一种天然气水合物沉积物力学特性可视化试验装置制造方法

文档序号:6235349阅读:255来源:国知局
一种天然气水合物沉积物力学特性可视化试验装置制造方法
【专利摘要】一种天然气水合物沉积物力学特性可视化装置,属于天然气水合物基础物性测量领域。该装置主要包含一个自压式三轴仪主机、轴向加载系统、围压控制系统、背压控制系统、温度控制系统、数据采集系统和X射线CT成像系统。实现了低温高压水合物三轴仪和X射线CT成像系统的有机结合,能够进行天然气水合物沉积物宏观和微观力学特性的同步测试。该装置能够模拟实际储层的应力状态,获取天然气水合物沉积物的宏观、微观力学特性数据,对揭示天然气水合物储层变形机理、以及天然气水合物分解诱因的海底滑坡等地质灾害的触发机制具有重要意义,对天然气水合物的安全、高效开采具有重要的指导作用。
【专利说明】一种天然气水合物沉积物力学特性可视化试验装置

【技术领域】
[0001] 本发明涉及一种天然气水合物沉积物力学特性可视化试验装置,属天然气水合物 基础物性测量领域。

【背景技术】
[0002] 天然气水合物具有分布广、资源量大、埋藏浅、能量密度高、洁净等特点,是地球上 尚未开发的最大未知能源库,被认为是21世纪最理想、具有商业开发前景的新能源。天然 气水合物的安全开采受到各国科学家和政府的广泛重视,已成为石油天然气工业新的研究 热点,并有可能对环境科学和能源工业的发展产生深远的影响。在天然气水合物勘探与开 采过程中,水合物分解会影响储层的结构稳定性,并且随着开采过程中分解区域的扩展,可 能诱发地层变形、海底滑坡等地质灾害,进而造成钻探设备、海底管道等基础设施的损坏及 生命财产损失。如何以高效、安全的方式从海底天然气水合物沉积层中开采天然气,既符合 环保要求,又不会引起海底滑坡等地质灾害,需要深入研究天然气水合物沉积层的力学特 性,结合宏观和微观试验手段,明确天然气水合物分解诱因的海底滑坡等地质灾害的形成 机理。
[0003] 三轴试验仪是研究土样力学特性较为理想的设备,且因其试验原理和操作方法相 对简单而得到广泛应用。日本山口大学、大连理工大学等在传统三轴试验仪的基础上,通 过增加低温控制系统和水合物原位生成与分解系统,实现了对天然气水合物沉积物宏观力 学特性的测量。然而,目前国际上尚未有能够进行天然气水合物沉积物微观力学特性研究 的试验装置,无法获得沉积物内部孔隙结构演变、颗粒迁移等微观数据,对天然气水合物分 解过程中沉积层的微观变形机理知之甚少。现有的天然气水合物三轴试验仪由于穿透性能 差、体积大、重量大等问题,不能实现与X射线CT等可视化装置的有机结合(例如inspeXio SMX-255CT载物台承重< 9kg,可容纳样品高度< 30cm,且扫描过程中样品需要旋转),亟需 开发一套天然气水合物沉积物力学特性可视化试验装置。


【发明内容】

[0004] 为了克服上述现有的天然气水合物三轴试验仪存在的不足,本发明基于inspeXio SMX-255CT系统,提供一种天然气水合物沉积物力学特性可视化试验装置。该装置不仅能满 足天然气水合物沉积物试样的宏观力学特性试验要求,还能实时观测试样内部孔隙结构的 演变和颗粒迁移等情况,获取微观力学特性试验数据,分析沉积层变形机理,对我国海域及 冻土区域天然气水合物的勘探和安全开采有重要的指导作用。
[0005] 本发明解决上述不足所采用的技术方案是:
[0006] -种天然气水合物沉积物力学特性可视化试验装置,包含低温高压水合物三轴仪 试验系统、X射线CT成像系统和计算机数据采集系统;
[0007] 所述的低温高压水合物三轴仪试验系统包含自压式三轴仪主机、轴向加载系统、 围压控制系统、背压控制系统和温度控制系统;所述轴向加载系统、围压控制系统、背压控 制系统均与所述自压式三轴仪主机相连,分别控制试样承受的荷载、围压和孔隙压力;所述 温度控制系统与所述围压控制系统相连,用于控制柱塞泵D内液压油的温度,进而控制试 样的温度。
