一种ddma波形的参差多普勒频率偏移选择方法

文档序号:10685700阅读:1567来源:国知局
一种ddma波形的参差多普勒频率偏移选择方法
【专利摘要】本发明属于雷达技术领域,公开了一种DDMA波形的参差多普勒频率偏移选择方法,包括:确定不模糊多普勒范围内离散点数及多普勒频率偏移分辨率;计算杂波多普勒点数及搜索次数,构造多普勒频率偏移矩阵;对于多普勒频率偏移矩阵的每一元素,以其坐标作为各发射通道对应的多普勒频率偏移数,确定各发射通道在多普勒不模糊范围内后构造对应的多普勒谱向量,得到合成多普勒谱向量,将该元素设置为合成多普勒谱向量中不重叠的杂波区间的长度;搜索多普勒频率偏移矩阵中的最大元素,根据该最大元素的坐标计算各发射通道对应的最佳多普勒频率偏移量。本发明能够降低对DDMA波形的高脉冲重复频率的要求,有效缓解应用DDMA波形时目标的盲速问题。
【专利说明】
一种DDMA波形的参差多普勒频率偏移选择方法
技术领域
[0001]本发明涉及雷达技术领域,尤其涉及一种DDMA波形的参差多普勒频率偏移选择方 法。
【背景技术】
[0002] 多输入多输出(Multiple-Input Multiple-Output,MIM0)雷达是一种全新的雷达 系统,相对于传统相控阵雷达有着诸多优势:更容易检测到弱小目标,更不易被截获,更高 的速度分辨力,对系统前端关于频率稳定度、相位噪声等指标要求更低等。因其独特的性能 优势,M頂0雷达引起了广泛关注。
[0003] 高性能的信号设计是MM0雷达实现的关键。MM0雷达采用多个天线同时发射一组 信号,回波信号中不可避免地存在各信号分量之间的相互模糊。为了有效分离不同发射信 号的回波,要求各发射信号之间应具有较小的互相关能量;同时,为了获得较高的距离分辨 率及多目标分辨能力,要求各发射信号的非周期自相关函数应具有窄的主瓣和较低的旁 瓣。因此,为避免互干扰和检测混淆,M頂0雷达发射信号需要优化设计。
[0004] 目前国内外针对MM0雷达的信号优化设计可简单分为非正交信号设计和正交信 号设计。其中非正交信号设计不考虑信号的具体形式,仅结合成像、目标检测、参数估计等 具体应用,使发射信号相关矩阵达到或接近期望的最优相关矩阵。但这种信号设计过程往 往属于非凸的优化问题,优化算法复杂,而且设计所得的最优信号,往往是很复杂的调制信 号,技术上也难以实现,不利于实际系统的应用。而正交信号设计则是基于若干正交信号类 型,根据要求选择合适的信号形式,确定优化准则,设计代价函数,采用优化算法对信号参 数进行优化设计。这是一种"简便信号选择方法",兼顾技术的实现难易程度和指标要求,这 种方法设计的信号,虽不是特定条件下的"最优信号",但能够满足系统性能指标和应用需 求。其中,MIM0体制下的正交信号可分为三大类:码分正交信号(Code DivisionMultiple Access,CDMA)、时分正交信号(Time Division Multiple Access,TDMA)以及频分正交信号 (Frequency Division Multiple Access,FDMA)。其中,FDMA信号是指一系列信号在同一时 亥IJ占据不同的频谱范围。根据各个波形的频谱分离状态,可以将FDMA信号划分为三类:互不 重叠型、弱重叠型、紧密重叠型。其中,紧密重叠型FDMA信号,通常又被称为空慢时间编码信 号(Delay Division Multiple AccessjDMAhDDMA信号由于各发射信号间频率延迟足够 小,所以各通道信号的相关性强,杂波相消性好。机载雷达接收的地杂波具有很强的空时二 维耦合特性,因此对机载雷达的杂波抑制成为空时二维滤波问题。鉴于MIM0雷达杂波谱分 布,充分利用其多发多收特性,通过空时频信息和杂波统计特性进行空时频联合处理 (Space-Time-Frequency Adaptive Processing,STFAP),有望获得更好的杂波抑制性能。 传统的频分正交波形与码分波形对应的杂波相关性很低,这对于提高最小可检测速度是不 利的。在这种情形下,为了获得相关性比较高的正交波形,一种可行的方法就是采用空慢时 间编码信号,即DDMA波形。
[0005] 在发射阵元数较多或者多普勒带宽较大情况下,为了避免接收信号发生模糊,采 用DDMA波形要求雷达系统采用高脉冲重复频率,然而过高的脉冲重复频率在某些雷达应用 场景中是很难实现的。在脉冲重复频率不能过高的情况下,只能将DDMA波形的频率偏移减 小,然而这又会引起高速目标的多普勒模糊,产生盲速。

