的表用二极式步进电机的第2实施例的与图1同样的俯视图。
图6是表示同样该表用二极式步进电机中的定子的结构的俯视图。
图7是放大表示同样该定子上所设置的作为保持力矩设定机构发挥功能的凹部的俯视图。
图8是表示图5的表用二极式步进电机中的一对凹部15e、15f的设置角度与最大保持力矩以及初始相位角的关系的曲线图。
图9是表示图5的表用二极式步进电机中的凹部的深度与最大保持力矩的关系的曲线图。
图10是表示图5的表用步进电机中的凹部的宽度与最大保持力矩的关系的曲线图。
图11是表示根据本发明的表用步进电机的第3实施例的与图1同样的俯视图。
图12是表示同样该表用步进电机中的定子的结构的俯视图。
图13是表示根据本发明的表用步进电机的第4实施例中的定子的结构的与图6同样的俯视图。
图14是表示根据本发明的表用步进电机的第5实施例中的定子的结构的与图12同样的俯视图。
图15是表示根据本发明的表用步进电机的第6实施例中的定子的结构的与图13同样的俯视图。
图16是表示根据本发明的表用步进电机的第7实施例中的定子的结构的与图15同样的俯视图。
图17是表示根据本发明的表用步进电机的第8实施例中的定子的结构的与图14同样的俯视图。
图18是表示根据本发明的表用步进电机的第9实施例中的定子的结构的与图15同样的俯视图。
图19是表示根据本发明的表用步进电机的第10实施例中的定子的结构的与图17同样的俯视图。
图20是表示根据本发明的表用步进电机的第11实施例中的定子的结构的与图18同样的俯视图。
图21是表示根据本发明的表用步进电机的第12实施例中的定子的结构的与图20同样的俯视图。
图22是表示现有技术的二极式表用步进电机的概略结构的俯视图。
图23是表示该表用步进电机的定子的结构的与图2同样的俯视图。
图24是表示现有技术的作为保持力矩设定机构设置了一对凹部的定子的结构的与图23同样的俯视图。
图25是表示现有技术的表用步进电机中的定子的另一个例子的与图24同样的俯视图。
实施发明的最佳形态为了更详细地说明本发明,按照附图来说明本发明的实施例。
〔第1实施例图1至图4〕图1是表示根据本发明的表用二极式步进电机的第1实施例的概略结构的俯视图,图2是表示同样该表用二极式步进电机中的定子的结构的俯视图,图3是表示图1的表用二极式步进电机的保持力矩与消耗电力的关系的曲线图,图4是表示同样该表用步进电机中的初始相位角与消耗电力的关系的曲线图。
此一表用二极式步进电机(以下也单称为“步进电机”)如图1中所示备有由转子磁铁3a和转子轴3b组成的转子3,有设置该转子3用的转子孔2的定子1,以及导线7b卷绕于由高导磁率材料制成的磁心7a,磁心7a的两端磁性上与定子1的两端连接的励磁用的线圈7。
而且,因为此一步进电机除了定子1的结构以外与图22中说明的现有技术的表用二极式步进电机相同,故关于它们的相同部分赋予与图22相同的标号,省略其说明。
此一步进电机的定子1如图2中所示分别由高导磁率材料制成的第1定子零件1a(以下单称为“定子零件1a”)和第2定子零件1b(以下单称为“定子零件1b”), 经由由低导磁率或者非导磁性的材料制成的连接部1c、1d结合起来构成。
而且,在该定子1的几乎中央形成的转子孔2的内周上,如图1中所示设置多个通过转子磁铁3a的磁极与定子1的磁性作用以规定的保持力矩把转子3不旋转地保持在旋转方向的规定位置,也就是转子磁铁3a的直径方向上充磁为二极的磁极的连接线4在步进电机未驱动时成为初始相位角θ1的位置上的保持力矩设定机构。
该多个保持力矩设定机构在本实施例中,如图2中所示,是在转子孔2的内周上形成的一对凹部5a、5b和一对连接部1c、1d,该凹部5a、5b和连接部1c、1d在相对于转子孔2的中心对称的位置上形成。
而且,如图所示该一对凹部5a、5b和一对连接部1c、1d的设置角度不同。该设置角度是指相对于与定子1的励磁方向的磁场方向线12成直角方向的配置角度,其细节在第2实施例以后(图6以后)进行说明。
此外,在定子1的纵长方向的两端部上,形成分别磁性上连接于线圈7的磁心7a的两端用的孔6、6。
为了制造此一定子1,用由作为高导磁率材料的坡莫合金制成的厚度500μm的带材通过压力加工形成成为以后的压力加工用的定位孔的导向孔和转子孔2的底孔和固定用孔6、6,并且冲裁留出与上述带材局部相连接的连接部分(未画出)的外形形状。
接着,在成为连接部1c、1d的部分上用冲裁形成宽度200μm的窄缝,在该窄缝中插入由低导磁率材料或者非磁性材料制成的规定长度的线材,用激光焊接进行对接焊接把由窄缝分离的定子零件1a和定子零件1b结合起来。
然后,用压力加工冲裁转子孔2和凹部5a、5b的部分,最后冲裁与带材连接的上述连接部分而结束外形加工。而且,对该外形加工结束了的部件进行磁性退火,制成步进电机的定子1。
下面就装入这种结构的定子1而构成步进电机时,为了求出实现减少消耗电力所需要的适当条件所进行的实验结果进行说明。
在实验中,分别调查了步进电机的保持力矩与消耗电力的关系,以及初始相位角与消耗电力的关系,进而消耗电力与定子的连接部的结构的关系。
再者,实验用在现有的表用二极式步进电机中装入根据本实施例的定子1者来进行测定。此外,作为驱动波形用斩波驱动波形,调节驱动波形的各脉冲的通断比而求出能够正常驱动的最小消耗电力。
特别是,关于用于测定的定子1,不是用压力加工来形成凹部5a、5b的部分,而是按照各测定条件在磁性退火前通过放电加工来形成的。
首先就保持力矩与消耗电力的关系进行说明。
表用步进电机中的消耗电力由于通过使保持力矩减小可以减小励磁所需要的流过线圈7的电流,所以作为其结果可以认为实现减少消耗电力。
因此,就实际上使保持力矩变化的场合的消耗电力的变化进行实验来调查。
该测定中使用的定子1,为了调整保持力矩而准备了几种改变设在转子孔2的内周上的半圆形凹部5a、5b的切入深度者。此外,用自制的转子旋转角度测定器来测定针对转子3的位移角度的角速度,根据其测定结果和转子3的惯量来求解运动方程式针对各定子1算出保持力矩。
此外,对1步驱动时的流过线圈7的电流与施加的驱动电压之积进行积分而求出消耗电力。进而,由于保持力矩的大小存在着位移角度依存性,所以在各测定值的比较中用最大保持力矩。而且,测定中用的定子1的最大保持力矩,作成以大约50nNm间隔从50nNm到250nNm者。
该实验的测定结果示于图3。根据该测定结果可以看出,在最大保持力矩为250nNm时消耗电力约为800nJ,但是在使最大保持力矩减小到100nNm时消耗电力成为大约350nJ,设定的最大保持力矩与为了1步驱动所需要的消耗电力的关系几乎有比例关系。
这样一来,因为如果使保持力矩减半则消耗电力也减半,所以可以看出保持力矩的减小对于消耗电力的减少有很大的效果。
可是如前所述在表用步进电机中,为了在使表跌落之际由冲击不引起蹿针,能够显示正确的时间,并且克服轴承或齿轮中产生的摩擦力矩而使指针稳定地停止在静止位置,需要必要的最低限度的保持力矩。
而且,如果因冲击而受到的表的指针的动能小于由转子的保持力矩所形成的保持势能,则不发生蹿针。也就是说,通过把指针的惯性矩调整得小些,可以减小保持势能,也就是减小保持力矩。
这样一来,通过把指针的惯性矩调整得小些,把必要的最低限度的保持力矩相对于通常的表用步进电机的保持力矩做成几分之一左右的极小的保持力矩成为可能。