[0008] 所述自压式三轴仪主机置于X射线CT成像系统的载物台上,包括顶置一体化轴向 加载装置和高压三轴压力室;所述顶置一体化轴向加载装置采用航空高强度铝合金等密度 较低、强度较大的材料,以保证装置的强度和降低主机的整体重量,包括小型液压油缸和活 塞;通过所述小型液压油缸中的液压油驱动活塞向下运动产生轴向加载力;小型液压油缸 与所述高压三轴压力室之间采用螺丝连接,上方设置有加压口和排气口 A,方便加载过程中 油缸进行排气;所述小型液压油缸下方设置两个排气口 B,用于将加载过程中所述活塞下 方的气体排出;所述高压三轴压力室采用高纯铝等低密度、高X射线穿透性能的材料,以降 低主机整体重量和保证主机的X射线穿透性能,包括压力室腔体和底盘,活塞与压力室腔 体之间通过密封圈密封,并与试样端盖相对应,用于传递轴向加载力;所述压力室腔体的壁 厚根据实验对压力和成像分辨率的要求,通过计算并经实验测试确定,外壁通过玻璃纤维 等抗拉强度大的材料加固;压力室腔体的上方设置有排气口 C,用于加载围压时排出压力 室腔体内的残余空气;压力室腔体与底盘之间采用螺丝连接,并使用密封圈进行密封;所 述底盘的中心设置凸起圆柱,用作放置试样的底座;底盘的四周对称分布有四个通道:通 道A、通道B、通道C和通道D,其中通道A、通道B和通道C与所述高压三轴压力室连通,通 道D通过所述底盘中心,并经由所述试样底座、渗流垫与所述试样的下端连通;所述试样端 盖中心设置有通道,通道的一端通过柔性管道与所述底盘的通道A相连,另一端与所述渗 流垫和试样的上端连通;所述试样采用橡皮膜密封包裹;
[0009] 所述轴向加载系统包含油槽、循环泵A和柱塞泵A ;所述油槽经循环泵A提供柱塞 泵A所需的液压油;柱塞泵A通过柔性管道与小型液压油缸的加压口相连,提供轴向加载所 需要的液压;试样承受的轴向荷载通过液压油压力和活塞的横截面积相乘获得,轴向位移 通过所述活塞的位移获得;
[0010] 所述围压控制系统包含柱塞泵D,通过柔性管道与底盘的通道C相连,提供试验过 程中所需的液压油,并维持压力;
[0011] 所述背压控制系统包含柱塞泵B和柱塞泵C、甲烷气瓶、水槽和循环泵B ;所述甲烷 气瓶经减压阀与所述柱塞泵B和柱塞泵C相连;所述水槽经循环泵B与所述柱塞泵B和柱 塞泵C相连;所述柱塞泵B经针阀C与所述底盘的通道A通过柔性管道连接,所述柱塞泵C 经针阀Η与所述底盘的通道D通过柔性管道连接;
[0012] 所述背压控制系统主要用于控制试验过程中试样的孔隙压力,并提供天然气水合 物沉积物反应所需要的天然气和水;
[0013] 所述温度控制系统包含恒温槽和循环泵C,循环泵C通过针阀J与所述围压控制系 统相连,将事先冷却至试验温度的液压油经由所述柱塞泵D注入至所述压力室腔体,并维 持试验所需压力;
[0014] 所述X射线CT成像系统用于试验过程中试样的在线CT成像扫描,获取天然气水 合物沉积物试样内部结构图像,分析其演变规律。
[0015] 所述计算机数据采集系统包含温度传感器、四个压力变送器、与CT扫描系统和水 合物三轴仪系统采用电气连接的数据采集模块,并把采集的温度、压力、轴向应力、轴向应 变以及试样扫描图像等数据传给工控机处理,进而分析天然气水合物沉积物的宏观和微观 力学特性。
[0016] 所述的自压式三轴仪主机与所述轴向加载系统、围压控制系统、背压控制系统之 间采用柔性管道相连。
[0017] 所述的自压式三轴仪主机采用自压式结构,将试样承受的荷载转换成主机的内部 荷载。
[0018] 本发明的有益效果是:这种天然气水合物沉积物力学特性可视化试验装置主要包 含一套低温高压水合物三轴仪试验系统、X射线CT成像系统和计算机数据采集系统。低温 高压水合物三轴仪系统用于天然气水合物沉积物的原位生成和分解、以及进行力学特性实 验;X射线CT成像系统用于天然气水合物沉积物变形过程中孔隙结构演变等微观数据的测 量;计算机数据采集系统采集温度、压力、负荷以及CT扫描图像等数据,进而分析天然气水 合物沉积物微观变形机理。其优点是:
[0019] 1)实现了天然气水合物三轴仪与X射线CT系统的有机结合,可以同时获取天然气 水合物沉积物的宏观、微观力学特性数据,对揭示天然气水合物储层变形机理、以及天然气 水合物分解诱因的海底滑坡等地质灾害的触发机制具有重要意义;
[0020] 2)采用纯铝、铝合金等低密度、高强度、高X射线穿透性能的材料,使天然气水合 物三轴仪主机整体质量较轻、体积小、X射线穿透性能好;同时采用玻璃纤维等高抗拉强度 的材料对压力室腔体进行加固,保证穿透性能的同时提高了强度;
[0021] 3)采用顶置一体化轴向加载装置将试样承受的轴向荷载转化为三轴仪主机的内 部荷载,使得轴向荷载不再作用于CT载物台上,满足了 CT载物台的承重限制;
[0022] 4)利用恒温槽控制液压油温度,然后通过围压控制系统将事先冷却的液压油注入 至压力室腔体进而控制试样温度,这种温度控制方式节省了三轴仪主机的空间;
[0023] 5)三轴仪主机与外围系统均采用柔性管道相连,满足CT成像过程中载物台需要 旋转的要求,方便试验进行;
[0024] 6)轴向荷载通过轴向加载系统的压力和活塞面积相乘获得、轴向位移通过活塞的 位移获得,这种计算方法避免了轴向负荷传感器和位移传感器的安装,节省了空间的同时 降低了主机的整体质量;
[0025] 7)三轴仪主机采用可拆卸的方式,方便试验操作和清洗仪器。

【专利附图】

【附图说明】
[0026] 图1是一种天然气水合物沉积物力学特性可视化试验装置工作原理图。
[0027] 图2是一种天然气水合物沉积物力学特性可视化试验装置的系统图。
[0028] 图3a是自压式三轴仪主机的结构图。
[0029] 图3b是自压式三轴仪主机的底盘俯视图。
[0030] 图中:1工控机;2数据采集模块;3油槽;4a循环泵A ;4b循环泵B ;
[0031] 4c循环泵C ;5a针阀A ;5b针阀B ;5c针阀C ;5d针阀D ;5e针阀E ;
[0032] 5f针阀F ;5g针阀G ;5h针阀H ;5i针阀I ;5j针阀J ;6a柱塞泵A ;
[0033] 6b柱塞泵B ;6c柱塞泵C ;6d柱塞泵D ;7a压力变送器A ;7b压力变送器B ;7c压 力变送器C ;7d压力变送器D ;8水槽;9甲烷气瓶;10减压阀;11温度传感器;12恒温槽; 13a排气口 A ; 13b排气口 B ; 13c排气口 C ; 14小型液压油缸;15加压口; 16活塞;17端盖; 18渗流垫;19试样;20橡皮膜;21底盘;22压力室腔体。

【具体实施方式】
[0034] 图1所示为一种天然气水合物沉积物力学特性可视化试验装置的工作原理图,其 工作过程为:背压控制系统提供天然气水合物沉积物试样反应生成所需的天然气和水,以 及生成与分解过程和三轴压缩过程中的孔隙压力;温度控制系统通过降低围压控制系统内 液压油的温度,进而控制天然气水合物沉积物生成与分解过程和三轴压缩过程中的温度; 围压控制系统主要用于维持天然气水合物沉积物生成与分解过程和三轴压缩过程中的围 压;轴向加载系统通过柱塞泵注入液压油推动活塞控制轴向加载;CT机拍摄整个试验过程 中水合物沉积物微观孔隙结构演变规律图像;试验过程中的参数,如温度、压力信号等均由 计算机数据采集系统采集并分析。
[0035] 图2所示为一种天然气水合物沉积物力学特性可视化实验装置的系统图,下面按 各个系统功能对天然气水合物沉积物力学特性可视化实验过程加以说明:
