一种信号处理方法及装置与流程

文档序号:11131963阅读:661来源:国知局
一种信号处理方法及装置与制造工艺

本方法涉及信号处理技术领域,尤其涉及一种信号处理方法及装置。



背景技术:

随着通信技术的进步,数字信号被广泛应用至各个领域。例如,电视领域中,模拟电视信号已被数字电视信号所替代,成为电视信号的主要形式。数字信号在传输过程中,会产生载波频率的偏移。因此,在对信号进行处理时,载波频率偏移量的确定是后续数字信号的解码、还原的基础。

目前,一种判断方法为:对输入数字信号进行快速傅里叶转换,获得频谱线,将频谱中高能量区域的中心点与快速傅里叶转换时运算点数的一半的差确定为载波频率偏移量。

信号在传输时,会受到传输介质中的杂讯或邻近频道的信号干扰产生噪声。噪声可能使得高能量区域不唯一,造成上述方法中频谱中高能量区域中心点的确定难度,降低了确定的载波频率偏移量的准确性。



技术实现要素:

(一)要解决的技术问题

为了解决现有技术的上述问题,本方法提供一种信号处理方法及装置,其可以在确定载波频率偏移量前,先对获取的输入信号进行去噪处理,再将去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;根据频谱线,确定载波频率偏移量,提升确定的载波频率偏移量的准确性。

(二)技术方案

为了达到上述目的,本方法采用的主要技术方案包括:

一种信号处理方法,其包括:

101,获取输入信号;

102,对所述输入信号进行去噪处理;

103,将去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;

104,根据所述频谱线,确定载波频率偏移量;

其中,步骤102,包括如下子步骤:

102-1,将所述输入信号进行6层小波分解,计算各层高频系数和各层低频系数;

102-2,基于各层阈值,采用软阈值函数对各层高频系数进行量化处理;

其中,第j层阈值为Nj为第j层采样点数量;aj,k为log(第j层第k个采样点的采样值)2,nj为第j层采样点数量;

所述软阈值函数为:

wj,k为处理后的第j层高频系数;

其中,函数media(xi)用于求一组数值xi的中间值,函数sign(x)用于求数值x的符号;

102-3,根据处理后的各层高频系数以及各层低频系数进行信号重构,得到去噪后的输入信号;

其中,步骤104,包括如下子步骤:

104-1,确定所述频谱线中的最大能量和最小能量;

104-2,将最大能量*(0.84-最小能量/最大能量)确定为高能量阈值;

104-3,在频谱中,确定高于所述高能量阈值的范围;

104-4,将所述范围的中心点与512的差确定为载波频率偏移量。

可选地,步骤102执行之后,步骤103执行之前,还包括:

将去噪后的输入信号进行平滑处理;

所述步骤103,包括:

将平滑后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线。

可选地,所述频谱线为F(t),所述t为时间;

步骤103执行之后,步骤104执行之前,还包括:

将F(t)变换为0.37*cos(F(t)π/12);

所述步骤104,包括:

根据变换后的F(t),确定载波频率偏移量。

本方法采用的主要技术方案还包括:

一种信号处理装置,所述装置包括:信号采集模块,信号去噪模块,信号处理模块;

所述信号采集模块,用于获取输入信号;

所述信号去噪模块,用于对所述信号采集模块采集到的输入信号进行去噪处理;

信号处理模块,用于将所述信号去噪模块去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;根据所述频谱线,确定载波频率偏移量;

其中,所述信号去噪模块,用于将所述输入信号进行6层小波分解,计算各层高频系数和各层低频系数;基于各层阈值,采用软阈值函数对各层高频系数进行量化处理;根据处理后的各层高频系数以及各层低频系数进行信号重构,得到去噪后的输入信号;

其中,第j层阈值为Nj为第j层采样点数量;aj,k为log(第j层第k个采样点的采样值)2,nj为第j层采样点数量;

所述软阈值函数为:

wj,k为处理后的第j层高频系数;

其中,函数media(xi)用于求一组数值xi的中间值,函数sign(x)用于求数值x的符号;

其中,所述信号处理模块,用于确定所述频谱线中的最大能量和最小能量;将最大能量*(0.84-最小能量/最大能量)确定为高能量阈值;在频谱中,确定高于所述高能量阈值的范围;将所述范围的中心点与512的差确定为载波频率偏移量。

可选地,所述信号去噪模块,还用于将去噪后的输入信号进行平滑处理;

所述信号处理模块,用于将平滑后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线。

可选地,所述频谱线为F(t),所述t为时间;

所述信号处理模块,还用于将F(t)变换为0.37*cos(F(t)π/12);根据变换后的F(t),确定载波频率偏移量。

(三)有益效果

本方法的有益效果是:本方法在确定载波频率偏移量前,先对获取的输入信号进行去噪处理;再将去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;根据频谱线,确定载波频率偏移量,提升确定的载波频率偏移量的准确性。

附图说明

图1是本发明实施例一提供的一种信号处理方法的流程图;

图2是本发明实施例二提供的一种信号处理装置的结构图。

具体实施方式

为了更好的解释本发明,以便于理解,下面结合附图,通过具体实施方式,对本发明作详细描述。

目前,获取到信号后,会对信号进行快速傅里叶转换,获得频谱线,将频谱中高能量区域的中心点与快速傅里叶转换时运算点数的一半的差确定为载波频率偏移量。但在实际应用过程中,信号在传输时,会受到传输介质中的杂讯或邻近频道的信号干扰产生噪声。噪声可能使得高能量区域不唯一,造成上述方法中频谱中高能量区域中心点的确定难度,降低了确定的载波频率偏移量的准确性。

