基于机器视觉的移动机器人的自主精确定位系统的利记博彩app

文档序号:10509588阅读:573来源:国知局
基于机器视觉的移动机器人的自主精确定位系统的利记博彩app
【专利摘要】本发明提供基于机器视觉的室内移动机器人的自主精确定位系统,包括安装在移动机器人内部的定位控制器、光轴垂直于天花板平面的图像采集摄像头以及激光发生器,所述激光发生器设置于天花板下方,用于在机器人预设活动区域对应的天花板上投射具有特定特征的光线图案;所述图像采集摄像头通过通讯接口与微处理器连接,用于实时采集机器人所处位置正上方的天花板光线图案并上传至微处理器;本发明在不改变天花板原貌的前提下,利用激光发生器将具有识别特征的光线图案投射到天花板,增加天花板的可识别特征,并通过图像处理与图像匹配方式实现定位,适用范围广,定位精度高。
【专利说明】
基于机器视觉的移动机器人的自主精确定位系统
技术领域
[0001] 本发明属于移动机器人定位领域,尤其涉及基于机器视觉的移动机器人的自主精 确定位系统。
【背景技术】
[0002] 室内定位的实用性和必要性在一些特定场合已经日趋显著,其应用前景广阔,具 有较大的拓展空间,其应用范围广泛,在复杂环境下,如图书馆,体育馆,地下车库,货品仓 库等都可以实现对人员以及物品的快速定位,例如,在自动化生产和仓储管理中应用移动 机器人,室内移动机器人精确识别当前位置,从而精确地组装产品、传输和搬运产品。目前, 室内移动机器人定位方法一般有几种:超声波定位、红外线定位、超宽带定位、测距法、二维 码/条形码定位方法。
[0003] 超声波定位目前大多数采用反射式测距法。系统由一个主测距器和若干个电子标 签组成,主测距器可放置于移动机器人本体上,各个电子标签放置于室内空间的固定位置。 定位过程如下:先由上位机发送同频率的信号给各个电子标签,电子标签接收到后又反射 传输给主测距器,从而可以确定各个电子标签到主测距器之间的距离,并得到定位坐标。目 前,比较流行的基于超声波室内定位的技术为在移动机器人身上4个朝向安装4个超声波 传感器,将待定位空间分区,由超声波传感器测距形成坐标,总体把握数据,抗干扰性强,精 度高,而且可以解决机器人迷路问题。定位精度:超声波定位精度可达厘米级,精度比较高。 缺陷:超声波在传输过程中衰减明显从而影响其定位有效范围。
[0004] 红外线是一种波长间于无线电波和可见光波之间的电磁波。典型的红外线室内 定位系统Activebadges使待测物体附上一个电子标识,该标识通过红外发射机向室内固 定放置的红外接收机周期发送该待测物唯一 ID,接收机再通过有线网络将数据传输给数据 库。这个定位技术功耗较大且常常会受到室内墙体或物体的阻隔,实用性较低。如果将红 外线与超声波技术相结合也可方便地实现定位功能。用红外线触发定位信号使参考点的超 声波发射器向待测点射超声波,应用Τ0Α基本算法,通过计时器测距定位。一方面降低了功 耗,另一方面避免了超声波反射式定位技术传输距离短的缺陷。使得红外技术与超声波技 术优势互补。定位精度:5至10m。缺陷:红外线在传输过程中易于受物体或墙体阻隔且传 输距离较短,定位系统复杂度较高,有效性和实用性较其它技术仍有差距。
[0005] 测距法也称推算法,其通过两个轮子加装的编码器测出微小距离,计算出移动机 器人位置和姿态的变化量,通过累加,实现移动机器人的自动定位。但是,一旦车轮行进过 程中出现打滑空转现象,由于编码器的输出不能修正这一误差,所以,随着时间的推移,将 会加大误差累计,导致定位精度的降低,因此,测距法只适应于一段相当短的距离。
