一种基于稀疏频点的三维全息成像的重建方法

文档序号:8921501阅读:474来源:国知局
一种基于稀疏频点的三维全息成像的重建方法
【技术领域】
[0001] 本发明属于图像处理技术领域,尤其涉及一种基于稀疏频点的三维全息成像的重 建方法,如微波、毫米波、太赫兹的三维全息成像。
【背景技术】
[0002] 近年来,利用微波、毫米波、太赫兹波作为探测手段,获取探测目标的散射信息的 微波、毫米波、太赫兹三维全息成像技术越来越受到人们的关注。微波、毫米波、太赫兹三维 全息成像是在两个正交方向形成扫描孔径,并在距离向上发射宽带信号来形成三维成像几 何,通过处理回波数据得到目标的三维复图像。微波、毫米波、太赫兹波可以穿透很多非极 性材料,如皮革、塑料、泡沫等。通过对被检测物体进行高分辨率穿透成像,可以获得更准确 的目标信息,大大降低误警率。微波、毫米波、太赫兹波与X射线相比不会因为光致电离而 破坏被检测的物质,对人体来说是基本无害,具有较好的安全性。因此微波、毫米波、太赫兹 三维全息成像在公共区域的安全检测、无损检测、雷达目标成像诊断等领域有广泛的应用 前景。
[0003] 随着人们对全息成像分辨率的要求越来越高,在对距离分布范围比较广的目标进 行高分辨率全息成像时,为了避免距离模糊现象,需增加频域的采样点数。频域采样点数的 增加会提高对雷达系统的数据采样率要求,同时雷达回波数据量变大,对雷达系统的储存 深度也有了更高要求。这些指标要求的提高会增加雷达系统硬件的成本,同时高频点数的 数据采集也增加了扫描时间,这对实时成像领域的应用是非常不利的。为了在不增加硬件 成本的情况下消除距离模糊,可以通过一定算法来进行基于稀疏频点数据的无距离模糊的 三维全息成像。一般来说,微波、毫米波、太赫兹波的穿透能力是有限的,其对于金属目标和 人体皮肤来说是无法穿透的,因此雷达目标的后向散射在距离域表现出了稀疏特性。压缩 感知理论表明,对于这种稀疏可压缩的信号,可以通过构建满足一定条件的观测矩阵,从较 少的观测数据中恢复原信号。基于此理论,在雷达系统数据采集时,在频域进行对应于构造 的观测矩阵的非均匀采样,利用压缩感知理论的稀疏信号恢复方法从采样得到的稀疏频点 数据恢复出满频点的回波数据,从而消除了距离模糊现象。在实现本发明的过程中,发现上 述现有技术存在如下技术缺陷:
[0004] 1.在利用压缩感知理论进行稀疏频点数据恢复出满频点的回波数据的过程中,采 样频点的选择需要满足对应于构造的观测矩阵的要求,如果获得的采样频点不满足观测矩 阵的要求,会造成压缩感知理论的方法失效,因此对实际数据的采样获取造成很大的不便。
[0005] 2.从采样得到的稀疏频点数据恢复出满频点的回波数据的压缩感知稀疏信号恢 复方法,主要包括以正交匹配追踪算法为代表的贪婪追踪算法和以两步迭代收缩为代表的 凸优化算法。这些稀疏信号恢复方法是通过多次迭代求解来找到对原始信号的最优逼近, 如果迭代运算的次数过少,则会造成得到的信号结果偏离最优值,如果迭代运算的次数过 多,则会造成运算量增加,处理时间过长,从而导致算法的运算效率很低,不利于其在实时 成像中的应用。
[0006] 并且迭代算法对噪声的敏感度非常高,噪声对信号的影响比较大,使得信号形式 发生改变,从而求得的结果往往是某个局部最优解,而不是全局最优解,最终导致运算结果 不准确,恢复图像散焦。

