一种超声成像检测装置及系统的利记博彩app
【技术领域】
[0001]本发明涉及超声成像技术领域,特别涉及一种超声成像检测装置及系统。
【背景技术】
[0002]超声相控阵成像对于无损检测具有重要的意义,近年来更是得到了广泛应用。相控阵检测具有极大的灵活性,可以检测不规则形状的零件。相对于传统的单阵元探伤系统,相控阵检测/探伤具有探查面积大、信噪比高、检测结果直观等优点。常用的相控阵的工作方式有平面波束、扇扫波束及聚焦波束等,不同的工作方式具有不同的探查范围和精度。同时,随着2D换能器的发展,零器件的三维体扫描技术在无损探伤领域中得到了广泛的应用。
[0003]随着电子技术的进步,数字信号处理器(Digital Signal Pro-cessor,DSP)多核等技术促进了高速的相控阵探伤的发展。各种探伤技术使得工业制造、火车交通、航空航天和管道传输等行业中的无损探伤技术得到了巨大的发展。同时,在成像技术方面,各种高精度、高效的成像算法得以实现:包括脉冲编码、高精度波束形成等。相控阵检测方面也有一些包括相控阵阵元一致性的基础研究;把相控阵应用于更加复杂的材料,例如符合材料相控阵和导波相控阵的研究,也都需要专门的相控阵可配置平台作为支撑。
[0004]超声波在材料介质空间的传播过程中若遇到缺陷或者不连续的介质材料时会发生波的发射、散射、绕射和对超声能量的吸收等现象。超声多途识别检测技术是指从超声传播过程中形成的多途路径出发,发展相应的算法,尝试去解决缺陷的检测问题。
[0005]超声成像过程主要包括三个环节,一是采集,二是重构,三是绘制。所谓采集,就是获取二维超声面数据的过程;所谓重构,是将采集的面数据变换的直角坐标,从而得到相对位置与平面一致的面数据,这样在下一步绘制环节中才能得到准确的、没有变形的成像结果;所谓绘制,是指对面数据使用可视化算法进行计算,从而获得可视信息,并在显示器中进行显示。
[0006]在传统的无损探伤领域中,往往使用单阵元测试,近年来一些商用厂商,例如GE和Olympus也开发了一些商用产品,但是商用的相控阵探伤器一般采用的是专用芯片,系统的可配置性不高。
【发明内容】
[0007]本发明的目的在于提供一种超声成像检测装置及系统,以解决现有的超声成像检测设备所存在的系统可配置性不高的问题。
[0008]为实现上述目的,本发明提供了一种超声成像检测装置,包括探头连接模块、发射模块、接收模块及主控模块,其中:
[0009]所述探头连接模块包括探头连接器及若干个模拟开关,所述探头连接器与一相控阵相连,所述相控阵内包括若干个换能器阵元;
[0010]所述发射模块包括发射控制单元及驱动信号单元;
[0011 ]所述接收模块包括接收控制单元及接收信号单元;
[0012]所述主控模块包括信号调理单元、DSP主控单元及成像单元;
[0013]发射超声波时,所述DSP主控单元用于发送发射控制信号至所述发射控制单元,所述发射控制单元用于对所述发射控制信号进行处理后输出至所述驱动信号单元,所述驱动信号单元用于发送脉冲信号至模拟开关,通过所述模拟开关选择与探头连接器相连的相控阵内的换能器阵元的进行超声波发射;
[00? 4]接收回波时,所述DSP主控单元用于发送接收控制信号至所述接收控制单元,所述接收控制单元用于对所述接收控制信号进行处理后输出至所述接收信号单元,所述接收信号单元用于接收来自换能器阵元的回波信号并进行模/数转换得到数字信号,所述数字信号由所述信号调理单元进行调理后输入所述DSP主控单元进行处理,所述成像单元用于显示所述DSP主控单元处理后的结果。
[0015]较佳地,所述脉冲信号以菊花链的形式依序驱动所述模拟开关。
[0016]较佳地,所述驱动信号单元包括若干个脉冲发生器,所述模拟开关的数量为所述脉冲发生器数量的整数倍,发射超声波时的任意一个时刻,闭合的模拟开关的数量与所述脉冲发生器数量相等。
[0017]较佳地,所述接收信号单元包括包括低噪声放大器、时间增益控制器、可编程增益放大控制器及模拟数字滤波器,所述低噪声放大器用于对所述回波信号进行低噪声放大,所述时间增益控制器、可编程增益放大控制器分别用于对低噪声放大的回波信号进行时间增益调整及可编程增益放大控制的处理;所述模拟数字滤波器用于将处理后的回波信号转换为数字信号。
[0018]较佳地,所述信号调理单元包括低通滤波器及存储器,所述低通滤波器用于对来自所述接收信号单元的回波信号进行低通滤波;所述存储器用于将回波信号存储在相应的寄存器的位置。
