反向偏压下测量短路电流衰减计算陷阱参数的装置制造方法

文档序号:6069112阅读:187来源:国知局
反向偏压下测量短路电流衰减计算陷阱参数的装置制造方法
【专利摘要】本实用新型公开了一种反向偏压下测量短路电流衰减计算陷阱参数的装置,包括内设有实验平台的真空箱,实验平台上从下至上依次设置有下电极、屏蔽层、待测试样和上电极,上电极通过开关与直流充电模块连接,上电极和下电极之间还连接反向偏压下短路电流测量系统,反向偏压下短路电流测量系统包括由选择开关控制的择一导通的短路泄放自由电荷电路和脱陷电流测量电路,脱陷电流测量电路包括串联的脱陷反向偏置电压源和微电流计,微电流计的信号输出端连接计算机,计算机控制连接选择开关。本实用新型能够通过等温电流衰减理论计算得出试样不同能级分布的陷阱密度,实验结果更为准确。
【专利说明】反向偏压下测量短路电流衰减计算陷阱参数的装置

【技术领域】
[0001]本实用新型涉及一种电介质材料陷阱特性测量【技术领域】,尤其涉及一种基于等温电流衰减理论的反向偏压下测量短路电流衰减计算陷阱参数的装置。

【背景技术】
[0002]聚合物绝缘材料具有诸如直流电阻高、介质损耗低等良好的介电性能,良好的热稳定性以及优良的机械加工性能,因而在电气绝缘领域得到广泛的应用。但随着电力系统电压等级的提高以及直流输电技术的发展,聚合物绝缘的空间电荷效应问题日渐突出,由此导致聚合物材料内部电场畸变,引发局部放电及电树枝发展,从而造成聚合物材料老化问题,如何抑制和消除聚合物绝缘中的空间电荷已经成为国内外电气绝缘领域的研究热点。
[0003]目前关于聚合物老化机理的研究很多,其中比较有代表性的是加拿大的高观志(Kwan-Chi Kao)和国内西安交通大学的屠德民等人提出的热电子引发聚合物降解理论。在高电场作用下,电子/空穴通过肖特基效应(Schottky effect)或福勒-诺德海姆效应(Fowler-Nordheim effect)从电极注入到聚合物中,由于材料禁带能隙内存在大量的陷讲态,电子/空穴的平均自由路径短,因此很快被陷阱俘获而形成空间电荷。在空间电荷的入陷/复合过程中,当电荷由高能态迁移到低能态时,多余的能量通过非辐射形式转移给另一个电子,使后者变成热电子。具有足够能量的热电子将导致分子降解而形成大量的大分子自由基,将进一步引发自由基链式反应,导致聚合物的进一步降解。热电子的产生和热电子的能量决定于陷阱的密度和深度,改变聚合物的陷阱深度或密度,就能改变热电子的形成几率和能量。因此空间电荷的注入、迁移、入陷/脱陷、复合等过程与材料内部陷阱特性密切相关,因此测量和分析材料的陷阱特性如能级、密度等,对于材料的空间电荷形成和抑制机理以及聚合物材料的老化状态表征和评估具有十分重要的意义。
[0004]基于上述分析,陷阱特性十分显著地影响固体电介质材料的介电和放电特性,并可能成为一种更为本征的固体电介质材料性能表征参数,因此测量和分析固体绝缘材料的陷阱参数具有十分重要的意义。
[0005]加拿大的西蒙斯(J.G.Simmons)等人在上世纪70年代提出,可以通过受激励材料在等温条件下的电流衰减特性得到其任意能量水平的陷阱参数。此理论基于绝缘材料受激励后被陷阱俘获的载流子在恒温条件下的热脱陷过程,认为介质中处于浅陷阱的陷阱载流子先释放,而处于深陷阱的后释放;在恒温下热释放电流随时间而变化,这个电流反映了陷阱能级的分布规律。其优点在于不需要任何陷阱分布先验假设,测量的等温衰减电流随时间的变化关系能直接反映材料的陷阱分布。