这样一来,从图3中所示的测定结果可以看出,保持力矩的减小对于消耗电力的减少是有效的,该保持力矩能够极端地减小到通常的表用步进电机的保持力矩的几分之一。
下面就初始相位角与消耗电力的关系进行说明。
图1中所示的初始相位角θ1是表示旋转力矩与保持力矩的相位差的,是成为在转子孔2的内部产生的磁场的方向的磁场方向线12与转子3的静止位置上的转子磁铁3a的磁化方向的线4的夹角,是步进电机的驱动中的重要的参数。
在实验中,为了调查初始相位角与消耗电力的关系,使用了通过改变设在转子孔2的内周上的两个凹部5a、5b的设置位置把最大保持力矩一定地设定成50nNm,仅改变初始相位角的几种定子1。
此外,用自制的转子旋转角度测定器来测定针对转子3的位移角度的角速度,同时通过测定转子3进行旋转运动而在线圈7中产生的反电动势来算出初始相位角。
对1步驱动时的流过线圈7的电流与所施加的驱动电压之积进行积分来求出消耗电力。再者,测定中用的定子1的初始相位角作成以大约10°间隔从20°到80°者。
该实验的测定结果示于图4。根据该测定结果,在初始相位角从20°到40°的范围内消耗电力急剧地减少,在50~60°成为最小,以后如果加大初始相位角则消耗电力慢慢增加。
虽然一般来说作为初始相位角的最佳值用45°,但是像此一实验这样查明了,在把最大保持力矩减小到150nNm时,消耗电力成为最小的初始相位角的最佳值向大于45°的角度一侧移动。从以上结果可以看出,为了表用步进电机的减少消耗电力,最佳的初始相位角的设定是必要的。而且,在把最大保持力矩减小到150nNm的场合,最佳的初始相位角成为大于45°的角度,在此次的测定结果中查明了该角度为50~60°。
下面就消耗电力与定子的连接部的结构的关系进行说明。
在像图2中所示的定子1那样,用由低导磁率或者非磁性的材料制成的连接部1c和1d把定子零件1a和定子零件1b结合起来的结构的场合,因为能够把定子1磁性上分离成定子零件1a和定子零件1b两个部分,故可以在转子孔2的内部高效地产生使转子3旋转用的磁场。
因此,此次为了调查此一连接部与消耗电力的关系而进行实验。
在该实验中,在使用图2中说明的定子1,和使用图25中所示的现有技术的表用步进电机中所使用的有一对凹部5a、5b的定子221的场合进行了比较。
该现有技术的定子221准备了两种把由高导磁率材料制成的联络部223a、223b的最小宽度B制成100μm和200μm者。
另一方面,在图2中说明的构成的定子1把到连接部1c、1d的定子端缘的宽度Wa分别取为300μm,把定子零件1a与定子零件1b的间隔Wb分别取为200μm。
此外,进行比较的定子1和定子221制成成为相同的保持力矩和初始相位角。
实验的结果,在用现有技术的定子221者中,在把联络部223a、223b的最小宽度B取为200μm者中,因为在所用的驱动波形下无法在转子孔222的内部产生足够的磁场所以不能使转子旋转。
另一方面,在用把联络部223a、223b的最小宽度B取为100μm容易引起磁饱和的定子221者中,能够使转子旋转。
把此时的消耗电力与使用定子1的场合的消耗电力进行比较的结果,在使用定子1者中,与使用定子221者相比可以减少大约20%的消耗电力。
此外,定子1由于连接部1c、1d由低导磁率材料或者非磁性材料来形成,所以没有必要把连接部极端地取细,故可以确保足够的机械强度。
从此一结果可以看出,定子1由低导磁率材料或者非磁性材料来制成连接部1c、1d在减少消耗电力方面是理想的。
从以上分别就表用步进电机的保持力矩与消耗电力的关系,以及初始相位角与消耗电力的关系,进而消耗电力与连接部的结构的关系进行调查的结果可以看出,为了实现表用步进电机的消耗电力减少作为必要的定子的条件有以下三点。
也就是说第1是要取为所需的最低限度的小保持力矩。第2是与保持力矩另行独立地进行最佳的初始相位角的设定。第3是取为磁性上能把定子分离成左右两个部分的结构。
因而,如果使用同时满足所有这三个条件的定子,则能实现作为目标的表用步进电机的减少消耗电力。
也就是具体地说如图2中所示,为了能够独立地设定保持力矩和初始相位角θ1,最好是制成在转子孔2的内周上设置多个凹部5a、5b,用由低导磁率材料或者非磁性材料制成的连接部1c、1d把分成两个的定子零件1a和定子零件1b结合起来的结构的定子1。
如果把定子1取为这种结构,则因为能够通过凹部5a、5b的大小来调节保持力矩,此外能够通过改变凹部5a、5b的设置位置来调节初始相位角,故可以独立地设定适于减少消耗电力的保持力矩和初始相位角。
下面,就实际地作成实施以上的内容的步进电机,测定该步进电机的消耗电力,调查关于减少消耗电力的效果的结果进行说明。
在实验中,在现有的表用二极式步进电机中,代替现有的定子装入根据本实施例的定子1来进行消耗电力的测定。
此时使用的定子1,使用厚度500μm的坡莫合金作材料,在连接部1c、1d中使用镍铬合金。此外连接部1c、1d的尺寸如图2中所示把宽度Wa取为300μm,把定子零件1a与定子零件1b的间隔Wb取为200μm 。
进而设在该定子1上的转子孔2的直径取为1300μm,调节设在该转子孔2的内周上的凹部5a、5b的大小和设置位置,把初始相位角取为60°,把保持力矩设定成100nNm。此外,作为转子磁铁3a用外径800μm厚度400μm的钐钴磁铁。
针对装入了这种定子1的表用步进电机测定消耗电力时,可以实现1步中大约300nJ的消耗电力。
此一结果与图25中说明的使用现有技术的定子221的场合相比,可以把消耗电力减少大约20%。
〔第2实施例图5至图10〕下面参照图5至图10来说明根据本发明的表用二极式步进电机的第2实施例。
图5是表示根据本发明的表用二极式步进电机的第2实施例的与图1同样的俯视图,图6是表示该表用二极式步进电机中的定子的结构的俯视图,图7是放大表示同样该定子上所设置的作为保持力矩设定机构的凹部的俯视图。
本第2实施例的表用二极式步进电机因为除了定子的结构以外与图1至图4中说明的第1实施例的表用二极式步进电机相同,故对于那些相同的部分省略说明。
此一图5中所示的第2实施例的表用二极式步进电机,定子11的形状取为图6中所示的形状,在转子孔2的内周上在其圆周方向上以不同的设置角度分别形成作为多个保持力矩设定机构的两对凹部15c、15d和15e、15f。
而且,该对凹部15c、15d和该对凹部15e、15f在分别相对于转子孔2的中心对称的位置上分别形成。
该定子11由高导磁率材料制成,该对凹部15c、15d和该对凹部15e、15f都是设定保持力矩和初始相位角θ1用的,把通过该对凹部15c、15d的中心的直线25,与通过转子孔2的中心并垂直于定子1的励磁方向的磁场方向线12的直线27的夹角取为凹部15c、15d的设置角度θ2。
此外,把通过一对凹部15e、15f的中心的直线(在图6中与磁场方向线12一致)与直线27的夹角取为凹部15e、15f的设置角度θ3。再者,这些设置角度θ2和θ3在图6中以逆时针转动方向为正值。
此外,在两个保持力矩设定机构的配置角度沿转子孔2的圆周方向相差180°的场合,把它们看成是相同的设置角度。其理由是因为二极式步进电机的设置角度的相位差为180°的场合电气上相位差成为其2倍的360°,在该两个保持力矩设定机构上作用着同一方向的力矩的缘故。