【发明内容】

[0006] 针对以上现有技术存在的不足,本发明实施例提供了一种DDMA波形的参差多普勒 频率偏移选择方法,能够降低对DDMA波形的高脉冲重复频率的要求,有效缓解应用DDMA波 形时目标的盲速问题。
[0007] 为达到上述目的,本发明的实施例采用如下技术方案:
[0008] 一种DDMA波形的参差多普勒频率偏移选择方法,应用于MM0雷达系统,MM0雷达 系统包括M个发射通道,M为整数,M彡3,所述方法包括如下步骤:
[0009] 步骤1,获取脉冲重复频率以及一个相干处理时间内的脉冲数,根据一个相干处理 时间内的脉冲数,确定不模糊多普勒范围内离散点数;根据不模糊多普勒范围内离散点数 以及脉冲重复频率,计算得到多普勒频率偏移分辨率;
[0010] 步骤2,获取载机速度及发射信号波长;根据载机速度和发射信号波长,确定杂波 多普勒带宽;进而,根据多普勒频率偏移分辨率以及杂波多普勒带宽,计算得到杂波多普勒 点数,以及,根据多普勒频率偏移分辨率、脉冲重复频率、发射通道总数M以及杂波多普勒带 宽,计算得到搜索次数;根据搜索次数,构造得到多普勒频率偏移矩阵,多普勒频率偏移矩 阵是一个n s X ns X…X ns维的零矩阵,其共有M-1个维度,~表示搜索次数;
[0011] 步骤3,对于多普勒频率偏移矩阵中的每一元素,分别以该元素在第i个维度的坐 标作为MM0雷达系统的第i多普勒频率偏移数,进而判断MM0雷达系统的各发射通道是否 都在多普勒不模糊范围内,若是,则利用MM0雷达系统的全部多普勒频率偏移数、不模糊多 普勒范围内离散点数以及杂波多普勒点数,构造得到M个发射通道中每个发射通道对应的 多普勒谱向量,进而将M个发射通道中每个发射通道对应的多普勒谱向量相加,得到合成多 普勒谱向量;确定合成多普勒谱向量中不重叠的杂波区间的长度,将该元素设置为合成多 普勒谱向量中不重叠的杂波区间的长度;其中,MHTO雷达系统的第i多普勒频率偏移数为M 个发射通道中的第i个发射通道与第i+1个发射通道之间的多普勒频率偏移数,i取1到M-1 之间的所有整数值;
[0012] 步骤4,搜索得到多普勒频率偏移矩阵中的最大元素,确定该最大元素的坐标,根 据该最大元素的坐标以及多普勒频率偏移分辨率,计算得到M个发射通道中每个发射通道 对应的最佳多普勒频率偏移量;其中,M个发射通道中的第1个发射通道对应的最佳多普勒 频率偏移量为〇,M个发射通道中的第j个发射通道对应的最佳多普勒频率偏移量为 &1 X g+a2 X Xg+( j-1) XB。,其中ai、a2、…、别表示多普勒频率偏移矩阵中的最大元素 在第1个维度、第2个维度、…、第j-1个维度的坐标,j取2到M之间的所有整数值,g表示多普 勒频率偏移分辨率,B。表示杂波多普勒带宽。
[0013] 现有DDMA波形设计往往采用均匀多普勒频率偏移,其在发射阵元数较多或者多普 勒带宽较大情况下,为了避免接收信号发生模糊,采用DDMA波形要求雷达系统采用高脉冲 重复频率,然而过高的脉冲重复频率在某些雷达应用场景中是很难实现的。在脉冲重复频 率不能过高的情况下,只能将DDMA波形的频率偏移减小,然而这又会引起高速目标的多普 勒模糊,产生盲速。而基于本发明实施例提供的DDMA波形的参差多普勒频率偏移选择方法, 可使得各个发射通道的杂波重叠达到最少,这样在接收雷达回波的时,即可避免目标在所 有发射通道都落入杂波区而出现盲速。同时,基于本发明实施例提供的方法设计的最优多 普勒频率偏移并不唯一,因此可以更加自由的选择多普勒频率偏移。
【附图说明】
[0014] 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现 有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本 发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以 根据这些附图获得其他的附图。
[0015] 图1为本发明实施例提供的一种DDMA波形的参差多普勒频率偏移选择方法的流程 示意图一;
[0016] 图2为本发明实施例提供的一种DDMA波形的参差多普勒频率偏移选择方法的流程 示意图二;