[0006]为了能利用上述理论分析,首先要求实验能单独获得电子电流或空穴电流。在进行偏压下测量短路电流衰减时,对带电介质试样所施加的偏压极性就不能是任意的了。当向开路端施加同向偏压时,正负电荷将向体内迁移,载流子经体内输运要发生耗散,这是不希望出现的。反之,如果对开路端施加异向偏压,正负电荷将分别向邻近电极移动,从而移出介质,这样电荷分布状态不会被破坏,向邻近电极的短距离输运可忽略耗散,而足够高的偏置电场也使忽略脱陷载流子的再陷阱化比较接近实际情况。因此,施加异向偏压是使理论分析能付诸实际应用的唯一选择。外施偏置电场大小的选择既要保证足够高以忽略再陷阱化,又要避免偏压太高引起电极注入影响实验分析。因此一般选为不大于107v/m。
实用新型内容
[0007]本实用新型的目的是提供一种反向偏压下测量短路电流衰减计算陷阱参数的装置,既适用于无机绝缘材料,如氧化铝、可加工陶瓷等绝缘材料陷阱的测试,同时也适用于聚合物绝缘材料陷阱的测试,能够通过等温电流衰减理论计算得出试样不同能级分布的陷阱密度,实验结果更为准确。
[0008]本实用新型采用下述技术方案:
[0009]一种反向偏压下测量短路电流衰减计算陷阱参数的装置,包括设置有箱门的真空箱,真空箱内设置有实验平台,实验平台上从下至上依次设置有下电极、屏蔽层、待测试样和上电极,上电极通过开关与直流充电模块连接,上电极和下电极之间还连接反向偏压下短路电流测量系统,所述的反向偏压下短路电流测量系统包括由选择开关控制的择一导通的短路泄放自由电荷电路和脱陷电流测量电路,脱陷电流测量电路包括串联的脱陷反向偏置电压源和微电流计,微电流计的信号输出端连接计算机,计算机控制连接选择开关。
[0010]所述的选择开关采用磁耦合直线驱动器,磁耦合直线驱动器的运动端与上电极通过导线连接,短路泄放自由电荷电路和脱陷电流测量电路的第一端分别连接与磁耦合直线驱动器运动端相配合的两个静触点,短路泄放自由电荷电路和脱陷电流测量电路的第二端均连接下电极。
[0011]所述的真空箱为真空恒温箱,真空箱内下电极下方设置有金属加热盒,金属加热盒内设置有热电偶。
[0012]所述的真空恒温箱内还设置有石英红外加热管和干燥剂。
[0013]所述的短路泄放自由电荷电路和脱陷电流测量电路中采用的线缆均为同轴屏蔽电缆。
[0014]本实用新型中待测试样放置于真空恒温箱中,能够保证实验条件的稳定以及良好地电磁屏蔽,待测试样在被施加反向偏置电压时,正负电荷将分别向邻近电极移动,从而移出介质,这样电荷分布状态不会被破坏,向邻近电极的短距离输运可忽略耗散,而足够高的偏置电场也使忽略脱陷载流子的再陷阱化比较接近实际情况,所测短路电流衰减更加准确,计算方便快捷;同时待测试样一侧具有屏蔽层,使注入的电荷只为一种极性,巧妙地将空穴陷阱与电子陷阱区分开来。

【专利附图】

【附图说明】
[0015]图1为本实用新型的结构图;
[0016]图2为本实用新型中反向偏压下短路电流测量系统的电路原理示意图。

【具体实施方式】
[0017]如图1所示,本实用新型所述的反向偏压下测量短路电流衰减计算陷阱参数的装置,包括设置有箱门的真空箱1,用于保证实验条件的稳定以及良好地电磁屏蔽。真空箱I内设置有实验平台9,实验平台9上从下至上依次设置有下电极5、屏蔽层7、待测试样6和上电极4。上电极4通过开关Kl与直流充电模块3连接。本实用新型采用电极接触方式注入电荷,可在真空环境下注入电荷,并且在待测试样6和下电极5之间嵌入屏蔽层7,可以有效抑制下电极5对待测试样6的电荷注入,保证仅有上电极4能够注入单极性电荷。通过选择注入电压极性,本实用新型可以分别对试样上表面层注入电子或空穴,从而巧妙地将空穴陷阱与电子陷阱区分。
