一种慢性胃炎诊断的唾液蛋白诊断模型及其构建方法【专利摘要】本发明公开了一种慢性胃炎诊断的唾液蛋白诊断模型及其构建方法,该慢性胃炎诊断的唾液蛋白诊断模型的构建方法包括以下步骤:唾液标本的收集和处理;采用WCX磁珠处理唾液样品;点样及质谱分析;据统计学分析;该慢性胃炎诊断的唾液蛋白诊断模型由人唾液蛋白中质荷比(m/z)分别为5502.36Da、1441.75Da和3442.47Da的3个唾液蛋白峰组成。本发明通过由人唾液蛋白中质荷比(m/z)由5502.36Da、1441.75Da和3442.47Da的3个蛋白峰建立的分类预测模型,将检测人唾液中相应的蛋白质的m/z与模型进行分析,可以初步用于慢性胃炎的诊断,识别率为91.67%,预测能力73.33%。本发明的模型准确率为90.63%(29/32),灵敏度为100%(14/14),特异度为83.33%(15/18)。本发明的构建方法简单,合理可行,操作简便,可批量处理的特点。【专利说明】一种慢性胃炎诊断的唾液蛋白诊断模型及其构建方法【
技术领域:
】[0001]本发明属于唾液蛋白诊断【
技术领域:
】,尤其涉及一种慢性胃炎诊断的唾液蛋白诊断模型及其构建方法。【
背景技术:
】[0002]唾液是人体不可缺少的一种重要体液,血液成分如多种激素、氨基酸、电解质、免疫球蛋白、肌酐等均可通过毛细血管壁的唾液血液屏障进入唾液。作为人体体液的一部分,其成分含量的变化,受体内各种病理生理变化的影响。研究发现唾液成分与血清相关,特别是研究证实作为唾液主要成分的蛋白质与血清成正相关。随着科学技术的发展,人们对于临床诊断指标的要求不断提高,不仅要求正确、敏感,而且要求无创、简便,唾液不仅取材方便,无创伤性,可随时进行动态观察,且实验结果稳定,方法灵敏度高,重复性好。随着生化微量分析技术的进步,使人们开始考虑用唾液代替血液作为诊断指标。唾液研究方面走在前列的美国现正致力于开展一项重点研究计划--创立唾液诊断学(salivarydiagnostics),即在研究正常人唾液中的全部蛋白质组分的基础上,创建以唾液为研究对象、快速实时(real-time)反映机体状态的、可检测各种系统性疾病和口腔疾病的蛋白质研究体系,如蛋白质芯片等。基于唾液的检验诊断技术将会对临床医学及肿瘤学、分子生物学、内分泌学、病毒学、细胞生物学、免疫学、微生物学、流行病学、法医学、生物芯片以及生物信息学等多个学科的基础研究产生深远的影响。[0003]随着蛋白质组学研究范围的不断拓展,唾液蛋白质组学(Salivaryproteomics)作为一个年轻的新兴的研究领域,加上蛋白质组学技术的全面推广[0004]和提闻,其自动化、闻通量、闻灵敏度和可重复的特点,正在逐渐引起人们的广泛关注。唾液蛋白质组的分析精度提高,技术难度降低,从而使得口腔内唾液蛋白的研究转移到提高蛋白组的全表达谱研究和疾病生物标记确立,生物靶向治疗应用研究中去,使其能够更好的为临床诊断服务,为人类疾病治疗做贡献。唾液蛋白质组学旨在以“组学”的研究思路寻找、发现和鉴定唾液中与疾病过程和治疗过程相关的生物标志物(蛋白质、多肽),致力进行唾液蛋白质组比较检测,全谱检测的一门科学.它的发展直接影响了唾液分析在临床诊断中的地位和水平。国外唾液蛋白质组学研究已经引起广泛关注。长期以来,由于原有的技术限制了口腔唾液蛋白的通量分析和精确测定,使大多数唾液蛋白的生物功能处于未知状态,唾液在人体疾病中的诊断和预后判断中的潜在作用并未显现。随着高通量、高精度的蛋白质组学的应用,使得唾液蛋白中生物标记用于疾病的早期诊断预防、生物蛋白靶向治疗、预后监测判断等均已成为可能。近几十年来利用唾液作为检测人体疾病的手段,用来诊断感染性疾病、免疫性疾病、内分泌疾病及肿瘤等众多疾病方面均已取得不少成果。目前国内对开展唾液蛋白组学的研究仅限于口腔疾病及糖尿病。[0005]基质辅助激光解吸飞行时间质谱(MALD1-T0F-MS)是近年来发展起来的一种软电离新型有机质谱,通过引入基质分子,使待测分子不产生碎片,解决了非挥发性和热不稳定性生物大分子解吸离子化的问题,是分析难挥发的有机物质的重要手段之一,并于2002年获得诺贝尔化学奖。