[0017] 图3为本发明实施例二中各发射通道对应的多普勒谱向量的组成示意图;
[0018] 图4为本发明仿真实验一中所绘制的多普勒频移矩阵的示意图;
[0019] 图5(a)为采用现有的固定频偏方法选择发射信号频偏后获得到的原始距离多普 勒图;
[0020] 5(b)为利用STFAP算法对图5(a)的原始距离多普勒图进行杂波抑制后的杂波距离 多普勒图;
[0021] 图5(c)为采用本发明方法选择发射信号频偏后获得的原始距离多普勒图;
[0022]图5(d)为利用STFAP算法对图5(c)的原始距离多普勒图进行杂波抑制后的杂波距 离多普勒图。
【具体实施方式】
[0023]下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完 整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于 本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他 实施例,都属于本发明保护的范围。
[0024]另外,为了便于清楚描述本发明实施例的技术方案,在本发明的实施例中,采用了 "第一"、"第二"等字样对功能和作用基本相同的相同项或相似项进行区分,本领域技术人 员可以理解"第一"、"第二"、等字样并不对数量和执行次序进行限定。
[0025] 实施例一、
[0026]本发明实施例提供一种DDMA波形的参差多普勒频率偏移选择方法,应用于MM0雷 达系统,该M頂0雷达系统包括M个发射通道,M为整数,M彡3。
[0027] 图1所示为本发明实施例提供的DDMA波形的参差多普勒频率偏移选择方法的流程 图,参见图1,该方法包括以下步骤:
[0028] -种空慢时间编码信号DDMA波形的参差多普勒频率偏移选择方法,应用于多输入 多输出MIM0雷达系统,所述MIM0雷达系统包括M个发射通道,M为整数,M彡3,其特征在于,所 述方法包括如下步骤:
[0029] 步骤1,获取脉冲重复频率以及一个相干处理时间内的脉冲数,根据一个相干处理 时间内的脉冲数,确定不模糊多普勒范围内离散点数;根据不模糊多普勒范围内离散点数 以及脉冲重复频率,计算得到多普勒频率偏移分辨率。
[0030] 具体的,可利用如下所示的第一预设公式计算得到多普勒频率偏移分辨率:
[0031] g = fr/n,
[0032] 式中,g表示多普勒频率偏移分辨率,fr表示脉冲重复频率,n表示不模糊多普勒范 围内的离散点数。
[0033] 步骤2,获取载机速度及发射信号波长;根据载机速度和发射信号波长,确定杂波 多普勒带宽;进而,根据多普勒频率偏移分辨率以及杂波多普勒带宽,计算得到杂波多普勒 点数,以及,根据多普勒频率偏移分辨率、脉冲重复频率、发射通道总数M以及杂波多普勒带 宽,计算得到搜索次数;根据搜索次数,构造得到多普勒频率偏移矩阵。
[0034] 其中,构造得到的多普勒频率偏移矩阵是一个ns Xns,X…Xns,维的零矩阵,其共 有M-1个维度,^表示搜索次数。
[0035]可选的,步骤2中,根据载机速度和发射信号波长,确定杂波多普勒带宽,具体可以 包括:
[0036]根据载机速度和发射信号波长,利用第二预设公式,确定杂波多普勒带宽。
[0037]其中,第二预设公式为:
[0038] bc = 4v/入,
[0039] 式中,v表示载机速度,A表示发射信号波长,B。表示杂波多普勒带宽。
[0040] 可选的,步骤2中,根据多普勒频率偏移分辨率以及杂波多普勒带宽,计算得到杂 波多普勒点数,具体可以包括:
[0041] 根据多普勒频率偏移分辨率以及杂波多普勒带宽,利用第三预设公式,计算得到 杂波多普勒点数。
[0042] 其中,第三预设公式为:
[0043]
[0044] 式中,n。表示杂波多普勒点数,B。表示杂波多普勒带宽,g表示多普勒频率偏移分辨 率,[?」表示向下取整。
[0045] 可选的,步骤2中,根据多普勒频率偏移分辨率、脉冲重复频率、发射通道总数M以 及杂波多普勒带宽,计算得到搜索次数,具体可以包括:
[0046] 根据多普勒频率偏移分辨率、脉冲重复频率、发射通道总数M以及杂波多普勒带 宽,利用第四预设公式,计算得到搜索次数。
[0047]其中,第四预设公式为:
[0048] ns=\_(fT ~M -BC)I g],