[0006] 二维码/条形码移动机器人定位方法通常是在每个二维码/条形码标签上印制若 干个二维码/条形码,每个条形码数据由两部分组成:绝对地址码和位置偏移码,绝对地址 码用于定位该标签在室内环境中的实际地理位置,位置偏移码用于确定该标签上各个二维 码/条形码之间的偏移量,每个标签上各个二维码/条形码上的绝对地址码是相同的,代表 整个标签在室内的地理位置,各个二维码/条形码之间的相对位置用各自的偏移量表示。 条码扫描枪每次扫描得到一个完整的条码,当扫描范围出现空白区时,通过对第1个空白 区左右两侧的数据信息进行拼接而获得一个完整的条码数据。当用以上方法定位移动机器 人位置时,是将标签的位置(绝对位置)、条码的位置(相对位置)、条码扫描枪位置(相对 位置)这三个数据叠加,最终得到移动机器人在室内实际地理位置。但是,该方法仍然有以 下不足:二维码/条形码识读速度低,不适合于高效率的移动机器人领域;二维码/条形码 布局结构难以实现全方位识读;容错能力差,对环境要求高、成本高,不利于推广使用。由于 一维码没有纠错码字并且添加在数据码字序列后,使得符号在遇到损坏时丢失数据,当二 维码/条形码长期使用后出现磨损,或由于地面凹凸不平,二维码/条形码弯曲时,都不能 正常识读数据。
[0007] 本发明的目的在于克服现有技术的不足,利用激光发生器将具有识别特征的光线 图案投射到天花板,利用图像识别技术进行定位,提供一种高速读取、全方位识读、且定位 精确的定位系统及方法。

【发明内容】

[0008] 本发明的目的在于克服现有技术的不足,提供一种定位准确、稳定性强且便于实 施的基于机器视觉的移动机器人的自主精确定位系统。
[0009] 基于机器视觉的移动机器人的自主精确定位系统,包括安装在移动机器人内部的 定位控制器、光轴垂直于天花板平面的图像采集摄像头以及激光发生器,其中:
[0010] 所述定位控制器包括微处理器与通讯接口,所述的微处理器设置数字地图模块、 图像处理模块、图像匹配模块;
[0011] 通讯接口与图像采集摄像头相连接,微处理器通过通讯接口控制图像采集摄像头 进行图像采集、接收图像数据并通过图像处理模块与图像匹配模块实现移动机器人的精确 定位;
[0012] 所述激光发生器设置于天花板下方,用于在机器人预设活动区域对应的天花板上 投射具有特定特征的光线图案;
[0013] 所述图像采集摄像头通过通讯接口与微处理器连接,用于实时采集机器人所处位 置正上方的天花板光线图案并上传至微处理器;
[0014] 还包括定位显示模块,所述定位显示模块与微处理器连接,用于在数字地图中实 时显示机器人所处位置。
[0015] 进一步地,所述激光发生器在机器人预设活动区域对应的天花板上投射的光线为 可见光。
[0016] 进一步地,所述激光发生器在机器人预设活动区域对应的天花板上投射的光线为 不可见光。
[0017] 进一步地,当投射的光线为不可见光时,所述图像采集摄像头镜头包含滤光片,用 于过滤非激光器发射波长的光。
[0018] 作为优选方案,所述的通讯接口为网络接口、USB接口或者1394接口。
[0019] 基于机器视觉的室内移动机器人的自主精确定位方法,包括以下步骤:
[0020] 步骤a:系统初始化:
[0021] SI :激光发生器在机器人预设活动区域对应的天花板上投射具有特定特征的光线 图案;
[0022] S2 :数字地图模块建立上述光线图案的含有物理坐标信息的数字地图;
[0023] 步骤b:定位:
[0024] S3 :图像采集摄像头实时采集机器人所在位置对应的天花板的光线图案图像;
[0025] S4 :图像处理模块对采集的图像进行预处理;
[0026] S5:图像匹配模块提取图像的特征,并在数字地图中搜索符合其图像特征的物理 坐标;
[0027] S6 :图像显示模块实时显示机器人在数字地图中所处位置。
[0028] 其中,步骤S2中,按如下步骤进行:
[0029] A :图像采集摄像头按一定次序采集机器人预设活动区域的多幅光线图案图像,并 标记其采集图像时地面的物理坐标,将上述数据通过通讯接口上传至数字地图模块;
[0030] B :数字地图模块将多幅光线图案图像拼接成完整的图像;
[0031] C :设定坐标原点,在图像中标记采集图像时地面的物理坐标;
[0032] D :生成机器人预设活动区域含有物理坐标信息的数字地图的格式化数据。
[0033] 本发明的优点和积极效果是:
[0034] 第一、利用激光发生器将具有识别特征的光线图案投射到天花板,光线图案识别 更方便清楚,通过移动机器人上安装的图像采集摄像头,采集移动机器人预设活动区域的 图像并建立含有物理坐标信息的数字地图,并通过图像处理与图像匹配方式实现定位,适 用范围广,定位精度高;
[0035] 第二、本定位方法不依赖于二维码、条形码、电子标签等辅助设备,依靠对天花板 图像的采集与识别即完成定位,增强了移动机器人室内定位技术的普及性、易用性和使用 效果;
[0036] 第三、本发明设计合理,通过与运动控制系统配合使用,使机器人运行平稳,不再 出现以前运行过程中的大幅度抖动现象,运行方向明确,取得了移动机器人定位的突出效 果和显著进步。
【附图说明】
[0037] 图1为本发明基于机器视觉的移动机器人的自主精确定位系统的结构示意图;
[0038] 图2为实施例1的结构示意图;
[0039] 图3为实施例1中采集的位置A的图像;
[0040] 图4为实施例1中采集的位置B的图像。
[0041] 其中:
[0042] 1 :图像采集摄像头;2 :天花板全景光线图像;3 :采集的位置A的图像;4 :采集的 位置B的图像;5:激光发生器。
【具体实施方式】
[0043] 以下结合附图对本发明做进一步详述:
[0044] 如图1所示,基于机器视觉的移动机器人的自主精确定位系统,包括安装在移动 机器人内部的定位控制器、光轴垂直于天花板平面的图像采集摄像头以及激光发生器,其 中:所述定位控制器包括微处理器与通讯接口,所述的微处理器设置数字地图模块、图像处 理模块、图像匹配模块;通讯接口为网络接口、USB接口或者1394接口。通讯接口与图像 采集摄像头相连接,微处理器通过通讯接口控制图像采集摄像头进行图像采集、接收图像 数据并通过图像处理模块与图像匹配模块实现移动机器人的精确定位;所述激光发生器设 置于天花板下方,用于在机器人预设活动区域对应的天花板上投射具有特定特征的光线图 案;所述激光发生器在机器人预设活动区域对应的天花板上投射的光线为可见光或不可见 光。如,发射红外线,形成具有识别特征的光线图案。当投射的光线为不可见光时,所述图 像采集摄像头镜头包含滤光片,用于过滤非激光发生器发射波长的光,图像采集摄像头采 集激光发生器发出的不可见光图案。
[0045] 所述图像采集摄像头通过通讯接口与微处理器连接,用于实时采集机器人所处位 置正上方的天花板光线图案并上传至微处理器;还包括定位显示模块,所述定位显示模块 与微处理器连接,用于在数字地图中实时显示机器人所处位置。
[0046] 微处理器与运动控制模块连接,运动控制模块根据定位信息控制机器人移动的方 向与速度,实现导航。
[0047] 实施例1 :
[0048] 下面以本实施例说明基于机器视觉的移动机器人的自主精确定位系统的定位过 程,如图2所示,按下述步骤进行:
[0049] S1 :激光发生器5在机器人预设活动区域对应的天花板上投射可见光光线图案 2 ;
[0050] S2 :图像采集摄像头1采集机器人预设活动区域的光线图案图像通过通讯接口上 传至数字地图模块,数字地图模块建立含有坐标信息的数字地图;包括:A :图像采集模块 采集天花板上光线图案的完整图像;B :提取图像的特征点;C :设定坐标原点,并标记特征 点对应的室内二维物理坐标;D :生成机器人预设活动区域的数字地图的格式化数据。