从此,MALD1-TOFMS在世界范围内得到了突飞猛进的发展,并广泛应用于生物技术和制药企业的药物开发、科研领域的生物分析和化学检测以及安全部门的核辐射、化学物质和生物病原体的监测等。[0006]慢性胃炎系指各种病因引起的慢性胃黏膜炎性病变,是一种消化系统常见病,其发病率在各种胃病中居首位。目前慢性胃炎的确诊主要依赖于胃镜检查和胃黏膜活检,存在一定的局限性和损伤性,患者不容易接受。因此从唾液蛋白来探索慢性胃炎的诊断模型是无创伤、无痛苦、简便易行、重复性好的一种诊断模式,故较内窥镜和X线钡餐更易为病人接受。【
发明内容】[0007]本发明实施例的目的在于提供一种慢性胃炎诊断的唾液蛋白诊断模型及其构建方法,旨在解决现有的慢性胃炎检测存在的缺少诊断模型和局限性的问题。[0008]本发明实施例是这样实现的,一种慢性胃炎诊断的唾液蛋白诊断模型的构建方法,该慢性胃炎诊断的唾液蛋白诊断模型的构建方法包括以下步骤:[0009]步骤一,唾液标本的收集和处理,每个唾液样本采集量为2ml?5ml,所有收集的样品放入冰盒后,立即转送实验室,4°C冰箱过夜后离心,分装后于-80°C冰箱保存,实验时由-80°C冰箱取出样本,常温解冻,避免反复冻融;[0010]步骤二,采用WCX磁珠处理唾液样品,加入稳定缓冲液的洗脱液可以用来直接质谱分析或冻存-20°C,24小时之内质谱分析;[0011]步骤三,点样及质谱分析,将磁珠处理好的多肽样品溶液各取分别点靶,室温下干燥后,再各点基质溶液,然后将制备好的点样板置于MALD1-TOF质谱仪上进行分析,应用线性模式;[0012]步骤四,据统计学分析,用FlexAnalysis3.0软件进行标峰和校正峰,用软件ClinProTools2.1中的统计学检验方法寻找差异蛋白,分析有差异趋势的多肽,并利用软件中的遗传算法结合KNN建立分类预测模型;[0013]建立分类预测模型的具体方法为:[0014]首先使用遗传算法,设变异率为0.2,交叉率为0.5,初始染色体个数为1000,适应度函数用KNN判定结果的准确率,最终经过10000次进化,遍历k,最终在差异蛋白中,选用了其中的几个蛋白峰,建立模型,计算模型的特异性、敏感性及平均准确率用随机抽样方法,随机选择80%样本建立模型,其余的20%作为验证样本,运行十次,验证模型的有效性,平均特异性、灵敏性及平均正确率,P<0.05为差异有统计学意义。[0015]进一步,在步骤三中,采集相对分子量范围IOOODa?lOOOODa,激光能量为20%,累计400shots,质谱信号单次扫描累加50次,获得肽质量指纹图。[0016]进一步,该慢性胃炎诊断的唾液蛋白诊断模型的构建方法的步骤为:[0017]第一步,唾液收集时间为6:00AM?8:00AM,收集前一晚睡前不再进食及服用任何药物,收集前2h开始禁食水,并用清水漱口后静坐于椅子上,前5min内的唾液自然吞下后开始收集,口腔唾液积聚,吐入置于经过冰浴预冷的50ml离心管内,每个唾液样本采集量为2ml?5ml,米集时间为20min?30min,每个样本米集完立即放入冰盒内;[0018]第二步,标本处理:所有收集的样品放入冰盒后,立即转送实验室,4°C冰箱过夜后3000r/min离心IOmin,再以lOOOOr/min,5min,4°C离心,取50ul唾液分装在0.5mlEP管中,于-80°C冰箱保存,实验时由-80°C冰箱取出样本,常温解冻,所有检测唾液均避免反复冻融;[0019]第三步,磁珠选择:选择WCX磁珠进行实验;[0020]第四步,磁珠处理步骤:[0021]步骤一,4°C冰箱取出磁珠试剂盒,取出WCX磁珠悬浮液一管,手动上下摇动,完全混勻磁珠悬浮液,I分钟;[0022]步骤二,取出IOul磁珠结合缓冲液加入200ul样品管中,再加入IOul磁珠至样品管,用加样枪上下吸打混匀,