一种检测大气颗粒物中微生物的场效应传感器及制备方法

文档序号:10505202阅读:429来源:国知局
一种检测大气颗粒物中微生物的场效应传感器及制备方法
【专利摘要】本发明公开了属于生物电化学技术领域的一种检测大气颗粒物中微生物的场效应传感器及制备方法。所述的传感器包括硅基底、绝缘层、单链DNA或RNA修饰石墨烯衍生物的半导体层、源电极和漏电极。采用喷墨打印法在绝缘层上制备出致密的单层石墨烯衍生物,并旋涂一层光刻胶,然后进行刻蚀,形成沟道后,接入单链DNA或RNA,最后在绝缘层上分别蒸镀出源电极和漏电极,并将绝缘材料转移至硅基底上,获得所述的场效应传感器。通过在石墨烯衍生物的半导体层上接入特定的单链DNA或RNA,利用示差脉冲伏安电化学方法,可以快速、准确地检测大气颗粒物中的特定微生物,在环境检测技术领域具有广阔的应用前景。
【专利说明】
一种检测大气颗粒物中微生物的场效应传感器及制备方法
技术领域
[0001]本发明属于生物电化学技术领域,具体涉及一种检测大气颗粒物中微生物的场效应传感器及制备方法。
【背景技术】
[0002]随着大气污染的增加,对大气中颗粒物的分析越来越受到重视,而颗粒物中的微生物因为对人体健康有直接影响,所以对大气颗粒物中微生物的检测尤为重要。
[0003]目前大气中微生物的检测技术局限于自然沉降法(平板法)、撞击法、滤过法和液体撞击法,这些方法先通过物理法收集微生物,然后采用化学或生物方法进行分析。例如,专利“检测产气微生物菌落的方法”中,使用成像装置分析微生物菌落;专利“基于三维有序金掺杂纳米二氧化钛电极的DNA生物传感器及其制备和应用”中,采用金掺杂纳米二氧化钛电极的DNA生物传感器,对采集到的肿瘤进行检测。
[0004]由此可见,如果能将电化学方法直接应用于大气微生物的采集或检测中,将使大气微生物的快速定量检测产生突破性进展。

【发明内容】

[0005]本发明的目的在于提供一种检测大气颗粒物中微生物的场效应传感器及制备方法,采取的技术方案如下:
[0006]—种检测大气颗粒物中微生物的场效应传感器,所述的传感器包括硅基底1、绝缘层2、源电极3、漏电极4、单链DNA或RNA修饰石墨烯衍生物的半导体层5和单链DNA或RNA 6;所述传感器由上到下依次为单链DNA或RNA修饰石墨烯衍生物的半导体层5、绝缘层2和硅基底I,且单链DNA或RNA修饰石墨烯衍生物的半导体层5位于绝缘层2的中部,绝缘层2的左右两端分别为源电极3和漏电极4;所述单链DNA或RNA 6位于单链DNA或RNA修饰石墨烯衍生物的半导体层5上,且能与被检测微生物中的基因互补配对。
[0007]所述绝缘层2的材料为氧化铪或氧化铝,厚度为2-10nm。
[0008]所述石墨烯衍生物为:由氮、磷、硼、氟、硫中的一种或一种以上修饰的厚度为0.1-3nm的单层石墨稀。
[0009]所述源电极3和漏电极4的材料为石墨稀或金。
[0010]所述微生物为大肠杆菌。
[0011]所述场效应传感器的制备方法,包括以下步骤:
[0012](I)采用喷墨打印法在0.5-2cm2的绝缘层上制备出致密的单层石墨烯衍生物,并在石墨烯衍生物表面旋涂一层厚度为0.5-1μπι的光刻胶,在30_60°C下固化,获得石墨烯衍生物的半导体层;
[0013](2)在O-1OPa的压强下,采用1-1OOsccm的氧气等离子体刻蚀石墨烯衍生物的半导体层10-100S,形成1-100μπι的沟道,然后用丙酮清洗刻蚀后的石墨烯衍生物的半导体层;
[0014](3)在气压为(0.1-5.0) X 10—2Pa的等离子体处理器腔内,通过频率为10-15ΜΗΖ的射频辉光,在刻蚀后的石墨烯衍生物的半导体层上接入羟基官能团,再将含单链DNA或RNA的溶液,在20-80°C下与接入羟基官能团的石墨烯衍生物的半导体层充分反应,得到单链DNA或RNA修饰石墨烯衍生物的半导体层;
[0015](4)真空下,在绝缘层上分别蒸镀出厚度为1-1OOnm的源电极和漏电极,并将绝缘层转移至硅基底上,获得所述的场效应传感器。
[0016]所述的场效应传感器在环境检测领域中的应用。