[0049] 式中,1^表示搜索次数,B。表示杂波多普勒带宽,g表示多普勒频率偏移分辨率,fr 表示脉冲重复频率,M表示发射通道总数,表示向下取整。
[0050] 步骤3,对于多普勒频率偏移矩阵中的每一元素,分别以该元素在第i个维度中的 坐标作为MM0雷达系统的第i多普勒频率偏移数,进而判断MM0雷达系统的各发射通道是 否都在多普勒不模糊范围内,若是,则利用mmo雷达系统的全部多普勒频率偏移数、不模糊 多普勒范围内离散点数以及杂波多普勒点数,构造得到m个发射通道中每个发射通道对应 的多普勒谱向量,进而将m个发射通道中每个发射通道对应的多普勒谱向量相加,得到合成 多普勒谱向量;确定合成多普勒谱向量中不重叠的杂波区间的长度,将该元素设置为合成 多普勒谱向量中不重叠的杂波区间的长度。
[0051 ]其中,MM0雷达系统的第i多普勒频率偏移数为M个发射通道中的第i个发射通道 与第i+1个发射通道之间的多普勒频率偏移数,i取1到M-1之间的所有整数值。第i个发射通 道与第i + 1个发射通道之间的第i多普勒频率偏移数的物理含义为:将第i个发射通道对应 的多普勒频谱图循环移动第i多普勒频率偏移数对应的多普勒频率即得到第i + 1个发射通 道对应的多普勒图。
[0052]具体的,可通过如下所示公式判断各发射通道是否都在多普勒不模糊范围内: [0053] Mnc+ A i+ A 2H-----i~Am-i^n,
[0054]式中,n。表示杂波多普勒点数,n表示不模糊多普勒范围内的离散点的个数,M表示 发射通道总数。若上式成立,则说明各发射通道都在多普勒不模糊范围内,否则,说明有发 射通道不在多普勒不模糊范围内。
[0055] 其中,各发射通道对应的多普勒谱向量均为包含n-nc个元素的列向量,且各发射 通道对应的多普勒谱向量均包含M-1个杂波区间。第一个发射通道对应的多普勒谱向量的 杂波区间依次为:[A 1,A i+nc]、[ A i+ A 2+nc,A i+ A 2+2nc]、[ A i+ A 2+ A 3+nc,A i+ A 2+ A 3+ 2nc]、…、[Ai+A2H-----i~A m-i+(M-2)nc,A i+ A 2H-----A m-i+(M-l )nc];第二个发射通道对应的 多普勒谱向量的杂波区间依次为:[A 2,A 2+nc]、[ A 2+ A 3+n。,A 2+ A 3+2nc]、[ A 2+ A 3+ A 4+ 2nc? A 2+ A 3+ A 4+3nc] n ? ? n [ A 2+ A 3H-----1- A m+(M~2)nc? A 2+ A 3H-----1- A m+(M~1 )nc]......第M个 发射通道对应的多普勒谱向量的杂波区间依次为:[Am,AM+nc;]、[ AM+Adn。,Am+A# 2nc] n [ A m+ A 1+ A 2+2nc? A m+ A 1+ A 2+3nc] n " n [ A m+ A 1+ A 2H - A m-2+(M_2)nc,A m+ A 1+ A 2 +…A m_2+(M-1 )n。]。其中,A i表示第i多普勒频率偏移数,A M表示第M个发射通道与第1个发 射通道之间的多普勒频率偏移数,A M=n-Mnc;-( A i+ A 2H-----1- A m-i) 〇
[0056] -种具体的实现方式中,可将各发射通道对应的多普勒谱向量的杂波区间中的元 素设置为1,杂波区间之外的元素设置为〇。这样,通过统计合成多普勒谱向量中值为1的元 素的个数即可得到合成多普勒谱向量中不重叠的杂波区间的长度。
[0057] 步骤4,搜索得到多普勒频率偏移矩阵中的最大元素,确定该最大元素的坐标,根 据该最大元素的坐标以及多普勒频率偏移分辨率,计算得到M个发射通道中每个发射通道 对应的最佳多普勒频率偏移量。
[0058]其中,M个发射通道中的第1个发射通道对应的最佳多普勒频率偏移量为0,M个发 射通道中的第j个发射通道对应的最佳多普勒频率偏移量为&1 X g+a2 X gHi+aj-i Xg+( j-1) XB。,其中ai、a2、…、分别表示多普勒频率偏移矩阵中的最大元素在第1个维度、第2个维 度、…、第j-1个维度中的坐标,j取2到M之间的所有整数值,g表示多普勒频率偏移分辨率, B。表示杂波多普勒带宽。
