一种基于对角加载的自适应波束形成算法

文档序号:10713013阅读:1066来源:国知局
一种基于对角加载的自适应波束形成算法
【专利摘要】本发明公开了一种基于对角加载的自适应波束形成算法,涉及智能天线技术领域,首先对线阵接收阵元所采集到的采样信号求其采样协方差矩阵,做为样本协方差矩阵的估计。然后利用对角加载技术对采样协方差矩阵进行重构,使其满足矩阵求逆引理公式,避免进行矩阵求逆运算。最后再结合最小均方误差(MSE)准则,得到方向权向量的最优化解,运用重构的采样协方差矩阵取代了迭代运算,大大缩减了算法收敛时间。该算法不仅有效解决和优化了自适应数字波束形成算法的收敛时间问题,并且通过仿真实验验证了该算法在高低信噪比环境下性能都比较稳定,同时也可以在一定程度上消除对模型误差的敏感问题。
【专利说明】
一种基于对角加载的自适应波束形成算法
技术领域
[0001] 本发明涉及智能天线技术领域,尤其涉及一种基于对角加载的自适应波束形成算 法。
【背景技术】
[0002] 水下声成像技术主要用于水下目标探测与搜索,水底地貌绘制,海底沉船、救援、 黑盒子打捞等众多军事和民用领域。已经在国防和民用领域取得广泛的应用。为了实现一 定距离下水下目标的高清晰声成像目的,就必须研究复杂水声环境下的稳定成像技术,并 且同时要满足一定的成像帧率和较远的作用距离。这就要求在研究水声成像的自适应波束 形成算法时,不仅也需要考虑鲁棒性问题,也要尽量提高系统的输出信噪比,同时减小自适 应波束形成算法的运算量。
[0003] 自适应波束形成技术通过调整权重向量来改变阵列的方向图,使波束主瓣对准期 望信号,旁瓣和零陷对准干扰信号,从而提高输出的信干噪比,以实现某准则下的最佳接 收。
[0004] LMS自适应波束形成算法是一种结构简单、算法复杂度低、易于实现和稳定性高的 波束形成方法。但一直因为其收敛速度较慢,在工程应用上受到一定程度的限制。为此,各 学者相继以不同的调整策略:瞬时误差、权矢量的前向预测以及平滑梯度矢量等,提出变步 长的LMS算法来平衡收敛速度和算法失调。虽然在平衡收敛速度和失调方面优于经典LMS算 法,但应对突变能力较差。
[0005] 作为判断最佳接收的准则之一,均方误差(MSE)性能量度由威德鲁等人提出。并由 Wiener、H〇pf推导出最优的维纳解。经典LMS算法正是在MSE准则的基础上,运用最优化方法 如:最速下降法、加速梯度算法等迭代运算出最优权向量的。
[0006] 基于以上所述,本文提出一种基于MSE准则和对角加载技术的鲁棒自适应波束形 成算法。在该算法中,通过在采样协方差矩阵对角线上人工注入白噪声,即对角加载,重构 采样协方差矩阵。然后运用矩阵求逆引理,避免矩阵求逆运算和迭代运算,而且将对角加载 系数转化为LMS算法步长因子的函数。仿真结果表明此算法不仅能有效降低收敛时间,并在 高、低信噪比环境下能都表现出较好的性能,有较好的鲁棒性。

【发明内容】

[0007] 为了改进现有自适应波束形成方法在收敛速度上偏慢的缺点,突破采样频率限 制,获得更精准的权重方向向量,本发明的第一目的是在LMS算法和MVDR的基础上避免循环 迭代和矩阵求逆运算,缩短算法收敛时间,使其能很好地在工程中得到应用。该方法可以在 形成自适应波束中通过重构采样协方差矩阵,并在此基础上应用矩阵求逆引理,从而避免 了求逆运算和迭代运算,具有较好的指向性能和干扰抑制能力。
[0008] 本发明的第二目的在于为减小各种误差导致的副瓣电平升高、主瓣便宜、波束畸 变、SINR下降等问题,将对角加载技术引入自适应波束形成中,并给出了确定加载系数的公 式。该方法实现简单,有利于减少波束形成过程中的偏差,提高波束形成的准确性和稳健 性。
[0009]为实现上述目的,本发明提供一种基于对角加载的自适应波束形成算法,所述方 法包含如下步骤:
[0010]步骤1:考虑平面空间的等距均匀线阵,设阵元数为M,阵元间距为d,其中(1 = λ/2(λ 为阵列接收单元接收信号的波长),假设有L个信源回波(M>L),设波达方向为0^02,...,0L, 以阵列的第一个阵元作为基准点,则在第k次快拍的采样点m处的采样值为:
[0012] 式中nm(k)表示第m个阵元上的噪声,Sl(k)表示各信源回波在基准点的基带信号。 步骤2:各阵元在快拍k时刻接收到的信号分别为XKk),X 2(k),…,XM(k),即:X(k) = [XKk), X 2 ( k ),. . .,X μ ( k ) ] τ,此为阵列输入矢量。得到协方差矩阵估计值为
。式中Κ表示阵列天线的快拍数,X(k)表示阵列天线上第k次快拍接 收到的信号(k=l,2,. . .,K),上标Η表示矩阵共辄转置。
[0013] 步骤3:在时域中,阵列输出为
[0014] y(t)=coTX(t) (2)
[0015] 参考信号d(t)与实际输出信号的误差为
[0016] ε ⑴=d(t)_y(t) =d(t)_ ω TX(t) (3)
[0017] 对(3)式求平方可得
[0018] e2(t) = d2(t)-2d(t)〇TX(t)+〇TX(t)XT(t)〇 (4)
[0019] 对上式两边取数学期望可得
[0020] (5;
[0021] 式中^表示对d(t)取数学期望,互相关矩阵Rxd为Rxd = E{d(k)XT(k)},令 i/:(〇=S,:贝丨J
[0022] E{e2(t)} = S-2〇TRxd+oTRxxo (6)
[0023] 适当选择权重向量ω可使E{>2(t)}达到最小。可知式(6)是ω的二次函数,该函数 的极值是一个最小值,由式(6)对权重向量求梯度并令其为零,求出使E{> 2(t)}最小的ω 值,得到权重向量的最优值满足下式:
[0024] if)
[0025] 步骤4:在波束形成算法方面,LMS算法作为常步长LMS算法,其权向量的迭代公式 可表述为:
[0026] (〇{k +1) = o.){k) - //V(/;) C 8 )
[0027] 为了克服矩阵求逆等运算,LMS算法采用最陡下降法求解式(8),得到LMS算法的迭 代公式
[0028] ω (k+Ι) = ω (k)+yX(k)e*(k) (9)
[0029] 式中,μ为步长因子,可以控制自适应的速率。通过分析可知,μ步长因子的取值范 围满足关系:
,可以证明当迭代次数无限增加时,权重向量的期望值可以收敛至 维纳解。
[0030]步骤5:在增强自适应波束形成器的鲁棒性方面,对角加载技术被用于抑制方向图 畸变。在本文所依据的信号模型基础上,实际计算采样协方差矩阵Rxx是由K次采样信号得到 的估计值
[0034] 将对角加载技术运用到LMS算法的权向量计算中,得到
[0035] 反,.=(?/ + 疋、) (12)
[0036]引理:令矩阵Ae CnXn的逆矩阵存在,并且X,y是两个η X 1维向量,使得(A+xyH)可 逆,则
[0038] 将其推广为矩阵之和求逆公式,即为:
[0039] (A+UBV) -1=A-〔A-bB (B+BVA-bB)-^VA-1
[0040] =A-〔A-bd+BVA-%)-hVA-1 (14)
[0041 ]因为采样协方差見^Hermit ian矩阵,则由式(11)可以推导出
[0043] 式中,U为特征向量矩阵,Λ =diag( γι, γ2,...,Ym),Yi为及#的特征值。
[0044] 根据上述矩阵求逆公式可以推导出
[0046]由式(10)可知及"是11个阵元的K次采样数据相关矩阵的均值。将我"转化为谱分解 形式后(式(15))应用到上式的推导过程中,替代第k次采样数据相关矩阵X(k)PXH(k)(P取 单位矩阵)得到
[0048] 然后将忒Π 7)代入结里Π
2)中,_,
[0050] 式中α表示加载系数,定义:
,其中0〈λ〈1。因此,对角加载系数的确定可以 由LMS算法中的步长因子μ和λ确定。
[0051] 最后,输出自适应波束为
[0052] y(k) = ω 〇ptTX(k) (19)
[0053] 本发明的有益效果是:通过在采样协方差矩阵对角线上人工注入白噪声,即对角 加载,重构采样协方差矩阵。然后运用矩阵求逆引理,推导出一种鲁棒的自适应波束形成 算法。重构后的采样协方差矩阵满足矩阵求逆引理的条件,推导出的权向量公式避免了矩 阵求逆和循环迭代,实现了快速收敛的目的。同时,重构的采样协方差矩阵引入了对角加载 因子,使得该算法的具有一定的鲁棒性。通过实验的验证,该算法可以同时应用在低信噪比 和高信噪比的各种复杂环境中,并且在收敛速度和输出信噪比上相对传统的MVDR和LMS算 法有很大的提升,使其可以应用在水声成像的复杂环境中,从而保证了成像的稳定性和成 像的帧率。