[0036] 1)背压控制系统工作过程:将冻结的沉积物试样19放置于底盘21上,甲烷气瓶9 经减压阀10、针阀5f,然后分别经针阀5d、5g向柱塞泵6b、6c里注入一定压力甲烷气体,柱 塞泵6b、6c分别经压力变送器7b、针阀5c和压力变送器7c、针阀5h向冻结的沉积物试样19 里注入甲烷气体,逐渐升高压力并最终保持稳定;同时,油槽12经循环泵4c、针阀5 j向柱 塞泵6d里注入一定温度液压油,柱塞泵6d经压力变送器7d、针阀5i将液压油注入到压力 室,控制围压增加速率与孔隙压力增加速率相同,并且始终保持围压比孔隙压力高0. 2MPa。 冻结的沉积物试样在一定温度下融化,注入的甲烷气体与融化的水充分反应生成天然气水 合物,当上下柱塞泵里的气体体积没有明显变化时,表明空隙里的水已经与甲烷气体完全 反应。此时,关闭针阀5(:、5(1、5€、58、511,排出柱塞泵713、7(3内的甲烷气体,然后水槽8经循 环泵4b、针阀5e,再分别经针阀5d、5g将水注入到柱塞泵6b、6c中。柱塞泵6b、6c逐渐升 高压力,并保持一定的压差,此时打开针阀5c、5h,使试样内的残余甲烷气体在压差的作用 下被驱替完全。
[0037] 2)围压控制系统、温度控制系统工作过程:恒温槽12经循环泵4c、针阀5j所需温 度的液压油注入到柱塞泵6d内,柱塞泵6d经压力变送器7d、针阀5i向压力室注入液压油, 以控制所需围压和温度。
[0038] 3)轴向加载系统工作过程:油槽3经循环泵4a、针阀5a将液压油注入到柱塞泵 6a,柱塞泵6a经压力变送器7a、针阀5b将液压油注入到小型液压油缸14推动活塞16进行 轴向加载。
[0039] 4)计算机数据采集系统工作过程:温度传感器11、压力变送器4a、4b、4c、4d采集 得到恒温槽温度及各管路压力信号,CT机拍摄得到水合物沉积物图像信号,这些信号被传 输到数据采集系统里进行数据处理得到数字信号,数字信号传输到工控机1里再进行显示 和存储。
[0040] 图3a所示为自压式三轴仪主机的结构图。将冻结的试样19套上橡皮膜20放置 在底盘21上,在试样顶部放置渗流垫18以防止砂土颗粒进入管路造成堵塞,将端盖17放 置于渗流垫18上面,然后将压力室腔体22通过螺栓固定在底盘21上,固定好后,安装活塞 16,并将小型液压油缸14按照图3所示通过螺丝固定在压力室腔体22顶端。最后将快速 接头A、C、D以及加压口 15按照图2所示接入管路系统准备进行试验。
【权利要求】
1. 一种天然气水合物沉积物力学特性可视化试验装置,其特征在于,包含低温高压水 合物三轴仪试验系统、X射线CT成像系统和计算机数据采集系统; 所述的低温高压水合物三轴仪试验系统包含自压式三轴仪主机、轴向加载系统、围压 控制系统、背压控制系统和温度控制系统;所述轴向加载系统、围压控制系统、背压控制系 统均与所述自压式三轴仪主机相连,分别控制试样承受的荷载、围压和孔隙压力;所述温度 控制系统与所述围压控制系统相连,用于控制柱塞泵D内液压油的温度,进而控制试样的 温度; 所述自压式三轴仪主机置于X射线CT成像系统的载物台上,包括顶置一体化轴向加载 装置和高压三轴压力室;所述顶置一体化轴向加载装置包括小型液压油缸和活塞;通过小 型液压油缸中的液压油驱动活塞向下运动产生轴向加载力;小型液压油缸与所述高压三轴 压力室之间采用螺丝连接,上方设置有加压口和排气口 A,方便加载过程中油缸进行排气; 所述小型液压油缸下方设置两个排气口 B,用于将加载过程中活塞下方的气体排出;所述 高压三轴压力室包括压力室腔体和底盘,活塞与压力室腔体之间通过密封圈密封,并与试 样端盖相对应,用于传递轴向加载力;所述压力室腔体的壁厚根据实验对压力和成像分辨 率的要求,通过计算并经实验测试确定,压力室腔体的外壁通过抗拉强度大的材料加固;压 力室腔体的上方设置有排气口 C,用于加载围压时排出压力室腔体内的残余空气;压力室 腔体与底盘之间采用螺丝连接,并使用密封圈进行密封;所述底盘的中心设置凸起圆柱,用 作放置试样的底座;底盘的四周对称分布有四个通道:通道A、通道B、通道C和通道D,其中 通道A、通道B和通道C与高压三轴压力室连通,通道D通过底盘的中心,并经由所述试样的 