各凹部15c~15f以完全相同的大小制成同一形状,像把该凹部15f放大地示于图7那样,取为切去由转子孔2的内径和与转子孔2同心圆的圆弧16夹着的部分的几乎矩形的形状,该切去部分的宽度分别取为Wc。而且,该各凹部15c~15f的深度D为转子孔2的半径R1与圆弧16的半径R2之差。
在制造该定子11之际用由作为高导磁率材料的坡莫合金制成的厚度500μm的带材通过压力加工形成成为压力加工中的定位孔的导向底孔和转子孔2的底孔和固定用孔6、6,并且冲裁留出与上述带材局部连接的连接部分(未画出)的外形形状。
接着,用压力加工冲裁转子孔2与凹部15c、15d和凹部15e、15f的部分,最后冲裁与带材连接的上述连接部分而结束外形加工。而且,对该外形加工结束了的部件进行磁性退火,制成步进电机的定子11。
下面就为了调查使用这种结构的定子11的步进电机中,分别改变两对凹部15c、15d和凹部15e、15f的设置角度θ2和θ3时的初始相位角θ1和保持力矩的关系所进行的实验结果进行说明。
该实验用国际申请公开WO98/30869号公报中所公开的旋转信息测定装置来进行,保持力矩的测定根据针对直接测定的转子的位移角的转子的角速度变化通过求解运动方程式来求出保持力矩。
此外,初始相位角θ1根据直接测定的转子的位移角和与针对该转子的位移角的转子的角速度变化同时测定的反电动势来求出。
而且,测定中使用的步进电机,使用把现有的表用步进电机的定子换装成图6中说明的定子11者,用它分别进行初始相位角θ1和保持力矩的测定。
此外,测定中使用的步进电机的定子11,在凹部15c、15d和凹部15e、15f的形成中不进行压力加工工序,而是在磁性退火前分别用放电加工在各设置角度为θ2、θ3的位置上形成一对凹部15c、15d和一对凹部15e、15f。
而且,制成多个把该一对凹部15c、15d的设置角度θ2取为15°,使另一对凹部15e、15f的设置角度θ3以15°间隔从45°变化到90°的定子11,针对装入这些各定子11的步进电机分别进行初始相位角θ1和保持力矩的测定。
再者,该各定子11的各凹部15c~15f全都把凹部的宽度Wc作成400μm,把深度D作成150μm。
测定因为与现有结构的表用步进电机进行比较,故制成多个如图24中所示把一对凹部205a、205b的各宽度Wc取为400μm,把深度取为150μm,使设置角度θ12以15°间隔从30°变化到75°的定子211,针对装入这些各定子211的步进电机分别进行初始相位角θ1(参照图22)和保持力矩的测定。
根据该测定结果,在装入现有结构的定子211的步进电机中,初始相位角θ1在测定误差范围内与设置角度θ12一致。此外,最大保持力矩在大约250nNm不依存于设置角度θ12而成为一定的。
从此一测定结果可以看出,在使用现有技术的定子211的结构的步进电机中,初始相位角θ1取决于设置角度θ12,最大保持力矩可以说不依存于设置角度θ12。
下面就为了调查一对凹部的尺寸与最大保持力矩的关系而进行的实验结果进行说明。
实验中如图24中所示,使用形成了一对凹部205a、205b的定子211,把该各凹部205a、205b的宽度Wc分别取为一定的400μm,使该凹部205a、205b的深度D分别不同为50、100、150、200μm准备多个定子211。
此外,相反还把凹部205a、205b的深度D取为一定的150μm,这次使凹部205a、205b的宽度Wc分别不同为100、200、300、400μm作成多个定子211。
而且,针对装入这些定子211的步进电机依次进行保持力矩的测定。
其测定结果示于图9和图10。
可以看出,最大保持力矩如图9中所示随着增加凹部的深度D而急剧地增加,在100μm以后成为缓慢的增加。此外可以看出,该最大保持力矩如图10中所示随着增加凹部的宽度Wc直线地增加,几乎与凹部的宽度Wc成比例。
从此一实验结果可以看出,最大保持力矩像文献等中所说的那样不与凹部的面积和成比例。也就是说,在这次的实验中使用的定子211设置了一对凹部205a和205b,该凹部205a和205b的面积和几乎成为其一方的凹部的宽度Wc与深度D之积的2倍。
因此,在图9中所示的测定中使用的定子211,因为把凹部的宽度Wc一定地取为400μm,故如果做成最大保持力矩与凹部的面积和成比例,则该最大保持力矩必须与凹部的深度D成比例。
然而,图9中所示的测定结果,最大保持力矩与凹部的深度D的关系不是表示比例关系的直线。从此一测定结果表示出最大保持力矩不与凹部的面积和成比例,在凹部的深度D为100μm以下的范围内可以通过改变该深度D来设定,如果深度D超过100μm以上则成为几乎一定的。
此外,在沿减小最大保持力矩的方向调节之际,如果通过改变凹部的深度D来进行该调节,则从图9可以看出,在凹部的深度D为100μm以下的范围内,特别是在50μm以下的部分由于凹部的深度D变化时的最大保持力矩的变化很大,所以如果考虑加工精度则因为该50μm以下的范围内的调整难以设定稳定的最大保持力矩故最好是避开它。
与此相反,如图10中示出把凹部的深度D取为150μm的场合的测定结果那样可以看出,由于如果把凹部的深度D取为150μm左右以上,则最大保持力矩几乎与该凹部的宽度Wc成比例,所以在最大保持力矩的调节中最好是改变凹部的宽度Wc。
这样一来可以看出,最大保持力矩虽然不依存于图24中说明的设置角度θ12,但是取决于一对凹部205a、205b的各宽度Wc与深度D。
另一方面,装入图6中说明的定子11的步进电机的测定结果如图8中所示成为与装入现有技术的定子211的步进电机不同的结果。
也就是说,初始相位角θ1与该对凹部15c、15d的设置角度θ2和该对凹部15e、15f的设置角度θ3中的任何一个都不一致。
此外,最大保持力矩不是一定为从各个对凹部15c、15d和凹部15e、15f所得到的最大保持力矩250nNm的2倍的合计值500nNm,随着该对凹部15e、15f的设置角度θ3的增加,在这次测定的范围内减少为从430nNm到130nNm。
如果把以上装入现有技术的定子211与图6中说明的定子11的步进电机的测定结果进行比较,则可以看出在使用形成作为多个保持力矩设定机构的各凹部15c~15e的定子11的步进电机中,所设定的初始相位角和保持力矩产生与使用现有技术的定子211的步进电机相比完全不同的现象。
对这些测定结果进一步进行比较研究的结果可以看出,在使用设置了作为多个保持力矩设定机构的两对凹部15c、15d和凹部15e、15f的定子11的步进电机中,初始相位角θ1和最大保持力矩成为各个保持力矩设定机构,也就是该对凹部15c、15d和该对凹部15e、15f分别单独地设置在转子孔2的内周上时所得到的各最大保持力矩和初始相位角θ1的各个向量的合成。
此外,因为本第2实施例中的表用步进电机是1步中的位移角度不是360°而是180°的二极式步进电机,故该步进电机的电气角成为实际的角度的2倍。
因此,作为与各个保持力矩设定机构相对应的各个向量,以各个保持力矩设定机构单独地设置在转子孔2的内周上时所形成的最大保持力矩和初始相位角θ1的2倍给出。
进而,根据使用现有技术的定子211的步进电机的测定结果,可以用作为各个保持力矩设定机构的两对凹部15c、15d和凹部15e、15f的设置角度θ2、θ3来代替各个初始相位角θ1。