【附图说明】
[0054]图1流程图。
[0055] 图2低信噪比(_3dB)环境下各自适应波束指向图。
[0056] 图3高信噪比(30dB)环境下各自适应波束指向图 [0057]图4高信噪比(40dB)环境下各自适应波束指向图
[0058]图5低信噪比(_3dB)对角加载因子对波束形成的影响图 [0059 ]图6高信噪比(40dB)对角加载因子对波束形成的影响图
【具体实施方式】
[0060] 以下将结合附图,对本发明的优选实施例进行详细的描述;应当理解,优选实施例 仅为了说明本发明,而不是为了限制本发明的保护范围。
[0061] 图1是本发明算法的流程图,如图所示:本发明提供的一种基于对角加载的自适应 波束形成方法,包括以下步骤:
[0062] S1:均匀线阵各阵元对信号进行采样X(k);
[0063] S2:对采样信号求其采样协方差矩阵
,做为样本协方差矩阵 的估计;
[0064] S3:利用对角加载技术对采样协方差矩阵进行重构&
[0065] S4:结合最小均方误差(MSE)准则,计算出方向权向量的最优解= , 将S3中的及替代,并应用矩阵求逆公式进行推导,得到
[0066] S5:将得到的方向权值对采样信号数据进行加权求和,得到自适应波束信号y(k) -〇 opt X (k) 〇
[0067] 具体实施步骤:
[0068] 步骤1:根据本算法依据的信号模型,第k次快拍的采样点m的采样值为:
[0070]各阵元在快拍k时刻接收到的信号分别为XKk),X2(k),…,XM(k),即:X(k) = [Xi (k),X2(k),...,XM(k)]T;
[0071 ]步骤2:得到协方差矩阵估计值为
[0073]做为样本协方差矩阵的估计;
[0074] 步骤3:将对角加载技术运用到算法的权向量计算中,得到
[0075] 4, ={aI + RJ
[0076] ^是Μ个阵元的K次采样数据相关矩阵的均值,α为对角加载系数。
[0077] 步骤4:将转化为谱分解形式
,替代第k次采样数据相关 矩阵X(k)PXH(k)(P取单位矩阵)并应用到矩阵求逆公式的推导过程中,得到
[0079]将式(17)代入结果(12)中,则:
[0082] 步骤5:将得到的方向权值对采样信号数据进行加权求和,得到自适应波束信号y (k) = ω 〇ptTX(k) 〇
[0083] 为了验证该算法的有效性,利用MATLAB仿真工具进行算法仿真。仿真实验采用由 16个阵元组成的均匀线阵,阵元间隔为半个波长。假设期望信号和干扰的波达方向分别为 0°和40°,并且期望信号和干扰互不相干。噪声均值为0,方差为1的加性高斯白噪声。在仿真 实验中,将本文提出的算法DL-MSE与经典的LMS算法、MVDR算法进行对比分析。采样数均为 500,LMS算法的迭代次数也为500 4 = 0 · 0005,λ = 〇 · 5。
[0084] 实验1:在该实验中,验证各种算法在低信噪比环境下的指向性能,取SNR = _3dB。 结果如图2所示,在低信噪比的情况下,LMS算法性能严重失调,跟踪效果变得很差。而本文 提出的算法DL-MSE和MVDR算法的效果比较接近,性能良好。在干扰方向上,DL-MSE算法稍差 于MVDR算法。
[0085]实验2:在该实验中,验证各种算法在高信噪比环境下的指向性能,取SNR分别为 30dB、40dB。结果如图3、图4所示,在高信噪比的情况下,MVDR算法性能严重失调,而本文提 出的算法DL-MSE算法和LMS算法的性能比较稳定。在干扰抑制上,DL-MSE算法稍优于LMS算 法,都能在干扰方向上形成零陷。随着SNR的升高,对比图3和图4可以发现DL-MSE算法和LMS 算法都表现出较好的性能,能保持稳定的跟踪指向性能。对比Cox等提出的对角加载方法, 本文提出的方法解决了在较高信噪比(SNR)条件下,采用对角加载方法的自适应波束形成 器有较严重的性能衰落。