本发明提供了一种信号处理方法,该方法在确定载波频率偏移量前,先对获取的输入信号进行去噪处理;再将去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;根据频谱线,确定载波频率偏移量,提升确定的载波频率偏移量的准确性。

实施例一

本实施例提供了一种信号处理方法,参见图1,本实施例提供的方法流程具体如下:

101,获取输入信号;

信号在传输时,会受到传输介质中的杂讯或邻近频道的信号干扰产生噪声,因此,本步骤中获取的输入信号X(t)包括原始信号S(t)和噪声N(t)。

现有技术中,会对X(t)进行快速傅里叶转换,获得频谱线,将频谱中高能量区域的中心点与快速傅里叶转换时运算点数的一半的差确定为载波频率偏移量。由于N(t)的存在使得能量区域不唯一,造成上述方法中频谱中高能量区域中心点的确定难度,降低了确定的载波频率偏移量的准确性。本实施例在获取到X(t)后,不会直接进行快速傅里叶转换,而是先去噪,再对去噪后的信号进行快速傅里叶转换,提升载波频率偏移量的确定准确性。

102,对输入信号进行去噪处理;

去噪处理方式有多种,本实施例提供一种可行方式:

102-1,将输入信号进行6层小波分解,计算各层高频系数和各层低频系数;

102-2,基于各层阈值,采用软阈值函数对各层高频系数进行量化处理;

其中,第j层阈值为Nj为第j层采样点数量;aj,k为log(第j层第k个采样点的采样值)2,nj为第j层采样点数量;

软阈值函数为:

wj,k为处理后的第j层高频系数;

其中,函数media(xi)用于求一组数值xi的中间值,函数sign(x)用于求数值x的符号;

102-3,根据处理后的各层高频系数以及各层低频系数进行信号重构,得到去噪后的输入信号。

经过步骤102,会将步骤101中获取到的N(t)去除。

103,将去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;

虽然执行步骤102后会得到原始信号S(t),但为了进一步确保最终确定的载波频率偏移量的准确性,在步骤102执行之后,步骤103执行之前,还会将步骤102得到的去噪后的输入信号进行平滑处理。步骤103,再将平滑后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线。

104,根据频谱线,确定载波频率偏移量。

本步骤的一种实现方式可以为:

104-1,确定频谱线中的最大能量和最小能量;

104-2,将最大能量*(0.84-最小能量/最大能量)确定为高能量阈值;

104-3,在频谱中,确定高于高能量阈值的范围;

104-4,将范围的中心点与512的差确定为载波频率偏移量。

除此之外,还可以将步骤103中得到的频谱线进行变换,以更符合实际情况,步骤104再根据变换后的频谱线,确定载波频率偏移量。

以频谱线为F(t),t为时间为例,将步骤103中得到的频谱线进行变换的方式,包括但不限于:

将F(t)变换为0.37*cos(F(t)π/12)。

本实施例提供的方法,该方法在确定载波频率偏移量前,先对获取的输入信号进行去噪处理;再将去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;根据频谱线,确定载波频率偏移量,提升确定的载波频率偏移量的准确性。

实施例二

本实施例提供了一种信号处理装置,参见图2,由于该信号处理装置解决问题的原理与图1所示的信号处理方法相似,因此该装置的实施可以参见图1所示的方法的实施例,重复之处不再赘述。

参见图2,该装置包括:信号采集模块201,信号去噪模块202,信号处理模块203;

信号采集模块201,用于获取输入信号;

信号去噪模块202,用于对信号采集模块201采集到的输入信号进行去噪处理;

信号处理模块203,用于将信号去噪模块202去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;根据频谱线,确定载波频率偏移量;

其中,信号去噪模块202,用于将输入信号进行6层小波分解,计算各层高频系数和各层低频系数;基于各层阈值,采用软阈值函数对各层高频系数进行量化处理;根据处理后的各层高频系数以及各层低频系数进行信号重构,得到去噪后的输入信号;

其中,第j层阈值为Nj为第j层采样点数量;aj,k为log(第j层第k个采样点的采样值)2,nj为第j层采样点数量;

软阈值函数为:

wj,k为处理后的第j层高频系数;

其中,函数media(xi)用于求一组数值xi的中间值,函数sign(x)用于求数值x的符号;

其中,信号处理模块,用于确定频谱线中的最大能量和最小能量;将最大能量*(0.84-最小能量/最大能量)确定为高能量阈值;在频谱中,确定高于高能量阈值的范围;将范围的中心点与512的差确定为载波频率偏移量。

可选地,信号去噪模块202,还用于将去噪后的输入信号进行平滑处理;

信号处理模块203,用于将平滑后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线。

可选地,频谱线为F(t),t为时间;

信号处理模块203,还用于将F(t)变换为0.37*cos(F(t)π/12);根据变换后的F(t),确定载波频率偏移量。

本实施例提供的装置,在确定载波频率偏移量前,先对获取的输入信号进行去噪处理;再将去噪后的输入信号分为16段,针对每一段进行1024点的快速傅里叶转换,叠加转换结果能量的平方值,形成频谱线;根据频谱线,确定载波频率偏移量,提升确定的载波频率偏移量的准确性。

当前第1页1 2 3 
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1