[0051] 图像采集摄像头,实时采集机器人所在位置对应的光线图像,如:图像采集摄像头 1在位置A实时采集光线图像3,在位置B实时采集图像4,分别如图3、图4所示。
[0052] B:图像处理模块对采集的图像进行灰度化、除噪处理、特征点提取,其处理过程如 下,
[0053] 1 :灰度化
[0054] 将图像进行灰度化处理,获取灰度图像,可以在最大限度保留原有图像信息的基 础上减小图像的数据量,提高图像处理速度。使用加权平均法进行灰度化处理
[0055] 根据重要性及其它指标,将三个分量以不同的权值进行加权平均。按下式对RGB 三分量进行加权平均能得到较合理的灰度图像。
[0056] f (i, j) = 0. 30R(i, j)+0. 59G(i, j)+0. llB(i, j))
[0057] 2 :图像去噪,纹理增强
[0058] 对地面纹理进行分析,采用Canny边缘检测算法。Canny检测算法基于Sobel算 子,核心是使用两个不同阈值确定哪些点属于轮廓:一个低值和一个高值。通过良好的边缘 检测,可以在图像中清晰的描绘出地面的纹理边缘线。
[0059] 3、特征点提取
[0060] 在不同图像之间匹配特征时,我们采用SURF(Speed Up Robust Features)--加 速鲁棒特征。
[0061] SURF的实现如下,首先对每个像素计算Hessian矩阵以得到特征,该矩阵测量一 个函数的局部曲率,定义如下:
[0063] 该矩阵的行列式给出曲率的强度,定义角点为具有较高局部曲率的图像点(即 在多个方向具有高曲率)。由于该矩阵是二阶导数组成的,它可以使用不同σ尺度的 Laplacian Gaussian核进行计算,因此Hessian变成了三个变量的函数:H(x,y,〇)。当 Hessian值同时在空间域和尺度域上达到局部极大值时,即为该点的尺度不变特征。
[0064] S4:图像匹配模块提取图像的特征,并在数字地图中搜索符合其图像特征的物理 坐标;先检测和提取图像的特征点,然后在数字地图中进行匹配。
[0065] 平面上的点模式匹配的一般问题是确定仿射变换下两个点集是否匹配。现设第一 个点集为模型点,一共有η个点,第二个点集为图象点,有m个点。设第二个点集是第一个 点集经过某个仿射变换得到的,但由于噪声的作用,点的相对位置有微小的变化,而且第一 个点集中可能有部分点(称为缺少点)在第二个点集中找不到对应点,第二个点集中可能 随机出现一些新的点(称为伪)。
[0066] Hausdorff距离是描述两组点集之间相似程度的一种量度,它是两个点集之间距 离的一种定义形式:假设有两组集合A= {al,"*,ap},B= {bl,…,bq},则这两个点集合 之间的 Hausdorff 距离定义为 H(A, B) = max (h (A, B),h (B, A)) (1)
[0067] 其中,
[0068] h (A, B) = max (a e A)min (b e B) II a_b II (2)
[0069] h (B,A) = max (b e B)min (a e A) || b_a || (3)
[0070] II · II是点集A和B点集间的距离范式
[0071] 这里,式(1)称为双向Hausdorff距离,是Hausdorff距离的最基本形式;式(2) 中的h (A,B)和h (B,A)分别称为从A集合到B集合和从B集合到A集合的单向Hausdorff 距离.即h(A,B)实际上首先对点集A中的每个点ai到距离此点ai最近的B集合中点bj 之间的距离llai-bj||进行排序,然后取该距离中的最大值作为h(A,B)的值.h(B,A)同 理可得.