避免起泡;[0023]步骤三,向样品管加5ul已处理唾液,用加样枪上下吸打混匀至少5次,避免起泡;[0024]步骤四,将样品管室温下静置5分钟;[0025]步骤五,将样品管放入磁珠分离器,使磁珠贴壁I分钟,磁珠与悬浮的液体分离,液体应清澈;[0026]步骤六,用加样枪吸去悬浮的液体,枪头应避免接触到磁珠,避免吸走磁珠;[0027]步骤七,再向样品管中加入IOOul磁珠清洗缓冲液;[0028]步骤八,在磁珠分离器前后相邻两孔间反复移动样品管10次;[0029]步骤九,使样品管在磁珠分离器上静置,磁珠贴壁,磁珠与悬浮的液体分离,液体应清澈;[0030]步骤十,用加样枪吸去悬浮的液体,枪头应避免接触到磁珠,避免吸走磁珠;[0031]步骤十一,重复步骤七-步骤十步骤两次,最后一次加样枪吸去悬浮的液体时,要保证悬浮液完全被吸走;[0032]步骤十二,从磁珠分离器上取下样品管,并向样品管中加入5ul磁珠洗脱缓冲液,混匀贴壁的磁珠,反复吸打10次,吹打过程中应避免起泡;[0033]步骤十三,样品管放入磁珠分离器,磁珠贴壁2min,磁珠与悬浮的液体充分分离后,将上清液移入干净的0.5ml样品管;[0034]步骤十四,向0.5ml样品管中加入5ul稳定缓冲液,用加样枪吸打混匀;[0035]步骤十五,加入稳定缓冲液的洗脱液可以用来直接质谱分析或冻存_20°C,24小时之内质谱分析;[0036]第五步,点样及质谱分析[0037]将磁珠处理好的多肽样品溶液各取Iul分别点靶,室温下干燥后,再各点Iul浓度为0.3g/L,[乙醇(色谱级)/丙酮(色谱级)=2/1,新鲜配置]的α—氰基一4一羟基肉桂酸基质溶液(溶于50%乙腈,2%三氟乙酸),然后将制备好的点样板置于MALD1-T0F质谱仪上进行分析,应用线性模式,采集相对分子量范围IOOODa?lOOOODa,激光能量为20%,累计400shots,质谱信号单次扫描累加50次,获得肽质量指纹图;[0038]第六步,数据统计学分析[0039]使用仪器上配置的由Bruker公司开发的数据分析系统,系统包括FlexAnalysis3.0和ClinProTools2.1两个软件,用FlexAnalysis3.0软件进行标峰和校正峰,用软件ClinPr0T00ls2.1中的统计学检验方法寻找差异蛋白,分析有差异趋势的多肽,并利用软件中的遗传算法结合KNN建立分类预测模型,首先使用遗传算法,设变异率为0.2,交叉率为0.5,初始染色体个数为1000,适应度函数用KNN判定结果的准确率,最终经过10000次进化,遍历k,最终在差异蛋白中,选用了其中的几个蛋白峰,建立模型,计算模型的特异性、敏感性及平均准确率,用随机抽样方法,随机选择80%样本建立模型,其余的20%作为验证样本,运行十次,验证模型的有效性,平均特异性、灵敏性及平均正确率,P<0.05为差异有统计学意义。[0040]本发明实施例的另一目的在于提供一种慢性胃炎诊断的唾液蛋白诊断模型,该慢性胃炎诊断的唾液蛋白诊断模型由人唾液蛋白中质荷比(m/z)分别为5502.36Da、1441.75Da和3442.47Da的3个唾液蛋白峰组成。[0041]本发明提供的慢性胃炎诊断的唾液蛋白诊断模型及其构建方法,通过由人唾液蛋白中质荷比(m/z)由5502.36Da、1441.75Da和3442.47Da的3个蛋白峰建立的分类预测模型,将检测人唾液中相应的蛋白质的m/z与模型进行分析,可以初步用于慢性胃炎的诊断,识别率为91.67%,预测能力73.33%。本发明的模型准确率为90.63%(29/32),灵敏度为100%(14/14),特异度为83.33%(15/18)。本发明的构建方法简单,合理可行,操作简便,可批量处理的特点。【专利附图】【附图说明】[0042]图1是本发明实施例提供的慢性胃炎诊断的唾液蛋白诊断模型的构建方法流程图。【具体实施方式】[0043]为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。