这样一来,在使用具有多个保持力矩设定机构的定子11的步进电机中,如上所述可以通过对所得到的各个向量进行向量合成,来分别设定初始相位角θ1和最大保持力矩。而且,通过该向量合成所设定的初始相位角θ1和最大保持力矩与这次进行的实验的测定结果很好地一致。
也就是说,在分别单独地设置两个保持力矩设定机构,也就是该对凹部15c、15d和凹部15e、15f的场合,即使在这些保持力矩设定机构分别形成250nNm的最大保持力矩时,在该对凹部15c、15d的设置角度θ2为15°,该对凹部15e、15f的设置角度θ3为90°,其设置角度θ2与θ3错开75°的场合,根据图8中所示的测定结果最大保持力矩成为大约130nNm,初始相位角θ1成为大约53°。
这样一来,如果用使用设置了本第2实施例中的两对凹部15c、15d和凹部15e、15f的定子11的步进电机,则保持力矩设定机构通过调节由各凹部15c~15f的宽度Wc和深度D能够独立地设定的最大保持力矩,以及成为设置该凹部15c~15f的位置的设置角度θ2和θ3,可以进行广范围的保持力矩和初始相位角θ1的设定。
借此,通过调节两对凹部15c、15d和凹部15e、15f的各自的设置角度θ2、θ3,加大这些设置角度之差,换句话说把各保持力矩的相位角之差取得大一些,即使是在单独地设置分别成对的凹部15c、15d和凹部15e、15f的场合所形成的各个保持力矩很大,也因为步进电机整个的保持力矩为对各个保持力矩进行向量合成者,故可以把作为结果所得到的保持力矩做成极小的值。
下面,针对分别装入设置了两对凹部的定子,和设置了一对凹部的定子的表用步进电机进行确认消耗电力的实验,就比较的结果进行说明。
设置了两对凹部的定子,和设置了一对凹部的定子都形成为初始相位角大约55°,保持力矩的最大值大约75nNm。此外定子的材料用厚度500μm的坡莫合金,设在该定子上的转子孔的直径取为1700μm,作为转子磁铁用外径1000μm厚度400μm的钐钴磁铁。
首先,如图6中所示的作为设置两对凹部15c、15d和15e、15f的定子11,通过把各凹部15c~15f的宽度Wc(图7)取为400μm,把深度D取为150μm,把一对凹部15c、15d的设置角度θ2取为15°,把另一对凹部15e、15f的设置角度θ3设置成96°,可以实现初始相位角θ1为55°,最大保持力矩为75nNm的步进电机。
与此相反,可以看出图24中所示的现有技术的设置了一对凹部205a、205b的定子211的结构者,有必要把各凹部205a、205b的宽度Wc取为120μm,把深度D取为150μm而把设置角度θ12设置成55°。
而且,针对分别装入这两种定子11和211的步进电机测定实际驱动中的消耗电力时,在作为最大保持力矩具有大约250nNm的通常的表用步进电机中1步中表现出800~900nJ的消耗电力,相反在分别装入了上述两种定子11和211的步进电机中,都是1步中表现出400nJ的消耗电力而实现了减少消耗电力。
而且,在分别装入了这两种定子11和211的步进电机中,看不出特性上的差别。
根据以上的实验结果,在分别装入设置了两对凹部的定子和设置了一对凹部的定子的步进电机中,为了得到相同的特性,在装入设置了两对凹部15c、15d和凹部15e、15f的定子11的步进电机中,可以把各凹部15c~15f的宽度Wc取为400μm,把深度D取为150μm。
与此相反,在装入现有的设置一对凹部205a、205b的定子211的步进电机中,通过把各凹部205a、205b的宽度Wc取为120μm,把深度D取为150μm,可以得到与装入设置了两对凹部的定子的步进电机相同的特性。
因而,必须把各凹部205a、205b的宽度Wc取为与设置两对凹部的定子11相比相当小的。
因此,在像这样设置一对凹部205a、205b的定子211中,在加工上和生产性方面出现问题。
也就是说,这次实验中使用的两种定子11、211,由于为了得到高精度的实验结果而都是用能够高精度地加工的放电加工来形成各凹部,关于凹部的宽度120μm的加工未出现加工上的问题。
但是,定子实际上在工厂中生产时考虑到生产性有必要用压力加工来制造。然而,在压力加工中高精度地在厚度500μm的坡莫合金的带材上加工出宽度为120μm深度为150μm的凹部是非常困难的,即使是能够做到所用的金属模的寿命也是非常短的,故生产性非常差。
虽然如此,如果用加工精度高的放电加工来制造定子,则由于加工时间拉长,故成为非常高价的。
与此相反,如果用图6中说明的设置两对凹部15c、15d和15e、15f的定子11,则在把其各凹部15c~15f的宽度Wc取为400μm,把深度D取为150μm的情况下,通过分别把该对凹部15c、15d的设置角度θ2调节成13°,把该对凹部15e、15f的设置角度θ3调节成97°,借此使初始相位角θ1成为55°,可以制成最大保持力矩为50nNm的步进电机。
再者,虽然本第2实施例中的定子11示出作为保持力矩设定机构在转子孔2的内周上设置两对凹部15c、15d和凹部15e、15f的场合的例子,但是作为该保持力矩设定机构设置的凹部,也可以在转子孔2的内周上设置三对以上。
特别是,在定子的转子孔的周围设有环串的轴孔或固定销用孔的场合,因为该环串的轴孔或固定销用孔与作为保持力矩设定机构而发挥功能的凹部很容易干涉,故为了得到打算设定的初始相位角和保持力矩,有时产生在应该设置凹部的设置角度上无法设置的场合。
在这种场合,如果对在与上述环串的轴孔或固定销用孔干涉的位置上设置该对凹部的场合所形成的保持力矩如上所述进行向量分解,在避开上述环串的轴孔与固定销用孔而不干涉的位置上分别分开配置三对以上的凹部,以便成为该分解的向量,则可以得到成为目标的初始相位角和保持力矩。
此外,虽然在主要使用图5和图6来说明的第2实施例中,示出作为两个保持力矩设定机构而在转子孔2的内周上设置两对相同尺寸的几乎取为矩形形状的凹部15c、15d和15e、15f的场合的例子,但是该设置两对以上的各凹部,只要是对着转子孔2具有开口部的形状任何形状都可以,只要是该成对的凹部彼此的形状和尺寸相同,各对的形状和尺寸也可以不同。
〔第3实施例图11和图12〕下面参照图11和图12来说明根据本发明的表用二极式步进电机的第3实施例。
图11是表示根据本发明的表用二极式步进电机的第3实施例的与图1同样的俯视图,图12是表示该表用二极式步进电机中的定子的结构的俯视图。
本第3实施例的表用二极式步进电机因为除了定子的结构以外与参照图1至图4说明的第1实施例的表用二极式步进电机相同,故关于它们的相同的部分省略说明。
图11中所示的第3实施例的表用二极式步进电机,关于定子31的连接部31c、31d成为多个保持力矩设定机构的至少一个这一点是与图1中说明的在定子1上有连接部1c、1d的步进电机相同的,在定子31的转子孔2的内周的与连接部31c、31d不同的位置上形成作为保持力矩设定机构发挥功能的由几乎矩形形状的缺口组成的一对凹部35a、35b这一点与该步进电机不同。
而且,该凹部35a和35b在相对于转子孔2的中心对称的位置上形成。
再者,虽然在图11中示出把连接部31c、31d的设置角度取为0°的场合的例子,但是该设置角度也可以不是0°。