[0059]以上确定发射通道最佳多普勒频率偏移量的依据在于:为了减少盲速,需要使M个 发射通道的杂波重叠尽可能地少,即希望M个发射通道对应的多普勒谱向量叠加后得到的 合成多普勒谱向量中不重叠的杂波区间的长度尽可能的大。而多普勒频率偏移矩阵中的元 素的值即为合成多普勒谱向量中不重叠的杂波区间的长度,因此多普勒频率偏移矩阵中的 最大元素在每一维度中的坐标即分别为各发射通道对应的最佳多普勒频率偏移数。进一步 的,根据各发射通道对应的最佳多普勒频率偏移数,即可确定各发射通道的最佳多普勒频 率偏移量。
[0060]另外,需要补充说明的是,一般情况下,多普勒频率偏移矩阵存在相等的多个最大 元素,而这些多个最大元素的坐标互不相同,因此,按照本发明实施例确定各发射通道的最 佳多普勒频率偏移量并不唯一。
[0061 ]现有DDMA波形设计往往采用均匀多普勒频率偏移,其在发射阵元数较多或者多普 勒带宽较大情况下,为了避免接收信号发生模糊,采用DDMA波形要求雷达系统采用高脉冲 重复频率,然而过高的脉冲重复频率在某些雷达应用场景中是很难实现的。在脉冲重复频 率不能过高的情况下,只能将DDMA波形的频率偏移减小,然而这又会引起高速目标的多普 勒模糊,产生盲速。而基于本发明实施例提供的DDMA波形的参差多普勒频率偏移选择方法, 可使得各个发射通道的杂波重叠达到最少,这样在接收雷达回波的时,即可避免目标在所 有发射通道都落入杂波区而出现盲速。
[0062] 实施例二、
[0063]本发明实施例提供一种DDMA波形的参差多普勒频率偏移选择方法,应用于MM0雷 达系统,该MIM0雷达系统包括3个发射通道。
[0064]图2所示为本发明实施例提供的DDMA波形的参差多普勒频率偏移选择方法的流程 图,参见图2,该方法包括以下步骤:
[0065]步骤1:获取脉冲重复频率以及一个相干处理时间内的脉冲数;根据一个相干处理 时间内的脉冲数,确定不模糊多普勒范围内离散点数;根据不模糊多普勒范围内离散点数 以及脉冲重复频率,计算得到多普勒频率偏移分辨率。
[0066] 具体的,可根据如下所示公式计算多普勒频率偏移分辨率:
[0067] g = fr/n,
[0068] 式中,g表示多普勒频率偏移分辨率,fr表示脉冲重复频率,n表示不模糊多普勒范 围内的离散点的个数。
[0069] 步骤2:获取载机速度及发射信号波长;根据载机速度和发射信号波长,确定杂波 多普勒带宽;根据多普勒频率偏移分辨率、脉冲重复频率、发射通道总数以及杂波多普勒带 宽,计算杂波多普勒点数和搜索次数;进而,根据搜索次数构造多普勒频率偏移矩阵。
[0070] 其中,多普勒频率偏移矩阵是一个ns X~维的矩阵,且矩阵中的元素均为0,ns表示 搜索次数。
[0071 ]具体的,可通过如下所示的公式确定杂波多普勒带宽:
[0072] Bc = 4v/A
[0073] 式中,v表示载机速度,A表示发射信号波长,B。表示杂波多普勒带宽。
[0074] 具体的,杂波多普勒点数以及搜索次数可通过如下所示公式计算:
[0075] n,=lBc/g\,
[0076] ns =[{fr-M-Bc)l g\,
[0077] 式中,n。表示杂波多普勒点数,1^表示搜索次数,B。表示杂波多普勒带宽,g表示多 普勒频率偏移分辨率,fr表示脉冲重复频率,M表示发射通道总数,M=3,[_?」表示向下取整。 [0078]步骤3:将第一个发射通道与第二个发射通道之间的第一多普勒频率偏移数设置 为A :,第二个发射通道与第三个发射通道之间的第二多普勒频率偏移数设置为A 2,并令 A 尸 1,A 2= 1 〇
[0079]需要说明的是,第一个发射通道与第二个发射通道之间的多普勒频率偏移数A丄 的物理含义为:将第一个发射通道对应的多普勒频谱图循环移动A :对应的多普勒频率即 得到第二个发射通道对应的多普勒图。类似的,第二个发射通道与第三个发射通道之间的 多普勒频率偏移数A 2的物理含义为:将第二个发射通道对应的多普勒频谱图循环移动A 2 对应的多普勒频率即得到第三个发射通道对应的多普勒图。
[0080] 步骤4:判断第一多普勒频率偏移数A :是否小于等于搜索次数:若是,则转至步骤 5;否则,转至步骤8。
[0081] 步骤5:判断第二多普勒频率偏移数A 2是否小于等于搜索次数:若是,则转至步骤 6;否则,令第一多普勒频率偏移数A :加1后,转至步骤8。
[0082] 步骤6:根据杂波多普勒点数、发射通道总数M、第一多普勒频率偏移数A :以及第 二多普勒频率偏移数△ 2,判断各个发射通道是否都在多普勒不模糊范围内;若是,则令第 二多普勒频率偏移数△ 2加1后,转至步骤5;否则,转至步骤7。