[0018]如图2所示,上电极4和下电极5之间还连接反向偏压下短路电流测量系统,所述的反向偏压下短路电流测量系统包括由选择开关K2控制的择一导通的短路泄放自由电荷电路和脱陷电流测量电路,短路泄放自由电荷电路用于在测量短路电流衰减前去除待测试样6表面的自由电荷;脱陷电流测量电路包括串联的脱陷反向偏置电压源11和微电流计12,用于测量短路电流衰减。微电流计12的信号输出端连接计算机13,计算机13控制连接选择开关K2。
[0019]本实用新型中,选择开关K2用于在计算机13的控制下实现短路泄放自由电荷电路或脱陷电流测量电路的单独导通,本实施例中,选择开关K2可采用磁耦合直线驱动器10,磁耦合直线驱动器10的运动端与上电极4通过导线连接,短路泄放自由电荷电路和脱陷电流测量电路的第一端分别连接与磁耦合直线驱动器10运动端相配合的两个静触点,短路泄放自由电荷电路和脱陷电流测量电路的第二端均连接下电极5。在计算机13的控制下,磁耦合直线驱动器10的运动端可以直线运动,当磁耦合直线驱动器10的运动端与短路泄放自由电荷电路连接的静触点接触时,短路泄放自由电荷电路导通,脱陷电流测量电路断开;当磁耦合直线驱动器10的运动端与脱陷电流测量电路连接的静触点接触时,脱陷电流测量电路导通,短路泄放自由电荷电路断开。采用磁耦合直线驱动器10作为选择开关K2,具有便于控制、调节精准及震动小等优点。
[0020]由于在恒温条件下测得的等温短路电流衰减能够提高实验结果的精确度,本实用新型中,真空箱I为真空恒温箱,真空恒温箱内下电极5下方设置有金属加热盒8,金属加热盒8内设置有热电偶。金属加热盒8用于对待测试品进行加热,以实现测量过程中达到设定温度并保持恒定。本实施例中,为了进一步保证真空恒温箱内的恒温效果,真空恒温箱内还设置有石英红外加热管;石英红外加热管和热电偶共同组成了加热装置,可在计算机13的控制下实现真空恒温箱内的恒温功能。本实用新型中,真空恒温箱内还设置有干燥剂,用于实现真空恒温箱内的湿度控制。本实用新型中,短路泄放自由电荷电路和脱陷电流测量电路中采用的线缆均为同轴屏蔽电缆,能够配合真空恒温箱保证良好的电磁屏蔽效果,提高了测量结果准确性。
[0021]本实用新型所述的利用反向偏压下测量短路电流衰减计算陷阱参数装置进行测量的方法,包括以下步骤:
[0022]A:打开真空恒温箱箱门,将待测试样6放置在上电极4和屏蔽层7之间,保证待测试样6与上电极4的接触面洁净,然后关闭真空恒温箱门;
[0023]B:利用加热盒对待测试样6进行预热,然后利用直流充电模块3对上电极4施加直流充电电压,对待测试样6注入电荷;注入电荷完毕后,停止对上电极4施加直流充电电压;为了保证试品各部分温度均衡,加热盒对待测试样6在50°C -60°C的温度下预热20min-30min。在对待测试样6注入电荷时,注入场强为40kV/mm,注入时间30min,注入温度50°C,能够达到使电荷充分注入试样的效果;
[0024]C:利用计算机13控制选择开关K2,将短路泄放自由电荷电路导通,通过短路泄放自由电荷电路去除待测试样6表面的自由电荷,以避免自由电荷的存在对短路衰减电流的数值产生影响;
[0025]D:利用计算机13控制选择开关K2,断开短路泄放自由电荷电路,将脱陷电流测量电路导通,使待测试样6、微电流计12和脱陷反向偏置电压源11形成导通的串联电路,利用微电流计12测量等温短路电流衰减并通过计算机13进行采样和记录,然后利用测得的等温短路电流衰减,通过等温电流衰减理论计算得出试样不同能级分布的陷讲密度,计算方法为:假设热释放的载流子不再陷阱化,陷阱能级Et以及等温电流密度J与陷阱密度Nt的关系为:
E1 = kT\n(yl)
[0026]
L 2t
[0027]其中Et为陷阱能级,k为Boltzmann常数,T为绝对温度,Y为电子振动频率,t为时间为等温电流密度,q为电子电量,d为试样的厚度,f0(E)为陷阱初始占有率,Nt (Et)为陷阱能量分布函数;电子陷阱的能量以导带底为零点计算,空穴陷阱的能量以价带顶为零点计算。