底座、渗流垫与试样的下端连通;所述试样的端盖中心设置有通道,通道的一端通过柔性管 道与所述底盘的通道A相连,另一端与所述渗流垫和试样的上端连通;所述试样采用橡皮 膜密封包裹; 所述轴向加载系统包含油槽、循环泵A和柱塞泵A ;所述油槽经循环泵A提供柱塞泵A 所需的液压油;柱塞泵A通过柔性管道与小型液压油缸的加压口相连,提供轴向加载所需 要的液压;试样承受的轴向荷载通过液压油压力和活塞的横截面积相乘获得,轴向位移通 过所述活塞的位移获得; 所述围压控制系统包含柱塞泵D,通过柔性管道与底盘的通道C相连,提供试验过程中 所需的液压油,并维持压力; 所述背压控制系统包含柱塞泵B和柱塞泵C、甲烷气瓶、水槽和循环泵B ;所述甲烷气瓶 经减压阀与所述柱塞泵B和柱塞泵C相连;所述水槽经循环泵B与所述柱塞泵B和柱塞泵 C相连;所述柱塞泵B经针阀C与所述底盘的通道A通过柔性管道连接,所述柱塞泵C经针 阀Η与所述底盘的通道D通过柔性管道连接;所述背压控制系统用于控制试验过程中试样 的孔隙压力,并提供天然气水合物沉积物反应所需要的天然气和水; 所述温度控制系统包含恒温槽和循环泵C,循环泵C通过针阀J与所述围压控制系统相 连,将冷却至试验温度的液压油经由柱塞泵D注入至压力室腔体,并维持试验所需压力; 所述X射线CT成像系统用于试验过程中试样的在线CT成像扫描,获取天然气水合物 沉积物试样内部结构图像,分析其演变规律; 所述计算机数据采集系统包含温度传感器、四个压力变送器、与CT扫描系统和水合物 三轴仪系统采用电气连接的数据采集模块,并把采集的温度、压力、轴向应力、轴向应变以 及试样扫描图像数据传给工控机处理,进而分析天然气水合物沉积物的宏观和微观力学特 性。
2. 根据权利要求1所述的所述天然气水合物沉积物力学特性可视化试验装置,其特征 在于,所述的顶置一体化轴向加载装置采用航空高强度铝合金材料设计。
3. 根据权利要求1或2所述的所述天然气水合物沉积物力学特性可视化试验装置,其 特征在于,所述的高压三轴压力室采用高纯铝材料。
4. 根据权利要求1或2所述的所述天然气水合物沉积物力学特性可视化试验装置,其 特征在于,所述的压力室腔体的外壁通过玻璃纤维加固。
5. 根据权利要求3所述的所述天然气水合物沉积物力学特性可视化试验装置,其特征 在于,所述的压力室腔体的外壁通过玻璃纤维加固。
6. 根据权利要求1、2或5所述的所述天然气水合物沉积物力学特性可视化试验装置, 其特征在于,所述的自压式三轴仪主机与所述轴向加载系统、围压控制系统、背压控制系统 之间采用柔性管道相连。
7. 根据权利要求3所述的所述天然气水合物沉积物力学特性可视化试验装置,其特征 在于,所述的自压式三轴仪主机与所述轴向加载系统、围压控制系统、背压控制系统之间采 用柔性管道相连。
8. 根据权利要求4所述的所述天然气水合物沉积物力学特性可视化试验装置,其特征 在于,所述的自压式三轴仪主机与所述轴向加载系统、围压控制系统、背压控制系统之间采 用柔性管道相连。
9. 根据权利要求1、2、5、7或8所述的所述天然气水合物沉积物力学特性可视化试验装 置,其特征在于,所述的自压式三轴仪主机采用自压式结构,将试样承受的荷载转换成主机 的内部荷载。
10. 根据权利要求6所述的所述天然气水合物沉积物力学特性可视化试验装置,其特 征在于,所述的自压式三轴仪主机采用自压式结构,将试样承受的荷载转换成主机的内部 荷载。
【文档编号】G01N3/12GK104155188SQ201410357319
【公开日】2014年11月19日 申请日期:2014年7月24日 优先权日:2014年7月24日
【发明者】宋永臣, 李洋辉, 刘卫国, 徐晓虎, 赵佳飞, 杨明军 申请人:大连理工大学
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1