[0083]其中,具体可通过如下所示公式判断各个发射通道是否都在多普勒不模糊范围 内:
[0084] Mnc+ A i+ A 2^;n,
[0085] 式中,n。表示杂波多普勒点数,n表示不模糊多普勒范围内的离散点的个数,M表示 发射通道总数,M = 3。当上式成立时,则说明3个发射通道都在多普勒不模糊范围内,否则, 说明有发射通道不在多普勒不模糊范围内。
[0086] 步骤7:根据不模糊多普勒范围内的离散点的个数、杂波多普勒点数、第一多普勒 频率偏移数A :以及第二多普勒频率偏移数A 2,构造3个发射通道对应的多普勒谱向量;进 而将3个发射通道对应的多普勒谱向量相加,得到合成多普勒谱向量,确定合成多普勒谱向 量中不重叠的杂波区间的长度,将多普勒频率偏移矩阵中第A :行A 2列的元素设置为合成 多普勒谱向量中不重叠的杂波区间的长度。
[0087] 其中,3个发射通道对应的多普勒谱向量均为包含n-n。个元素的列向量。参见图3, 第一个发射通道对应的第一多普勒谱向量 V1的杂波区间为:A :到A 1+n。以及A 1+ A 2+n。到 A # A 2+2nc;第二个发射通道对应的第二多普勒谱向量v2的杂波区间为A 2到A 2+nc以及!!-2nc-A dljn-nc-A :;第三个发射通道对应的第三多普勒谱向量V3的杂波区间为!!^。-'^ A 25l」n-2nc- A 广 A 2以及n_2nc- A 2到n_nc- A 2。
[0088] 为计算方便,一种具体的实现方式中,可将第一多普勒谱向量V1、第二多普勒谱向 量^以及第三多普勒谱向量V3的杂波区间中的元素设置为1,杂波区间之外的元素设置为0。 这样,通过统计合成多普勒谱向量中值为1的元素的个数即可得到合成多普勒谱向量中不 重叠的杂波区间的长度。
[0089] 步骤8,搜索得到多普勒频率偏移矩阵中的最大元素,确定该最大元素所在的行数 及列数,根据该最大元素所在的行数及列数以及多普勒频率偏移分辨率,计算得到3个发射 通道的最佳多普勒频率偏移量。
[0090]其中,第一个发射通道、第二个发射通道以及第三个发射通道对应的最佳多普勒 频率偏移量分别为〇、£!说+8。、&说+&$+28。,其中&1表示多普勒频率偏移矩阵中的最大元素所 在的行数,a 2表示多普勒频率偏移矩阵中的最大元素所在的列数,g表示多普勒频率偏移分 辨率,B。表示杂波多普勒带宽。
[0091]以上确定发射通道最佳多普勒频率偏移量的依据在于:为了减少盲速,需要使三 个发射通道的杂波重叠尽可能地少,即希望三个发射通道对应的多普勒谱向量叠加后得到 的合成多普勒谱向量中不重叠的杂波区间的长度尽可能的大。而多普勒频率偏移矩阵中的 元素的值即为合成多普勒谱向量中不重叠的杂波区间的长度,因此多普勒频率偏移矩阵中 的最大元素所在的行数及列数,即分别为第一个发射通道及第二个发射通道对应的最佳多 普勒频率偏移数。根据第一个发射通道及第二个发射通道对应的最佳多普勒频率偏移数, 即可计算得到3个发射通道的最佳多普勒频率偏移量。
[0092]另外,需要补充说明的是,一般情况下,多普勒频率偏移矩阵存在相等的多个最大 元素,而这些多个最大元素所在的行数和/或列数不同,因此,按照本发明实施例确定的3个 发射通道的最佳多普勒频率偏移量并不唯一。
[0093]现有DDMA波形设计往往采用均匀多普勒频率偏移,其在发射阵元数较多或者多普 勒带宽较大情况下,为了避免接收信号发生模糊,采用DDMA波形要求雷达系统采用高脉冲 重复频率,然而过高的脉冲重复频率在某些雷达应用场景中是很难实现的。在脉冲重复频 率不能过高的情况下,只能将DDMA波形的频率偏移减小,然而这又会引起高速目标的多普 勒模糊,产生盲速。而基于本发明实施例提供的DDMA波形的参差多普勒频率偏移选择方法, 可使得各个发射通道的杂波重叠达到最少,这样在接收雷达回波的时,即可避免目标在所 有发射通道都落入杂波区而出现盲速。
[0094]以下,通过仿真实验进一步说明本发明上述效果。
[0095]仿真实验一:
[0096]( - )仿真参数设置
[0097] 在本仿真实验中,采用机载三通道DDMA-MHTO雷达,脉冲重复频率为2000Hz,不模 糊多普勒范围内的离散点数为200,载机速度为100m/S,波长为2m。
[0098](二)仿真内容及仿真结果分析