[0086]实验3:在本文提出设计的自适应波束形成算法中,作为对角加载的系数,α和LMS 算法步长因子之间满足线性关系。当系数λ取不同值时,加载系数随之发生变化。图5、图6说 明了在低信噪比(_3dB)和高信噪比(40dB)两种情况下λ取不同的值时,DL-MSE算法的性能 变化。在低信噪比时,加载系数
越大,算法对噪声的抑制效果越好,并在干扰方向上 的形成较深的零陷。而在高信噪比的环境中,算法性能对加载系数的变化不敏感,但也同样 能在干扰方向上形成较好的零陷。
[0087]在算法的收敛速度上,本文提出的算法由于避免了MVDR算法的矩阵求逆运算和 LMS算法循环迭代更新权向量,所以在收敛速度上相对MVDR算法和LMS算法都有一定的优 势,表1列出了在采样500次或者LMS迭代500次的情况下,自适应波束收敛情况。从表1对比 可知,通过采样后进行协方差矩阵求逆运算得到权向量的MVDR和通过循环迭代的LMS算法 在收敛速度上差距不大。而本文提出的DL-MSE算法在收敛速度上有很大的优势,说明本发 明的算法可以被应用在实时性要求较高的场合中。
[0089] 表1各自适应波束权向量形成时间对比
[0090] 最后说明的是,以上所述仅为本发明的较佳实例而已,并不用以限制本发明,凡在 本发明的精神和原则之内所作的任何修改,等同替换和改进等,均应包含在本发明的保护 范围之内。
【主权项】
1. 一种基于对角加载的自适应波束形成算法,其特征在于:包括W下步骤: S1:均匀线阵各阵元对信号进行采样; S2:求其采样协方差矩阵,作为样本协方差矩阵的估计; S3:利用对角加载技术对采样协方差矩阵进行重构; S4:结合最小均方误差(MSE)准则,计算出方向权向量的最优解; S5:将得到的方向权值对采样信号数据进行加权求和,得到自适应波束信号。2. 根据权利要求1所述的一种基于对角加载的自适应波束形成算法,其 特征在于:所述步骤1中:各阵元对信号进行采样时,依据信号模型其中nm(k)表示第m个阵元上的噪声,si(k) 表示各信源回波在基准点的基带信号,L表示信源个数;得到第k次快拍的采样值为Xi化),拉 化),···,Χμ化),即:X化)= [Xi化),X2化),...,Xm化)]τ,其中Μ表示阵元个数。3. 根据权利要求1所述的一种基于对角加载的自适应波束形成算法,其特征在于:所述 步骤2中:对接收向量用二阶统计量的平均值进行表示,即信号自相关矩阵,作为协方差矩 阵估计值廷中Κ表示阵列天线的快拍数,X化)表示阵列天线上第k次 快拍接收到的信号化=1,2,...,Κ),上标Η表示矩阵共辆转置。4. 根据权利要求1所述的一种基于对角加载的自适应波束形成算法,其特征在于:所述 步骤3中:将对角加载技术运用到算法的权向量计算中,得到式中4是Μ个阵元的Κ次采样数据相关矩阵的均值,α为对角加载系数。5. 根据权利要求1所述的一种基于对角加载的自适应波束形成算法,其特征在于:所述 步骤4中:得到方向权向量的最优解。具体包括W下步骤: S4 1 :由于采样协方差.《"为Hermi t ian矩阵,则可表示谱分解形式:妻中U为特征向量矩阵,Λ =diag(丫 1,丫 2, . . .,丫M),丫 i为矣。的特 征值; S42:由矩阵求逆引理将[α?巧化)ΡχΗ化)]-1转换关菱示. 543:将541步骤中的4替换542步骤中的乂(1〇口乂"(1〇"取单位矩阵)得到其中α表示加载系数; S44:定义对角加载系i廷中μ表示LMS算法中的步长因子,λ为常量,取值范围为 0<入<1; S45:根据MSE最小均分误差准则,得到方向权向量最优解6.根据权利要求1所述的一种基于对角加载的自适应波束形成算法,其特征在于:所述 步骤5中:将得到的方向权值对采样信号数据进行加权求和,得到自适应波束信号y化)= W opt X(k) 〇
【文档编号】G01S7/539GK106093920SQ201610538089
【公开日】2016年11月9日
【申请日】2016年7月9日
【发明人】邓正宏, 李学强, 黄杰, 黄一杰, 付明月, 马春苗
【申请人】西北工业大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1