此一定子31的制造方法与图2中说明的定子1相同,对由作为高导磁率材料的坡莫合金制成的厚度500μm的带材进行压力加工,进行导向孔和转子孔2的底孔和固定用孔6、6,以及留出与上述带材局部连接的连接部分(未画出)的外形形状的冲裁。
然后,在成为连接部31c、31d的部分上形成窄缝,在该窄缝中插入低导磁率材料或者非磁性材料的线材,通过激光焊接经由上述线材把第1定子零件31a和第2定子零件31b结合起来。
接着,用压力加工冲裁转子孔2和凹部35a和35b的部分,最后冲裁与带材连接的上述连接部分而结束外形加工。而且,对结束了该外形加工的部件进行磁性退火,制成步进电机的定子31。
这种结构的定子31由于连接部31c、31d的部分是在用压力加工切除高导磁率材料的部分通过焊接把低导磁率材料或者非磁性材料结合起来者,所以该部分与一对凹部35a和35b同样作为保持力矩设定机构发挥功能而起着把转子3保持在规定位置上的作用。
而且,确认装入该定子31的步进电机的结果可以看出,靠连接部31c、31d所形成的保持力矩的初始相位角θ1与一对凹部35a和35b同样地与连接部31c、31d的设置角度几乎一致,所形成的保持力矩的大小成为与相同尺寸的凹部形成的保持力矩几乎一致的大小。
根据以上情况,即使取为此一定子31的结构,也与图1至图5中说明的步进电机同样,对单独地在转子孔2的内周上设置连接部31c、31d时所形成的保持力矩,和单独地在该转子孔2的内周上设置一对凹部35a、35b时所形成的保持力矩的向量进行合成的保持力矩,最终理应成为步进电机的设定保持力矩。
因此就为了确认这一点而进行的实验进行以下说明。
作为此一实验中使用的定子31,如图12中所示使用在转子孔2的内周上分别形成一对连接部31c、31d和一对凹部35a、35b者。
而且,把该一对凹部35a、35b的图12中所示的设置角度θ4,凹部35a、35b的各自的宽度Wc调整到初始相位角θ1(图11)成为大约55°,最大保持力矩成为大约75nNm的位置。
此外,作为定子31的材料使用厚度500μm的坡莫合金,转子孔2的直径取为1700μm。进而,作为转子磁铁3使用外径1000μm厚度400μm的钐钴磁铁。
把这样形成的定子31装入表用步进电机进行初始相位角θ1和保持力矩的测定的结果,通过把一对凹部35a、35b的凹部的宽度Wc取为270μm并且把深度D(参照图7)取为150μm,把一对凹部35a、35b的设置角度θ4设置成78°,可以实现初始相位角θ1大约55°,最大保持力矩大约75nNm的步进电机。
此一实验结果示出,步进电机的保持力矩的设定可以通过分别把靠连接部31c、31d所形成的保持力矩和靠设置在转子孔2的内周上的一对凹部35a、35b所形成的保持力矩的向量进行合成来设定。
这样一来,如果使用本实施例的定子31,则由于为了实现初始相位角θ1大约55°,最大保持力矩大约75nNm的步进电机,把一对凹部35a、35b的各宽度Wc取为270μm就可以了,所以与使用图24来说明的现有技术的把定子211中的凹部的宽度Wc取为120μm者相比可以取为大得多的凹部宽度。因而,定子31的加工变得容易了。
进而,如果使用此一定子31,则存在着能够通过加宽连接部31c、31d的宽度Wb来加宽一对凹部35a、35b的宽度Wc的优点。
例如,虽然在上述定子31中使用连接部31c、31d的宽度Wb为200μm者,但是如果把该宽度Wb加宽到400μm,则为了把初始相位角θ1设定成大约55°,把最大保持力矩设定成大约75nNm所需要的一对凹部35a、35b的大小,凹部的宽度Wc为450μm,把深度D取为150μm,把设置角度θ4取为83°就可以了。
也就是说,在设定成相同的初始相位角θ1和保持力矩的场合,如果把连接部的宽度Wb从200μm加宽到400μm,则可以把凹部35a、35b的宽度Wc从270μm加宽到450μm。
而且如果把该定子31的连接部31c、31d的宽度Wb取为400μm,把一对凹部35a、35b的设置角度θ4取为85°并且把凹部的宽度Wc取为430μm,则与前述第2实施例同样,可以把初始相位角θ1设定成55°,把最大保持力矩设定成50nNm。
下面就测定使装入此一定子31的表用步进电机实际驱动时的1步中的消耗电力的结果进行说明。
装入该定子31的步进电机的1步中的消耗电力的测定结果约为350nJ。此一值与最大保持力矩约为250nNm的通常的表用步进电机中的1步中的消耗电力800~900nJ相比,是相当小的消耗电力。
而且,此一实施例中的步进电机的1步中的消耗电力约为350nJ,与设定成具有相同的保持力矩的场合的前述第2实施例中的使用定子11的表用步进电机的消耗电力大约400nJ相比,实现了50nJ的减少消耗电力。
作为其理由,可以考虑是在定子31的结构中非磁性的连接部31c、31d的作用使然。
如上所述,如果使用本第3实施例中的定子31,则与第2实施例中说明的定子11同样,可以不损害生产性而设定适于减少消耗电力的极小的保持力矩。
此外,虽然在图11和图12中,就作为保持力矩设定机构在连接部31c、31d以外在转子孔2的内周上设置一对凹部35a、35b的场合的例子进行了说明,但是在该转子孔2的内周上设置的凹部也可以设置两对以上。
此外,在本第3实施例中,在转子孔2的内周上设置的凹部35a、35b的形状不限于图12中所示的一对尺寸相同的几乎矩形者,只要是对着转子孔2具有开口部的形状可以是任何形状,只要是相互成对的凹部彼此的形状和尺寸相同就可以了。
〔第4实施例图13〕下面参照图13来说明根据本发明的表用二极式步进电机的第4
图13是表示根据本发明的表用二极式步进电机的第4实施例中的定子的结构的与图6同样的俯视图。
本第4实施例的表用二极式步进电机因为除了定子的结构以外与参照图5至图6来说明的第2实施例的表用二极式步进电机相同,故关于它们相同的部分省略说明。
此一图13中所示的定子41有把转子3保持在旋转方向的规定位置上的多个保持力矩设定机构,但是这些保持力矩设定机构包括形状关于转子孔2的中心为非对称者。也就是说,在定子41上作为确定转子3的保持力矩和初始相位角的保持力矩设定机构在转子孔2的内周上设置一对凹部45a、45b和另一对凹部45c、45d。
而且,把该凹部45a和45b设置在关于转子孔2的中心对称的位置上。同样,凹部45c和45d也配置在关于转子孔2的中心对称的位置上。
虽然该凹部45a和45b从图13可以看出取为相同的形状,但是凹部45c和45d不是同一形状,凹部45c一方凹部的宽度Wc比凹部45d要大。
令通过一对凹部45a、45b的中心的直线64与通过转子孔2的中心并垂直于定子41的励磁方向线(图5的磁场方向线12)的直线27的夹角为凹部45a、45b的设置角度θ5。同样,令通过一对凹部45c、45d的中心的直线62与直线27的夹角为凹部45c、45d的设置角度θ6。再者,设置角度θ5、θ6都是以逆时针旋转方向为正值。
可是,在图6中说明的定子11中,保持力矩设定机构为两对凹部15c、15d和15e、15f,这些分别成对的凹部形成的各保持力矩和初始相位角按每个这些成对凹部用向量表示,作为结果所设定的最大保持力矩成为这些向量之和。
而且,由于各凹部15c~15f全都是相同的形状相同的大小,所以每个各对凹部的两个向量是大小相同的,相位角根据每个各对凹部的设置角度θ2、θ3来确定。