[0017]本发明的有益效果为:本发明所述的场效应传感器,解决了现有大气颗粒物中微生物的检测方法无法实时、定量对微生物进行检测这一问题,通过在石墨烯衍生物的半导体层上接入特定的单链DNA或RNA,利用示差脉冲伏安电化学方法,可以快速、准确地检测大气颗粒物中的特定微生物的含量,在环境检测技术领域具有广阔的应用前景。
【附图说明】
[0018]图1为所述检测大气颗粒物中微生物的场效应传感器的结构示意图;其中,1-硅基底,2-绝缘层,3-源电极,4-漏电极,5-单链DNA或RNA修饰石墨烯衍生物的半导体层,6-单链DNA或RNA。
【具体实施方式】
[0019]下面结合附图和实施例对本发明作进一步描述,本领域技术人员应该明了,所述实施例仅仅用于帮助理解本发明,不应视为对本发明的具体限制。
[0020]实施例1:检测大气颗粒物中大肠杆菌的场效应传感器的制备
[0021](I)将氧化石墨烯与具有还原性的乙二胺溶液混合搅拌lh,之后用去离子水冲洗并烘干,然后在600 0C的Ar气氛下加热Ih,获得氮掺杂石墨烯;
[0022](2)将获得的氮掺杂石墨烯,采用喷墨打印法喷涂在2cm2的绝缘层上,制备出致密的单层氮掺杂石墨烯,然后再旋涂一层厚度为Iym的光刻胶,在50°C下固化,获得氮掺杂石墨烯的半导体层;
[0023](3)在1Pa的压强下,采用10sccm的氧气等离子体刻蚀氮掺杂石墨稀的半导体层10s,形成60μπι的沟道,然后用丙酮清洗刻蚀后的氮掺杂石墨烯的半导体层;
[0024](4)在气压为2.0X 10—2Pa的等离子体处理器腔内,通过频率为10-15ΜΗΖ的射频辉光,在刻蚀后的氮掺杂石墨烯的半导体层上接入羟基官能团,再将含单链DNA的溶液,在60°(:下与接入羟基官能团的氮掺杂石墨烯的半导体层充分反应,得到单链DNA修饰氮掺杂石墨稀的半导体层;
[0025]所述单链DNA能与大肠杆菌中的基因互补配对,单链DNA采用PCR扩增法合成,合成的单链DNA的序列如下:
[0026]
AAAGAGAGAGAGAAGTGCACGGTCGATCAAGTACAGATCATGCGTTGCACGGTCGATCAAGTACAGATCATGCGTCG
GGCTCGGAACTTTCGTTCCGAGCCCGACGCATGATCTGTACTTGATCGACCGTGCAACGCATGATCTGTACTTGATC
GACCGTGCACTTCTCTCTCTCAACAACAACAACGGAGGAGGAGGA;
[0027](5)真空下,在绝缘层上分别蒸镀出厚度为10nm的源电极和漏电极,并将绝缘层转移至硅基底上,获得检测大气颗粒物中大肠杆菌的场效应传感器。
[0028]实施例2:检测大气颗粒物中大肠杆菌的场效应传感器的制备
[0029](I)将氧化石墨烯与具有还原性的氟化铵溶液混合搅拌lh,之后用去离子水冲洗并烘干,然后在600 0C的Ar气氛下加热Ih,获得氟掺杂石墨烯;
[0030](2)将获得的氟掺杂石墨烯,采用喷墨打印法喷涂在I cm2的绝缘层上,制备出致密的单层氟掺杂石墨烯,然后再旋涂一层厚度为0.5μπι的光刻胶,在40°C下固化,获得氟掺杂石墨烯的半导体层;
[0031](3)在5Pa的压强下,采用50sCCm的氧气等离子体刻蚀氟掺杂石墨烯的半导体层60s,形成ΙΟΟμπι的沟道,然后用丙酮清洗刻蚀后的氟掺杂石墨烯的半导体层;
[0032](4)在气压为5.0X 10—2Pa的等离子体处理器腔内,通过频率为10-15ΜΗΖ的射频辉光,在刻蚀后的氟掺杂石墨烯的半导体层上接入羟基官能团,再将含单链DNA的溶液,在50°(:下与接入羟基官能团的氟掺杂石墨烯的半导体层充分反应,得到单链DNA修饰氟掺杂石墨稀的半导体层;
[0033]所述单链DNA能与大肠杆菌中的基因互补配对,单链DNA采用PCR扩增法合成,合成的单链DNA的序列如下:
[0034]
AAAGAGAGAGAGAAGTGCACGGTCGATCAAGTACAGATCATGCGTTGCACGGTCGATCAAGTACAGATCATGCGTCG