[0019]较佳地,所述DSP主控单元处理来自所述信号调理单元的回波信号时,对其进行全数字波束形成处理,处理后输入所述成像单元。
[0020]较佳地,所述成像单元具体用于在所述DSP主控单元的控制下对波束形成后的数据进行处理,以及对缺陷回波信号依次进行提取、重构及绘制,从而形成缺陷图像并显示。
[0021]较佳地,所述信号调理单元输出的回波信号以低压差分信号的电平形式送入所述DSP主控单元。
[0022]本发明还提供了一种超声成像检测系统,包括处理终端,及上述的超声成像检测装置,所述处理终端通过无线或有线的方式与所述成像显示单元进行数据交互,用于配置所述超声成像检测装置的工作模式。
[0023]较佳地,所述工作模式为纵波成像模式或横波成像模式时,所述处理终端用于生成波束形成的系数并将其传送给所述DSP主控单元;
[0024]所述工作模式为全数据采集模式时,所述信号调理单元输出的回波信号被送入所述DSP主控单元、所述成像单元或所述处理终端以进行处理。
[0025]本发明的有益效果在于:通过用处理器终端对DSP进行不同功能的相控阵无损探伤配置,使其服务于不同的超声成像工作方式,使用与各种不同的探伤应用,可配置性较好。
【附图说明】
[0026]图1为本发明提供的超声成像检测装置组成结构示意图;
[0027]图2为本发明提供的超声成像检测系统组成结构示意图;
[0028]图3为本发明提供的装置的发射模块及换能器前端的工作示意图;
[0029]图4为本发明提供的装置的信号前处理的工作示意图;
[0030]图5为本发明提供的装置的DSP主控单元的结构示意图。
【具体实施方式】
[0031]为更好地说明本发明,兹以一优选实施例,并配合附图对本发明作详细说明,具体如下:
[0032]如图1所示,本发明提供的超声成像检测装置,主要由四块板卡组成,分别为探头连接模块10、发射模块20、接收模块30及主控模块40,四块板卡协同工作完成16通道64阵元的超声成像功能。其中:探头连接模块10包括探头连接器11及16个模拟开关T-R,探头连接器11与一相控阵50相连,相控阵50内包括64个换能器阵元;而发射模块20包括发射控制单元21、驱动信号单元22以及发射电源23;接收模块30包括接收控制单元31、接收信号单元32以及接收电源33;主控模块40包括信号调理单元41、DSP主控单元42及成像单元43。其中,发射电源23及接收电源33分别为发射模块及接收模块供电,当然在其他优选实施例中,可采用外部供电的方式而无需设置发射电源23及接收电源33。
[0033]该超声成像检测装置进行发射超声波时,DSP主控单元42发送发射控制信号至发射控制单元21,发射控制单元21对发射控制信号进行处理后输出至驱动信号单元22,驱动信号单元22发送脉冲信号至对应的模拟开关,通过模拟开关的闭合与断开来选择与探头连接器11相连的相控阵内的换能器阵元是否工作,从而进行超声波发射。
[0034]在探测板结构金属/块试件中,发射的超声波遇到材料内部缺陷后,产生缺陷回波信号。缺陷回波信号回到换能器进行声信号向电信号的换能,回波电信号通过模拟开关到达接收模块30。
[0035]其中,该超声成像检测装置接收回波时,DSP主控单元42发送接收控制信号至接收控制单元31,接收控制单元31对接收控制信号进行处理后输出至接收信号单元32,接收信号单元32接收来自换能器阵元的回波信号并进行模/数转换得到数字信号,数字信号由信号调理单元41进行调理后输入DSP主控单元42进行处理,成像单元43显示DSP主控单元42处理后的结果。
[0036]其中,驱动信号单元22包括多个脉冲发生器,模拟开关的数量为脉冲发生器数量的整数倍,发射超声波时的任意一个时刻,闭合的模拟开关的数量与所述脉冲发生器数量相等。而DSP主控单元42控制脉冲信号以菊花链的形式依序驱动上述的模拟开关。
[0037]优选地,接收信号单元32包括包括低噪声放大器、时间增益控制器、可编程增益放大控制器及模拟数字滤波器,低噪声放大器对回波信号进行低噪声放大,时间增益控制器、可编程增益放大控制器分别用于对低噪声放大的回波信号进行时间增益调整及可编程增益放大控制的处理;模拟数字滤波器用于将处理后的回波信号转换为数字信号,并以LVDS的点评方式送入信号调理模块。
[0038]信号调理单元包括低通滤波器(LPF)及存储器,低通滤波器(LPF