[0028]与现有技术相比,本实用新型具有如下的有益效果:
[0029]1、等温短路电流衰减测量更加准确,计算方便快捷。本实用新型在使用时,待测试样6在真空恒温箱中被施加反向偏置电压,正负电荷将分别向异极性电极移动,达到将充入电荷从介质中移出而不会破坏电荷原始分布状态的目的,向异极性电极的短距离输运产生的电荷耗散非常微弱,同时在高偏置电场下脱陷载流子的再陷阱化可以忽略不计,这符合等温电流衰减理论模型与实际情况,这些条件保证了本实用新型在计算陷阱分布参数时的准确性和实用性。。
[0030]2、本实用新型通过在施加反向偏置电压条件下测量等温短路电流衰减来计算陷阱分布,施加足够高的反向偏置电场可以降低脱陷载流子的再陷阱化几率,。本实用新型更加适合较大厚度范围内(几十ym?数mm)试品的测量,能够为固体电介质表面带电现象及其对沿面闪络性能影响等方面的研究提供一种有效的分析手段。
[0031]3、本实用新型中采用电极接触方式注入电荷,可在真空环境下给介质注入正负电荷,具有施加电压高,而不会发生沿面闪络的优点,同时测量用的真空腔体对于测量微弱电流信号具有优良的电磁屏蔽效果,,保证了实验结果的准确性。
[0032]4、本实用新型在待测试样6和下电极5间嵌入屏蔽层7,可以有效抑制下电极5对待测试样6注入电荷,保证仅有上电极4注入单极性电荷;通过选择外施电压极性,可以对待测试样6上表层注入电子或空穴,从而巧妙地实现将空穴陷阱与电子陷阱区分。电荷注入和等温短路电流衰减测量均在真空恒温箱内进行,所有测量线缆均是同轴屏蔽电缆,提高了测量结果准确性。
【权利要求】
1.反向偏压下测量短路电流衰减计算陷阱参数的装置,其特征在于:包括设置有箱门的真空箱,真空箱内设置有实验平台,实验平台上从下至上依次设置有下电极、屏蔽层、待测试样和上电极,上电极通过开关与直流充电模块连接,上电极和下电极之间还连接反向偏压下短路电流测量系统,所述的反向偏压下短路电流测量系统包括由选择开关控制的择一导通的短路泄放自由电荷电路和脱陷电流测量电路,脱陷电流测量电路包括串联的脱陷反向偏置电压源和微电流计,微电流计的信号输出端连接计算机,计算机控制连接选择开关。
2.根据权利要求1所述的反向偏压下测量短路电流衰减计算陷阱参数的装置,其特征在于:所述的选择开关采用磁耦合直线驱动器,磁耦合直线驱动器的运动端与上电极通过导线连接,短路泄放自由电荷电路和脱陷电流测量电路的第一端分别连接与磁耦合直线驱动器运动端相配合的两个静触点,短路泄放自由电荷电路和脱陷电流测量电路的第二端均连接下电极。
3.根据权利要求2所述的反向偏压下测量短路电流衰减计算陷阱参数的装置,其特征在于:所述的真空箱为真空恒温箱,真空箱内下电极下方设置有金属加热盒,金属加热盒内设置有热电偶。
4.根据权利要求3所述的反向偏压下测量短路电流衰减计算陷阱参数的装置,其特征在于:所述的真空恒温箱内还设置有石英红外加热管和干燥剂。
5.根据权利要求4所述的反向偏压下测量短路电流衰减计算陷阱参数的装置,其特征在于:所述的短路泄放自由电荷电路和脱陷电流测量电路中采用的线缆均为同轴屏蔽电缆。
【文档编号】G01R31/00GK203965384SQ201420518069
【公开日】2014年11月26日 申请日期:2014年9月10日 优先权日:2014年9月10日
【发明者】张伟政, 李智敏, 穆海宝, 季国剑, 赵林, 李元, 申文伟, 张冠军 申请人:国家电网公司, 国网河南省电力公司郑州供电公司, 西安交通大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1