[0072] 由式⑴知,双向Hausdorff距离H(A,B)是单向距离h(A,B)和h(B,A)两者中 的较大者,它度量了两个点集间的最大不匹配程度。
[0073] 使用SURF特征和描述子,可以实现尺度不变匹配。该算法为每个检测到的特征定 义了位置和尺度,尺度值可用于定义围绕特征点的窗口大小,不论物体的尺度如何,窗口中 都将包含相同的视觉信息,这些信息将用来进行特征点匹配,来确定采集的位置A的图像 3 ;及采集的位置B的图像4的物理坐标。
[0074] S5 :图像显示模块显示位置A、位置B在数字地图中所处位置,其它位置的处理过 程与上述过程相同,这样图像显示模块可以实时显示移动机器人在数字地图中的坐标与位 置,为运动控制系统对移动机器人的移动导航提供方位支持。
[0075] 实施例2
[0076] 本实施例与实施1的不同之处在于,激光发生器5投射的光线为不可见光,图像采 集摄像头设置滤光片,将其它波长的光过滤掉,保留激光发生器发出的不可见光。
[0077] 以上所述者,仅为本发明的较佳实施例而已,不能以此限定本发明实施的范围,即 但凡依本发明申请专利范围及发明说明内容所作的简单的等效变化与修饰,皆仍属本发明 专利涵盖的范围内。
【主权项】
1. 基于机器视觉的移动机器人的自主精确定位系统,其特征在于:包括安装在移动 机器人内部的定位控制器、光轴垂直于天花板平面的图像采集摄像头以及激光发生器,其 中: 所述定位控制器包括微处理器与通讯接口,所述的微处理器设置数字地图模块、图像 处理模块、图像匹配模块; 通讯接口与图像采集摄像头相连接,微处理器通过通讯接口控制图像采集摄像头进 行图像采集、接收图像数据并通过图像处理模块与图像匹配模块实现移动机器人的精确定 位; 所述激光发生器设置于天花板下方,用于在机器人预设活动区域对应的天花板上投射 具有特定特征的光线图案; 所述图像采集摄像头通过通讯接口与微处理器连接,用于实时采集机器人所处位置正 上方的天花板光线图案并上传至微处理器; 还包括定位显示模块,所述定位显示模块与微处理器连接,用于在数字地图中实时显 示机器人所处位置。2. 根据权利要求1所述的基于机器视觉的移动机器人的自主精确定位系统,其特征在 于:所述激光发生器在机器人预设活动区域对应的天花板上投射的光线为可见光。3. 根据权利要求1所述的基于机器视觉的移动机器人的自主精确定位系统,其特征在 于:所述激光发生器在机器人预设活动区域对应的天花板上投射的光线为不可见光。4. 根据权利要求3所述的基于机器视觉的移动机器人的自主精确定位系统,其特征在 于:所述图像采集摄像头镜头包含滤光片,用于过滤非激光器发射波长的光。5. 根据权利要求1所述的基于地面特征的室内移动机器人的自主精确定位系统,其特 征在于:所述的通讯接口为网络接口、USB接口或者1394接口。6. 基于机器视觉的移动机器人的自主精确定位方法,其特征在于:包括以下步骤: 步骤a :系统初始化: 51 :激光发生器在机器人预设活动区域对应的天花板上投射具有特定特征的光线图 案; 52 :数字地图模块建立上述光线图案的含有物理坐标信息的数字地图; 步骤b :定位: 53 :图像采集摄像头实时采集机器人所在位置对应的天花板的光线图案图像; 54 :图像处理模块对采集的图像进行预处理; 55 :图像匹配模块提取图像的特征,并在数字地图中搜索符合其图像特征的物理坐 标; 56 :图像显示模块实时显示机器人在数字地图中所处位置。7. 基于机器视觉的室内移动机器人的自主精确定位方法,其特征在于:步骤S2中,按 如下步骤进行: A :图像采集摄像头按一定次序采集机器人预设活动区域的多幅光线图案图像,并标记 其采集图像时地面的物理坐标,将上述数据通过通讯接口上传至数字地图模块; B :数字地图模块将多幅光线图案图像拼接成完整的图像; C :设定坐标原点,在图像中标记采集图像时地面的物理坐标; D :生成机器人预设活动区域含有物理坐标信息的数字地图的格式化数据。
【文档编号】G01C21/00GK105865438SQ201510033871
【公开日】2016年8月17日
【申请日】2015年1月22日
【发明人】郭杰, 郭小璇
【申请人】青岛通产软件科技有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1