[0044]下面结合附图及具体实施例对本发明的应用原理作进一步描述。[0045]一种慢性胃炎诊断的唾液蛋白诊断模型主要由人唾液蛋白中质荷比(m/z)分别为5502.36Da、1441.75Da和3442.47Da的3个唾液蛋白峰组成。[0046]如图1所示,本发明实施例的慢性胃炎诊断的唾液蛋白诊断模型的构建方法包括以下步骤:[0047]SlOl:唾液标本的收集和处理:每个唾液样本采集量为2ml?5ml,所有收集的样品放入冰盒后,立即转送实验室,4°C冰箱过夜后离心,分装后于-80°C冰箱保存,实验时由-80°C冰箱取出样本,常温解冻,避免反复冻融;[0048]S102:采用WCX磁珠处理唾液样品,加入稳定缓冲液的洗脱液可以用来直接质谱分析或冻存_20°C,24小时之内质谱分析;[0049]S103:点样及质谱分析:将磁珠处理好的多肽样品溶液各取分别点靶,室温下干燥后,再各点基质溶液,然后将制备好的点样板置于MALD1-TOF质谱仪上进行分析,应用线性模式;[0050]S104:据统计学分析:用FlexAnalysis3.0软件进行标峰和校正峰,用软件ClinProTools2.1中的统计学检验方法寻找差异蛋白,分析有差异趋势的多肽,并利用软件中的遗传算法结合KNN建立分类预测模型;[0051]在步骤S103中,采集相对分子量范围IOOODa?lOOOODa。激光能量为20%,累计400shots。质谱信号单次扫描累加50次,获得肽质量指纹图(PMF);[0052]在步骤S104中,建立分类预测模型的具体方法为:[0053]首先使用遗传算法,设变异率为0.2,交叉率为0.5,初始染色体个数为1000,适应度函数用KNN判定结果的准确率,最终经过10000次进化,遍历k,最终在差异蛋白中,选用了其中的几个蛋白峰,建立模型,计算模型的特异性、敏感性及平均准确率用随机抽样方法,随机选择80%样本建立模型,其余的20%作为验证样本,运行十次,验证模型的有效性,平均特异性、灵敏性及平均正确率,P<0.05为差异有统计学意义。[0054]以下结合本发明的具体实施例对本发明做进一步的说明:[0055]第一步,唾液收集时间为6:00AM?8:00ΑΜ,收集前一晚睡前不再进食及服用任何药物,收集前2h开始禁食水,并用清水漱口后静坐于椅子上,前5min内的唾液自然吞下后开始收集,口腔唾液积聚至一定量后,吐入置于经过冰浴预冷的50ml离心管内,每个唾液样本采集量大约2ml?5ml,采集时间为20min?30min,每个样本采集完立即放入冰盒内;[0056]第二步,标本处理:所有收集的样品放入冰盒后,立即转送实验室,4°C冰箱过夜后3000r/min离心IOmin,再以10000r/min,5min,4°C离心,取50ul唾液分装在0.5mlEP管中,于-80°C冰箱保存,实验时由-80°C冰箱取出样本,常温解冻,所有检测唾液均避免反复冻融;[0057]第三步,磁珠选择:为选择最适合的磁珠类型,使用三种不同磁珠(离子交换型WCX(弱阳离子)磁珠、疏水型HIC-8磁珠、铜螯合型IMAC-Cu磁珠)对样品进行检测分析,经比较发现唾液样品用WCX磁珠磁珠富集后的峰较多P值较小,说明WCX找到的峰差异较显著,所以最终选择WCX磁珠进行实验;[0058]第四步,磁珠处理步骤:[0059]步骤一,4°C冰箱取出磁珠试剂盒,取出WCX磁珠悬浮液一管,手动上下摇动,完全混勻磁珠悬浮液,I分钟;[0060]步骤二,取出IOul磁珠结合缓冲液(bindingsolution,BS)加入200ul样品管中,再加入IOul磁珠至样品管,用加样枪上下吸打混匀,避免起泡;[0061]步骤三,向样品管加5ul已处理唾液,用加样枪上下吸打混匀至少5次,避免起泡;[0062]步骤四,将样品管室温下静置5分钟;[0063]步骤五,将样品管放入磁珠分离器,使磁珠贴壁I分钟,磁珠与悬浮的液体分离,液体应清澈;[0064]步骤六,用加样枪吸去悬浮的液体,枪