[0099]按照本发明实施例前述步骤,搜索得到不同第一多普勒频率偏移数及第二多普勒 频率偏移数对应的合成多普勒谱的不重叠杂波区间长度,将长度值存储到多普勒频率偏移 矩阵中,以多普勒频率偏移矩阵的行数为横坐标、列数为纵坐标构成二维坐标系,将多普勒 频率偏移矩阵中的元素的值绘制在所述二维坐标系中,并用不同的亮度标识不同的取值。 图4所示即为所绘制的多普勒频移矩阵的示意图,图中亮度不同对应的元素值不同,根据图 中右侧图例可知,从顶端自低端的不同的亮度依次表示雷达回波数据占的比重由大到小, 其中与顶端亮度对应的区域代表不重叠杂波区间长度最长,也就是说各个发射通道的杂波 重叠达到最少,相应区域的多普勒频率偏移为最优。观察图4,可以发现图中对角线的左侧 区域中存在多处暗区域,也即按照本发明实施例方法设计得到的最优多普勒频率偏移量并 不唯一,因此多普勒频率偏移的选择更加自由。
[0100]仿真实验二:
[0101](-)仿真参数设置
[0102] 在本仿真实验中,采用机载四通道DDMA-M頂0雷达,脉冲重复频率为2000Hz,不模 糊多普勒范围内的离散点数为200,载机速度为100m/S,发射信号波长为2m,载机飞行高度 6km,主波束方位角90°,主波束俯仰角0°,采样频率2MHz,载频150MHz,相干积累脉冲数128 个,脉冲宽度2us。发射信号的固定频偏为400Hz,参差频偏为0Hz、400Hz、800Hz、1600Hz。 [0103](二)仿真内容及仿真结果分析
[0104]采用现有的固定频偏方法选择发射信号频偏,获取四通道DDMA-MIM0雷达的杂波 回波的原始距离多普勒图,进而利用STFAP算法对原始距离多普勒图进行自适应杂波抑制, 得到杂波抑制后的杂波距离多普勒图;采用本发明方法设计发射信号频偏,获取四通道 DDMA-M頂0雷达的杂波回波的原始距离多普勒图,并同样利用STFAP算法对原始距离多普勒 图进行自适应杂波抑制,得到杂波抑制后的杂波距离多普勒图。其中,图5(a)所示为采用现 有的固定频偏方法选择发射信号频偏后获得到的原始距离多普勒图,5(b)为利用STFAP算 法对图5(a)的原始距离多普勒图进行杂波抑制后的杂波距离多普勒图,图5(c)为采用本发 明方法选择发射信号频偏后获得的原始距离多普勒图,图5(d)为利用STFAP算法对图5(c) 的原始距离多普勒图进行杂波抑制后的杂波距离多普勒图。图中颜色深浅不同代表雷达回 波数据的多少,图例中所示颜色从顶端自低端依次表示雷达回波数据占的比重从大到小。 观察图5 (a)和图5 (c),可以得出,DDMA-M頂0雷达四个发射通道对应的杂波在多普勒域是分 开的,因此可以提取出四个发射通道对应的杂波。观察图5(b),可以发现,采用现有的固定 频偏方法选择发射信号频偏会使四个发射通道出现对应的主杂波中心,导致DDMA-MM0雷 达出现多个盲速。观察图5(d)和图5(b),可以看出,相比于图5(b),图5(d)中目标的盲速基 本被抑制了,盲速问题基本得到了解决,而且具有更小的最小可检测速度。因此,可以得出, 采用本发明实施例提供的DDMA波形的参差多普勒频率偏移选择方法,能够避免盲速问题。 [0105]本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过 程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序 在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光 盘等各种可以存储程序代码的介质。
[0106]以上所述,仅为本发明的【具体实施方式】,但本发明的保护范围并不局限于此,任何 熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵 盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。
【主权项】