与此相反,本实施例中的定子41也是实现一个保持作用的向量对应着一对凹部45a、45b和一对凹部45c、45d,这两对凹部45a、45b和45c、45d引起的保持作用的合成仍然成为两个上述向量的合成。
这里,我们就仅设置一对凹部的定子,还包括把尺寸不同的凹部配对的场合作成定子,针对这些各定子进行调查保持力矩的实验。
该实验中使用的定子,根据得到图8中所示的实验数据之际进行的实验,就两个凹部尺寸相同者来说把凹部的宽度Wc全都取为400μm。进而,就凹部的尺寸不同者来说把宽度Wc的组合取为450μm和350μm,以及500μm和300μm来制作,以便两个凹部的宽度Wc之和成为800μm。
此外,凹部的深度D全都取为150μm。而且把这些定子装入步进电机来进行实验时,转子的保持力矩和初始相位角全都在测定误差范围内表现出一致的值。
这样一来,即使把凹部(凸部的场合也同样)的形状做成非对称的,如果把两个凹部的宽度Wc之和取为一定的,则由实验可以确认,可以把转子的保持力矩和初始相位角保持一定。
因而,在图13中所示的定子41的场合,虽然该对凹部45c、45d的各面积中存在着大小之差,但是在把凹部的深度D取为一定而使宽度Wc变化的条件下改变凹部的面积的场合,如果一对凹部的面积和一定则向量也基本上一定,凹部非对称本身不影响向量。
因而,通过调整成对的多个凹部的面积和能够调整向量,相反使向量也就是凹部的面积和一定,也可以调整成对的多个凹部的面积的分配。
而且,在图13中所示的定子41的场合就该对凹部45c和45d使大小不同而赋予面积差,但是也可以不仅该凹部45c和45d,而且就该对凹部45a和45b也使大小不同而赋予面积差。
这样一来,通过选择成对的凹部45c和45d的面积分配,该对凹部45a、45b的设置角度θ5以及该对凹部45c、45d的设置角度θ6,与像现有技术那样成对的凹部的形状相同的结构相比配置凹部的自由度增加。因而,可以更加便利地进行转子的保持力矩或初始相位角的设定。
〔第5实施例图14〕下面参照图14来说明根据本发明的表用二极式步进电机的第5
图14是表示根据本发明的表用二极式步进电机的第5实施例中的定子的结构的与图12同样的俯视图,对与图12相对应的部分赋予相同的标号。
本第5实施例的表用二极式步进电机中使用的定子51对于图12中说明的定子31,把在转子孔2的内周上关于该转子孔2的中心对称的位置上设置的一对凹部55a和55b的形状取为凹部55a侧比凹部55b侧要大。
而且,经由由低导磁率材料或者非磁性材料制成的该对连接部31c、31d通过焊接把分别由高导磁率材料制成的第1和第2定子零件51a和51b连接成整体,该对连接部31c、31d起着与一对凹部55a、55b同样的作用,作为保持力矩设定机构发挥功能。
因而,此一定子51实质上是与具有两对凹部者相同的,在转子3上产生的最大保持力矩和初始相位角成为与该对凹部55a、55b形成的保持力矩相对应的向量,和与该对连接部31c、31d形成的保持力矩相对应的向量之和。
如果用此一定子51,则由于省略了把凹部55a和55b的大小取为相同的这样的限制,所以它们的配置变得容易了。此外,仅靠选择通过凹部55a、55b的中心线63与通过连接部31c、31d各自的中心的直线27夹成的设置角度θ7,就可以极其自由地进行转子3的保持力矩和初始相位角的设定。
再者,图14中所示的定子51,在把通过连接部31c、31d的中心的直线(在本例中与直线27一致)与通过转子孔2的中心并垂直于定子51的励磁方向的直线的直线27的夹角作为该对连接部31c、31d的设置角度时,示出该设置角度为0°者,但是也可以把该设置角度取为0°以外的角度,把该对连接部31c、31d设置在倾斜的位置上。
此外,也可以使连接部31c的宽度Wb与连接部31d的宽度Wb不同。这样一来,步进电机的特性的设定更加自由了。
进而我们针对作为使上述成对凹部(下文述及的凸部的场合也同样)的形状不同的保持力矩设定机构的极限的场合,仅设置成对凹部的一方者,也就是在转子孔的内周上仅设置一个凹部的场合的保持力矩进行了调查实验。
根据该实验结果,在仅设置一个凹部的场合也与靠一对凹部来设定保持力矩者同样地设定了保持力矩。而且可以看出,对于该一个凹部对应着表示最大保持力矩和初始相位角的一个向量,在设置多个凹部的场合作为整体成为这些各个向量的合成。
从此一实验结果可以看出,保持力矩设定机构的基本没有必要一定把它们取为成对凹部,即使是在转子孔的内周的想要的位置上分别配置不成对的单独的凹部也可以得到想要的特性。
可是,在定子上设置的两个保持力矩设定机构相对于转子孔的中心为对称形的场合,理论上转子仅从定子受到保持力矩而在轴承部上不产生侧压。
但是,随着对峙的两个保持力矩设定机构错开到相对于转子孔的中心非对称的位置在转子上产生侧压。该侧压在作为保持力矩设定机构设置单独的凹部的场合最强,该侧压引起轴承部分的摩擦增大。因而为了克服它表现出转子驱动电流多少有所增加的倾向,但是由于实际上往往把若干个保持力矩设定机构组合起来配置,所以在该场合上述侧压相互抵销,故最终转子驱动电流不会成为很大的值。
以上根据实验结果得知,即使对于一个凹部也存在着一个表示保持力矩和初始相位角的向量,设置了多个不成对的单独的凹部的场合的向量成为这些向量的合成。
因而,在定子的转子孔的内周上作为保持力矩设定机构形成的凹部,没有必要一定成对地设置。也就是说,也可以以不成对的单独的凹部为保持力矩设定机构的基本单位,把它们在转子孔的内周上配置所需的数量。
〔第6实施例图15〕下面参照图15来说明根据本发明的表用二极式步进电机的第6
图15是表示根据本发明的表用二极式步进电机的第6实施例中的定子的结构的与图13同样的俯视图,对与图13相对应的部分赋予相同的标号。
本第6实施例的表用二极式步进电机中使用的定子61在转子孔2的内周上把一对凹部45a、45b设置在通过它们的中心的直线64相对于直线27成设置角度θ5的位置上,进而把不成对的单独的凹部45c设置在通过其中心的直线65相对于直线27成设置角度θ6的位置上。
由这种定子61所设定的保持力矩成为与一对凹部45a、45b形成的保持力矩相对应的向量和与单独的凹部45c形成的保持力矩相对应的向量的合成。
这样一来,保持力矩设定机构不限于成对凹部的组合,通过把单独的凹部配置在种种位置上也可以得到想要的特性。
〔第7实施例图16〕下面参照图16来说明根据本发明的表用二极式步进电机的第7
图16是表示根据本发明的表用二极式步进电机的第7实施例中的定子的结构的与图15同样的俯视图,对与图15相对应的部分赋予相同的标号。
本第7实施例的表用二极式步进电机中使用的定子71在转子孔2的内周的两个部位上设置了凹部45c和45e,但是这两个凹部45c、45e不是相对于转子孔2的中心对称的一对凹部,而分别是不成对的单独的凹部。而且,通过凹部45c的中心的直线65相对于直线27成设置角度θ6,通过凹部45e的中心的直线64相对于直线27成设置角度θ5。
在此一定子71中,转子3的保持状态由各凹部45c、45e对转子3的保持作用的向量的合成来确定。
〔第8实施例图17〕下面参照图17来说明根据本发明的表用二极式步进电机的第8