GGCTCGGAACTTTCGTTCCGAGCCCGACGCATGATCTGTACTTGATCGACCGTGCAACGCATGATCTGTACTTGATC
GACCGTGCACTTCTCTCTCTCAACAACAACAACGGAGGAGGAGGA;
[0035](5)真空下,在绝缘层上分别蒸镀出厚度为10nm的源电极和漏电极,并将绝缘层转移至硅基底上,获得检测大气颗粒物中大肠杆菌的场效应传感器。
[0036]实施例3:大肠杆菌的场效应传感器对大气颗粒物中大肠杆菌含量的检测
[0037]首先配置一组大肠杆菌数量分别为l、2、3、4CFU/mL的标准溶液,然后再将实施例1中获得的场效应传感器放在大肠杆菌浓度分别为1、2、3、4CFU/mL的溶液中,以示差脉冲伏安电化学方法进行检测,电流信号分别达到1.31 X 10—7A、2.80 X 10—8A、4.28 X 10—8A、5.76 X10一8A,获得大肠杆菌数量-电流信号的标准曲线,标准曲线为y = 6.76X 18.x+0.1095。
[0038]用实施例1中获得的场效应传感器,对收集了大气颗粒物的滤膜上的大肠杆菌,以示差脉冲伏安电化学方法进行检测,电流信号为8.78 X 10—8A,通过上述标准曲线进行转换,得到滤膜上的大气颗粒物中大肠杆菌的数量约为6CFU/mL。
【主权项】
1.一种检测大气颗粒物中微生物的场效应传感器,其特征在于,所述的传感器包括硅基底(I)、绝缘层(2)、源电极(3)、漏电极(4)、单链DNA或RNA修饰石墨烯衍生物的半导体层(5)和单链DNA或RNA (6);所述传感器由上到下依次为单链DNA或RNA修饰石墨烯衍生物的半导体层(5)、绝缘层(2)和硅基底(I),且单链DNA或RNA修饰石墨烯衍生物的半导体层(5)位于绝缘层(2)的中部,绝缘层(2)的左右两端分别为源电极(3)和漏电极(4);所述单链DNA或RNA(6)位于单链DNA或RNA修饰石墨烯衍生物的半导体层(5)上,且能与被检测微生物中的基因互补配对。2.根据权利要求1所述的一种检测大气颗粒物中微生物的场效应传感器,其特征在于,所述绝缘层(2)的材料为氧化铪或氧化铝,厚度为2-10nm。3.根据权利要求1所述的一种检测大气颗粒物中微生物的场效应传感器,其特征在于,所述石墨烯衍生物为:由氮、磷、硼、氟、硫中的一种或一种以上修饰的厚度为0.l-3nm的单层石墨稀。4.根据权利要求1所述的一种检测大气颗粒物中微生物的场效应传感器,其特征在于,所述源电极(3)和漏电极(4)的材料为石墨烯或金。5.根据权利要求1-4任一项所述的一种检测大气颗粒物中微生物的场效应传感器,其特征在于,所述微生物为大肠杆菌。6.权利要求1-4任一项所述场效应传感器的制备方法,其特征在于,包括以下步骤: (1)采用喷墨打印法在0.5-2cm2的绝缘层上制备出致密的单层石墨烯衍生物,并在石墨烯衍生物表面旋涂一层厚度为0.5-1μπι的光刻胶,在30-60 °C下固化,获得石墨烯衍生物的半导体层; (2)在O-1OPa的压强下,采用1-1OOsccm的氧气等离子体刻蚀石墨稀衍生物的半导体层10-100S,形成1-100μπι的沟道,然后用丙酮清洗刻蚀后的石墨烯衍生物的半导体层; (3)在气压为(0.1-5.0) X 10—2Pa的等离子体处理器腔内,通过频率为10_15MHz的射频辉光,在刻蚀后的石墨烯衍生物的半导体层上接入羟基官能团,再将含单链DNA或RNA的溶液,在20-80°C下与接入羟基官能团的石墨烯衍生物的半导体层充分反应,得到单链DNA或RNA修饰石墨烯衍生物的半导体层; (4)真空下,在绝缘层上分别蒸镀出厚度为1-1OOnm的源电极和漏电极,并将绝缘层转移至硅基底上,获得所述的场效应传感器。7.权利要求1-4任一项所述的场效应传感器在环境检测领域中的应用。
【文档编号】G01N27/48GK105866225SQ201610204480
【公开日】2016年8月17日
【申请日】2016年4月1日
【发明人】杨兰, 黄国和, 郑如秉, 王源意
【申请人】华北电力大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1