1. 一种DDMA波形的参差多普勒频率偏移选择方法,应用于多输入多输出MIMO雷达系 统,所述MIM0雷达系统包括M个发射通道,M为整数,M多3,其特征在于,所述方法包括如下步 骤: 步骤1,获取脉冲重复频率以及一个相干处理时间内的脉冲数,根据所述一个相干处理 时间内的脉冲数,确定不模糊多普勒范围内离散点数;根据所述不模糊多普勒范围内离散 点数以及所述脉冲重复频率,计算得到多普勒频率偏移分辨率; 步骤2,获取载机速度及发射信号波长;根据所述载机速度和所述发射信号波长,确定 杂波多普勒带宽;进而,所述根据所述多普勒频率偏移分辨率以及所述杂波多普勒带宽,计 算得到杂波多普勒点数,以及,根据所述多普勒频率偏移分辨率、所述脉冲重复频率、发射 通道总数M以及所述杂波多普勒带宽,计算得到搜索次数;根据所述搜索次数,构造得到多 普勒频率偏移矩阵,所述多普勒频率偏移矩阵是一个n s X ns X…X ns维的零矩阵,其共有M-1个维度,^表示搜索次数; 步骤3,对于所述多普勒频率偏移矩阵中的每一元素,分别以该元素在第i个维度中的 坐标作为所述MM0雷达系统的第i多普勒频率偏移数,进而判断所述MM0雷达系统的各发 射通道是否都在多普勒不模糊范围内,若是,则利用所述MM0雷达系统的全部多普勒频率 偏移数、所述不模糊多普勒范围内离散点数以及所述杂波多普勒点数,构造得到所述M个发 射通道中每个发射通道对应的多普勒谱向量,进而将所述M个发射通道中每个发射通道对 应的多普勒谱向量相加,得到合成多普勒谱向量;确定所述合成多普勒谱向量中不重叠的 杂波区间的长度,将该元素设置为所述合成多普勒谱向量中不重叠的杂波区间的长度;其 中,所述MIM0雷达系统的第i多普勒频率偏移数为所述M个发射通道中的第i个发射通道与 第i+1个发射通道之间的多普勒频率偏移数,i取1到M-1之间的所有整数值; 步骤4,搜索得到所述多普勒频率偏移矩阵中的最大元素,确定该最大元素的坐标,根 据该最大元素的坐标以及所述多普勒频率偏移分辨率,计算得到所述M个发射通道中每个 发射通道对应的最佳多普勒频率偏移量;其中,所述M个发射通道中的第1个发射通道对应 的最佳多普勒频率偏移量为〇,所述M个发射通道中的第j个发射通道对应的最佳多普勒频 率偏移量为aiXg+a2Xg"_+aj-1 Xg+( j-1) XBc,其中ai、a2、…、aj-1分别表不多普勒频率偏移 矩阵中的最大元素在第1个维度、第2个维度、…、第j_l个维度中的坐标,j取2到M之间的所 有整数值,g表示多普勒频率偏移分辨率,B。表示杂波多普勒带宽。2. 根据权利要求1所述的方法,其特征在于,步骤1中,所述根据所述不模糊多普勒范围 内离散点数以及所述脉冲重复频率,计算得到多普勒频率偏移分辨率,包括: 根据所述不模糊多普勒范围内离散点数以及所述脉冲重复频率,利用第一预设公式, 计算得到多普勒频率偏移分辨率;其中,所述第一预设公式为:g = fr/n,式中,g表示多普勒 频率偏移分辨率,fr表示脉冲重复频率,n表示不模糊多普勒范围内的离散点数。3. 根据权利要求1或2所述的方法,其特征在于,步骤2中,所述根据所述载机速度和所 述发射信号波长,确定杂波多普勒带宽,包括: 根据所述载机速度和所述发射信号波长,利用第二预设公式,确定杂波多普勒带宽;其 中,所述第二预设公式为:B。= 4v/A,式中,v表示载机速度,A表示发射信号波长,B。表示杂波 多普勒带宽。4. 根据权利要求1-3任一项所述的方法,其特征在于,步骤2中,所述根据所述多普勒频 率偏移分辨率以及所述杂波多普勒带宽,计算得到杂波多普勒点数,包括: 根据所述多普勒频率偏移分辨率以及所述杂波多普勒带宽,利用第三预设公式,计算 得到杂波多普勒点数;其中,所述第三预设公式为:' =1軟/ g」,式中,n。表示杂波多普勒点 数,B。表示杂波多普勒带宽,g表示多普勒频率偏移分辨率,[?」表示向下取整。5.根据权利要求1-4任一项所述的方法,其特征在于,步骤2中,所述根据所述多普勒频 率偏移分辨率、所述脉冲重复频率、发射通道总数M以及所述杂波多普勒带宽,计算得到搜 索次数,包括: 根据所述多普勒频率偏移分辨率、所述脉冲重复频率、发射通道总数M以及所述杂波多 普勒带宽,利用第四预设公式,计算得到搜索次数;其中,第四预设公式为: ns =|_(尤-M ?氧)/§」,式中,^表示搜索次数,B。表示杂波多普勒带宽,g表示多普勒频率偏 移分辨率,fr表示脉冲重复频率,M表示发射通道总数,[_?」表示向下取整。
【文档编号】G01S7/282GK106054138SQ201610616491
【公开日】2016年10月26日
【申请日】2016年7月29日
【发明人】吴建新, 牛芊芊, 张莹莹, 王彤
【申请人】西安电子科技大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1