图17是表示根据本发明的表用二极式步进电机的第8实施例中的定子的结构的与图14同样的俯视图,对与图14相对应的部分赋予相同的标号。
本第8实施例的表用二极式步进电机中使用的定子81经由宽度Wb的由低导磁率材料或者非磁性材料制成的一对连接部31c、31d通过焊接把分别由高导磁率材料制成的第1和第2定子零件81a和81b连接成整体。
而且,在转子孔2的内周上设置单独的凹部55a,通过其中心的直线63相对于直线27成设置角度θ7。
在此一定子81中也与图14中说明的定子51同样一对连接部31c、31d发挥与成对凹部相同的作用而具有保持作用的向量。而且,因为单独的凹部55a也具有向量,所以转子3的保持力矩和初始相位角由这些向量的合成来确定。
虽然此一图17中所示的定子81也与图14的定子51同样,通过一对连接部31c、31d的各自的中心的直线与直线27相重合,连接部31c、31d的设置角度为0°,但是与定子51中说明的场合同样,也可以把该设置角度取为不是0°的角度而使该对连接部31c、31d倾斜。
此外,也可以使连接部31c、31d的宽度Wb彼此不同。进而,两个连接部31c、31d的中心也可以不位于同一直线上。
〔第9实施例图18〕下面参照图18来说明根据本发明的表用二极式步进电机的第9
图18是表示根据本发明的表用二极式步进电机的第9实施例中的定子的结构的与图15同样的俯视图,对与图15相对应的部分赋予相同的标号。
本第9实施例的表用二极式步进电机中使用的定子91有不同方式的错开型和缺口型的保持力矩设定机构。
也就是说,在此一定子91中,在转子孔92上设置着作为错开型的保持力矩设定机构发挥功能的错开量G的阶梯部94c、94d,和作为缺口型的保持力矩设定机构发挥功能的一对凹部45a、45b。
用此一定子91的步进电机,转子的保持力矩和初始相位角由与一对阶梯部94c、94d所形成的保持力矩相对应的向量,和与一对凹部45a、45b所形成的保持力矩相对应的向量的合成来确定。
可是,在图23中所示的现有技术的定子201中看到的那种单纯的错开型定子的场合,如果转子孔的平均直径约为1700μm而错开量G为40μm,则转子的最大保持力矩约为300nNm,初始相位角几乎为45°。
但是,根据我们的实验结果,为了提高步进电机的效率并减少消耗电力,转子的最佳初始相位角(参照图22的θ1)虽然像使用图4来说明的那样,是大于上述45°的50°~60°左右,但是到70°左右实用上没有问题。
因此,如果使图23中的阶梯部204a、204b成为从垂直于定子201的纵长方向的直线27上的图示的位置沿逆时针旋转方向旋转例如20°的位置,则可以使初始相位角接近上述成为理想的50°~60°。
但是,在此一状态下为了进一步谋求消耗电力的减少而最大保持力矩也减小,于是不得不极度地减小错开量G。因而所用的加工变得困难了。
然而,如果使用图18中说明的定子91,则由于备有由阶梯部94c、94d构成的错开型的保持力矩设定机构和由一对凹部45a、45b构成的缺口型的保持力矩设定机构,所以通过适当地选择该凹部45a、45b的设置角度θ5,不用极端地减小错开量G或凹部45a、45b的尺寸就可以减小最大保持力矩,得到适当的初始相位角。
可是,图18的定子91由于通过阶梯部94c、94d的直线70与垂直于定子91的励磁方向的直线27相重合,所以阶梯部94c、94d的设置角度为0°,一对凹部45a、45b作为通过其各中心的直线64相对于直线27的夹角的设置角度取为θ5,但是也可以把通过该阶梯部94c、94d的直线70取为相对于直线27倾斜的位置而把阶梯部94c、94d按0°以外的设置角度来设置。
再者,根据我们进行的实验结果,在阶梯部的错开量G=40μm,凹部的宽度Wc=400μm,深度D=150μm的定子91中,如果通过阶梯部94c、94d的直线70相对于直线27的设置角度=75°,凹部45a、45b的设置角度θ5=-10°,则确认了最大保持力矩=75nNm,初始相位角=55°。
或者,在把阶梯部94c、94d的设置角度取为63°,把凹部45a、45b的设置角度取为-25°时,还确认了最大保持力矩=50nNm,初始相位角=55°。
〔第10实施例图19〕下面参照图19来说明根据本发明的表用二极式步进电机的第10
图19是表示根据本发明的表用二极式步进电机的第10实施例中的定子的结构的与图17同样的俯视图,对与图17相对应的部分赋予相同的标号。
本第10实施例的表用二极式步进电机中使用的定子101取为经由由低导磁率材料或者非磁性材料制成的连接部31c、31b把由高导磁率材料制成的第1、第2定子零件101a、101b焊接成整体的结构。
而且,在该定子101上,形成有阶梯部94e、94f的错开型的转子孔102。
虽然通过连接部31c、31d的各自的中心的直线与垂直于定子101的励磁方向的直线27相重合,但是通过阶梯部94e、94f的直线107相对于直线27倾斜地设定在设置角度θ7的位置上。
可是,把通过图19的阶梯部94e、94f的直线107取为与直线27相重合,借此把阶梯部94e、94f配置在设置角度θ7为0°的位置上,阶梯部94e、94f成为与由低导磁率材料或者非磁性材料制成的连接部31c、31d一致的位置的定子,已经是公知的。
在这种公知的定子的场合,仅阶梯部的作用引起的转子的初始相位角如前所述约为45°,如果连接部加上与一对凹部同样地作用,则由向量的合成确定的转子的初始相位角(参照图22的θ1)减小到30°~40°。
在谋求减少消耗电力的场合,如前所述初始相位角最好是50°~60°,如上所述与一对连接部的位置一致地设置一对阶梯部的现有技术的构成者中,无法实现这一点。
但是,如果用图19中所示的定子101,则由于取为使通过阶梯部94e、94f的直线107相对于通过一对连接部31c、31d的中心的直线27沿逆时针旋转方向(正方向)转过设置角度θ7的位置,所以可以得到在实现步进电机的减少消耗电力上有效的初始相位角50°~70°。
而且,此一步进电机101也是通过一对连接部31c、31d和一对阶梯部94e、94f引起作用于转子的向量的合成,可以得到最好的转子最大保持力矩和初始相位角。
〔第11实施例图20〕下面参照图20来说明根据本发明的表用二极式步进电机的第11
图20是表示根据本发明的表用二极式步进电机的第11实施例中的定子的结构的与图18同样的俯视图,对与图18相对应的部分赋予相同的标号。
本第11实施例的表用二极式步进电机中使用的定子111有不同方式的长圆型和缺口型的两种保持力矩设定机构。
也就是说,在定子111中转子孔112不是正圆,而是形成卵形或椭圆形或者长形等长圆形状,该转子孔112本身作为保持力矩设定机构发挥功能。
此外,在该转子孔112的内周上设置着作为缺口型的保持力矩设定机构发挥功能的一对凹部45a、45b。
转子孔112如上所述不是正圆。因而,虽然在转子孔为正圆时,配置在该转子孔内的转子在步进电机未驱动时停止位置不确定,但是在像此一转子孔112这样为长圆形状的场合则形成使转子停止的保持力矩。因而,长圆形状的转子孔112作为保持力矩设定机构发挥功能。
在此一定子111中,相对于垂直于励磁方向的直线27,通过凹部45a、45b的各自的中心的直线64成设置角度θ5,长圆形状的长轴113成设置角度θ8。