【发明内容】

[0007] 为解决上述问题,本发明提供一种基于稀疏频点的微波、毫米波、太赫兹三维全息 成像的重建方法,能快速精确恢复出满频点的回波数据,消除距离模糊现象,降低对雷达系 统采样率和储存深度的要求,处理过程简单快速,适用于实时应用成像中。
[0008] 本发明的基于稀疏频点的微波、毫米波、太赫兹三维全息成像的重建方法,适用于 微波、毫米波、太赫兹波的雷达发射信号,其包括:
[0009] S1:确定雷达发射信号进行采样的稀疏频点个数N,所述稀疏频点个数N满足:
[0011] 其中,B为设定中间量,且B = lnM-ln(l-@ ),M为待恢复的频点个数,即满频点的 个数邛为最大可忍受的峰值旁瓣比1的置信系数;Bf为雷达发射信号的带宽,c为电磁波 在自由空间的传播速度,A R为在雷达天线有效波束角的照射范围内的重建目标表面在距 离向最大分布范围长度;
[0012] S2:如果雷达发射信号属于线性调频连续波信号则先补偿掉该发射方式导致的剩 余视频相位,消除剩余视频相位后得到和步进频连续波信号相同的回波信号后,再进行以 下处理;如果雷达发射信号属于步进频连续波信号,则直接雷达发射信号进行以下处理:
[0013] 在带宽内选取均匀随机分布的N个频点f\,f2,…,fN,定义稀疏频点矩阵fsparee= (fi, f2, fN);
[0014]采样得到N个稀疏频点的回波数据Si (x,y,ksparee),建立坐标系XYZ;其中定义X、Y 为扫描方向,Z为雷达照射方向,(X,y,0)为在坐标系XYZ中的天线相位中心位置,k spa^为 fsp_对应的自由空间的波数;
[0015] 利用式⑵获得回波信号Si(x,y,ksparee)的转置

)
[0018] m = 1,2...N,〇 (x,,y,,z,)为在坐标系XYZ 中位于(x,,y,,z,)处 目标的散射系数,ae(〇为雷达波束角的窗函数,

[0019] S3:对S2所得
与设定的参考信号
I利用式⑷求相 关:
i
[0022] 将Corr?'」)结果中的最大值maxHCorr?'」)]对应的距离R'」作为在雷达天 线有效波束角的照射范围内的目标表面在距离向估计值,记为距离R'
[0023] S4 :对S2所得回波数据
进行频谱搬移,利用式(5)结合S3获得的 距离R' _将其频谱搬移至基带,得到

[0025] 式中
,〇表示为矩 阵的Hadamard积;
[0026] S5:对S4所得结果
利用式(6)对波数进行线性插值得到
[0028] 式中k = (k' pk' 2,…,k' M)为满频点的各频率对应的自由空间的波数,其中 k' [f「Bf/2+(i-l)BfAM-l)]/c,i = 1,2,…,M,f。为雷达发射信号的中心频率,M 为满频点的个数;interpx[Y(X)]为插值函数;
[0029] S6 :对S5所得结果(x,.v,k)进行频谱搬移,结合S3获得的距离R' _利用式(7) 将其频谱的中心频率搬移至其实际所处的频率,得到;
[0032] S7 :利用相位偏移算法对S6所得结果(xo^k)进行图像处理,得到恢复图像。
[0033] 有益效果:
[0034] 该方法通过对微波、毫米波、太赫兹雷达原始稀疏频点及其个数的选择,重建满频 点的回波数据,满频点数据处理得到的微波、毫米波、太赫兹三维全息成像结果。在高运算 效率的情况下,可以快速的处理稀疏频点的微波、毫米波、太赫兹雷达三维数据进行高分辨 率快速成像,有效的消除了距离模糊现象,降低对雷达系统采样率和储存深度的要求。
[0035] 1.步骤2中频点选取均匀随机分布,不存在限制条件,实际数据的采样获取简单 可靠。
[0036] 2.本方法不存在迭代过程,而是通过步骤3的方式直接找到距离最优估计值 U! 认max°
【附图说明】
[0037]图1为本发明的坐标系XYZ示意图;
[0038] 图2为本发明的成像目标的光学图像;
[0039] 图3为本发明的200频点数据处理结果示意图;
[0040] 图4为本发明的目标IECAS 200频点数据距离向恢复结果示意图;
[0041] 图5为本发明的目标剪刀200频点数据距离向恢复结果示意图;
[0042] 图6为本发明的目标四个三角形200频点数据距离向恢复结果示意图;
[0043] 图7为本发明的20频点数据处理结果示意图;
[0044] 图8为本发明的目标IECAS 20频点数据距离向恢复结果示意图;
[0045] 图9为本发明的目标剪刀20频点数据距离向恢复结果示意图;
[0046] 图10为本发明的目标四个三角形20频点数据距离向恢复结果示意图。
【具体实施方式】
[0047] 本发明的目的是提出一种用于稀疏频点的微波、毫米波、太赫兹三维全息成像中 的重建方法,该方法通过对微波、毫米波、太赫兹雷达原始稀疏频点及其个数的选择,目标 距离预估,稀疏频点回波信号的频谱搬移,稀疏频点数据重建满频点数据,满频点信号的频 谱搬移得到满频点的回波数据。<
当前第1页1 2 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1