在用此一定子111的步进电机中,保持力矩和初始相位角的设定通过与由一对凹部45a、45b所形成的保持力矩相对应的向量和与由转子孔112的长圆形状所形成的保持力矩相对应的向量的合成给出。
再者,在图20中为了便于说明而夸张了长圆形状地画出,实际的尺寸对于转子孔112的平均直径1700μm为长轴-短轴=40μm左右。
〔第12实施例图21〕下面参照图21来说明根据本发明的表用二极式步进电机的第12
图21是表示根据本发明的表用二极式步进电机的第12实施例中的定子的结构的与图20同样的俯视图,对与图19和图20相对应的部分赋予相同的标号。
本第12实施例的表用二极式步进电机中使用的定子121取为把由低导磁率材料或者非磁性材料制成的连接部31c、31d和长圆型的转子孔112组合起来的结构。
也就是说,经由宽度Wb的连接部31c、31d通过焊接把由高导磁率材料制成的第1、第2定子零件121a和121b做成整体而制成定子121。而且在该定子121上形成长圆形状的转子孔112。
此一定子121虽然通过连接部31c、31d的各自的中心的直线与垂直于励磁方向的直线27相重合,但是长圆形状的长轴113相对于直线27处于设置角度θ8的位置上。
在此一定子121中也是,由于连接部31c、31d得到与其他实施例中说明的一对凹部同样的效果,所以广义地说此一定子121也是长圆型与缺口型的组合的一种。
因而,转子的保持力矩和初始相位角的设定通过与由一对连接部31c、31d和长圆形状的转子孔112分别形成的各保持力矩相对应的向量的合成给出。
〔其他变形例〕以上就根据本发明的表用二极式步进电机的各种实施例进行了说明,虽然在这些实施例中作为保持力矩设定机构在转子孔上形成凹部,但是也可以代替这些凹部而在转子孔上形成凸部,使这些凸部作为保持力矩设定机构发挥功能。
这样一来,与在凹部的场合几乎由凹部的宽度(图7的Wc)来确定保持力矩者相反,在用凸部的场合由凸部的宽度和凸部的高度来确定保持力矩。
但是,在设置凸部的场合,有时特别是凸部的高度强烈地受到加工精度的影响而在保持力矩中容易出现偏差。因而,在用压力加工法来制造定子的场合,在金属模的尺寸精度方面最好是用凹部,因为用凹部可以比用凸部时精度更高地设定保持力矩。
再者,虽然在把保持力矩设定机构取为凹部时,该保持力矩设定机构的设置角度与转子磁铁静止时的磁极的方向不同,但是在把保持力矩设定机构取为凸部时上述设置角度与转子磁铁静止时的磁极的方向一致。
此外,在该作为保持力矩设定机构在转子孔上设置多个凸部的场合,如果该各凸部的高度一定,则电气机械结合系数与这些凸部的各自的宽度之和成比例地增加。
而且,如果此一电气机械结合系数增加,则从下面所示的电气机械结合系数(nφ)与驱动力矩的关系式可以看出,可以以更小的电流得到相同的驱动力矩。结果可以减少表用二极式步进电机的消耗电力。
表示该电气机械结合系数(nφ)与驱动力矩的关系的公式在令驱动力矩为Td,线圈匝数为n,与线圈交链的最大磁通为φ,流过线圈的电流为i,从转子的静止位置的位移角度为θ,初始相位角为θi时,表达为Td=n·φ·i·sin(θ+θi)下面用具体的数值来表示多个凸部的宽度之和与电气机械结合系数的关系。
下表示出多个凸部的宽度之和与电气机械结合系数的关系,令作为保持力矩设定机构设置凹部时的电气机械结合系数(nφ)为1,示出以它为基准如果增加凸部的宽度之和则电气机械结合系数以什么比例增加。
这样一来,如果作为保持力矩设定机构在转子孔上形成凸部,则由于通过加大凸部的宽度可以使电气机械结合系数增加,所以可以借此以小的电流得到作为目标的驱动力矩。因而,可以减少表用二极式步进电机的消耗电力。
工业实用性如上所述,根据本发明的表用二极式步进电机由于减小流过卷绕在磁心上的线圈的电流而实现了减少消耗电力,而且可以容易地制作,所以作为手表或座钟等模拟式电子表的使指针运针用的电动机可望广泛地利用。
权利要求
1.一种表用二极式步进电机,其特征在于,包括由转子磁铁和转子轴组成的转子,有设置该转子用的转子孔并由高导磁率材料制成的定子,以及导线卷绕在由高导磁率材料制成的磁心上,该磁心的两端磁性上与前述定子的两端连接的励磁用的线圈,前述定子在前述转子孔的内周上在其圆周方向上以不同的设置角度有多个保持力矩设定机构。
2.权利要求1所述的表用二极式步进电机,其特征在于,前述定子经由由低导磁率或者非磁性的材料制成的连接部把分别由高导磁率材料制成的第1定子零件和第2定子零件结合起来构成。
3.权利要求2所述的表用二极式步进电机,其特征在于,前述连接部成为前述多个保持力矩设定机构中的至少一个,并且该连接部以外的其他保持力矩设定机构配置在前述转子孔的内周的与前述连接部不同的位置上。
4.权利要求1所述的表用二极式步进电机,其特征在于,前述多个保持力矩设定机构是分别在前述转子孔的内周上形成的一对凹部或者一对凸部。
5.权利要求3所述的表用二极式步进电机,其特征在于,前述其他保持力矩设定机构是在前述转子孔的内周上形成的一对凹部或者一对凸部。
6.权利要求1所述的表用二极式步进电机,其特征在于,前述多个保持力矩设定机构包含形状关于前述转子孔的中心为非对称者。
7.权利要求6所述的表用二极式步进电机,其特征在于,前述多个保持力矩设定机构当中形状关于转子孔的中心为非对称者是夹着前述转子孔的中心把一对凹部或者凸部对峙地设置在两侧的转子孔内周上者。
8.权利要求6所述的表用二极式步进电机,其特征在于,前述多个保持力矩设定机构当中形状关于转子孔的中心为非对称者是相对于前述转子孔的中心仅在一方侧的转子孔内周上设置凹部或者凸部者。
9.权利要求1所述的表用二极式步进电机,其特征在于,前述多个保持力矩设定机构包含方式不同的并且前述转子孔的圆周方向的设置角度彼此不同者的组合。
10.权利要求9所述的表用二极式步进电机,其特征在于,前述多个保持力矩设定机构当中方式不同者的组合是错开型方式与缺口型方式的组合。
11.权利要求9所述的表用二极式步进电机,其特征在于,前述多个保持力矩设定机构当中方式不同者的组合是长圆型方式与缺口型方式的组合。
12.权利要求6所述的表用二极式步进电机,其特征在于,前述定子是经由由低导磁率材料或者非磁性材料制成的连接部把分别由高导磁率材料制成的第1定子零件与第2定子零件结合起来的构成,该连接部成为前述多个保持力矩设定机构中的至少一个。
13.权利要求9所述的表用二极式步进电机,其特征在于,前述定子是经由由低导磁率材料或者非磁性材料制成的连接部把分别由高导磁率材料制成的第1定子零件与第2定子零件结合起来的构成,该连接部成为前述多个保持力矩设定机构中的至少一个。
全文摘要
定子(2)包括第1定子零件(1a)和第2定子零件(1b),它们由高导磁率材料制成并由位于其间的低导磁率或非磁性连接部(lc、ld)焊接连接。该定子包括一个设有一对缺口(5a、5b)的孔(2),这些缺口决定初始相位角(θ1)并用作设定用磁性方法保持转子(3)的力矩的机构。励磁线圈(7)磁性上连接于转子(1)的端部之间以便形成表用二极式步进电机。
文档编号G04C13/11GK1304500SQ99806962
公开日2001年7月18日 申请日期1999年6月10日 优先权日1998年6月11日
发明者高桥重之, 南谷孝典, 町田任康, 铃木一男, 岛内岳明 申请人:时至准钟表股份有限公司