头应避免接触到磁珠,避免吸走磁珠;[0065]步骤七,再向样品管中加入IOOul磁珠清洗缓冲液(washingsolution,WS);[0066]步骤八,在磁珠分离器前后相邻两孔间反复移动样品管10次(注意磁珠在管中的运动);[0067]步骤九,使样品管在磁珠分离器上静置,磁珠贴壁,磁珠与悬浮的液体分离,液体应清澈;[0068]步骤十,用加样枪吸去悬浮的液体,枪头应避免接触到磁珠,避免吸走磁珠;[0069]步骤十一,重复步骤七-步骤十步骤两次,最后一次加样枪吸去悬浮的液体时,要保证悬浮液完全被吸走;[0070]步骤十二,从磁珠分离器上取下样品管,并向样品管中加入5ul磁珠洗脱缓冲液(elutingsolution,ES),混匀贴壁的磁珠,反复吸打10次,吹打过程中应避免起泡;[0071]步骤十三,样品管放入磁珠分离器,磁珠贴壁2min,磁珠与悬浮的液体充分分离后,将上清液移入干净的0.5ml样品管;[0072]步骤十四,向0.5ml样品管中加入5ul稳定缓冲液(Stablesolution,SS),用加样枪小心吸打混匀;[0073]步骤十五,加入稳定缓冲液的洗脱液可以用来直接质谱分析或冻存-20°C,24小时之内质谱分析;[0074]第五步,点样及质谱分析[0075]将磁珠处理好的多肽样品溶液各取Iul分别点靶,室温下干燥后,再各点Iul浓度为0.3g/L,[乙醇(色谱级)/丙酮(色谱级)=2/1,新鲜配置]的α—氰基一4一羟基肉桂酸基质溶液(溶于50%乙腈,2%三氟乙酸),然后将制备好的点样板置于MALD1-TOF质谱仪上进行分析,应用线性模式,采集相对分子量范围1000Da~lOOOODa,激光能量为20%,累计400shots,质谱信号单次扫描累加50次,获得肽质量指纹图(PMF);[0076]第六步,数据统计学分析[0077]使用仪器上配置的由Bruker公司开发的数据分析系统,系统包括FlexAnalysis3.0和ClinProTools2.1两个软件,用FlexAnalysis3.0软件进行标峰和校正峰,用软件ClinProTools〗.1中的统计学检验方法(参数T-Test和非参数方法WilcoxonTest)寻找差异蛋白,分析有差异趋势的多肽,并利用软件中的遗传算法结合KNN(k-nearestneighboure,k=I,3,5,7)建立分类预测模型,首先使用遗传算法,设变异率为0.2,交叉率为0.5,初始染色体个数为1000,适应度函数用KNN判定结果的准确率,最终经过10000次进化,遍历k,最终在差异蛋白中,选用了其中的几个蛋白峰,建立模型,计算模型的特异性、敏感性及平均准确率,用随机抽样方法(随机选择80%样本建立模型,其余的20%作为验证样本,运行十次),验证模型的有效性(平均特异性、灵敏性及平均正确率),P<0.05为差异有统计学意义。[0078]结合以下结果和份系对本发明的使用效果做补充说明:[0079]结果:通过正常对照组与慢性胃炎组比较,除算法选择问题被排除的样本共32例,对样本检测质谱图进行分析比较,两个组共得到蛋白质峰为74个,其中通过遗传算法找到5个有统计差异显著的蛋白峰(P<0.05),通过WCX磁珠富集之后,ClinProTools得出了最适宜的区分模式模型,选择质荷比(m/z):5502.36Da、1441.75Da和3442.47Da这3个相关峰,通过分析这些差异蛋白峰表达谱,建立了分类预测模型,识别率为91.67%,预测能力73.33%,临床回代检验结果,对研究中14例慢性胃炎患者全部被准确检出,18例正常组对照者,15例被正确检出,该模型的准确率为90.63%(29/32),灵敏度为100%(14/14),特异度为83.33%(15/18),(表1,2)。[0080]表1慢性胃炎唾液蛋白质组诊断模型的临床符合率【权利要求】1.一种慢性胃炎诊断的唾液蛋白诊断模型的构建方法,其特征在于,该慢性胃炎诊断的唾液蛋白诊断模型的构建方法包括以下步骤:步骤一,选择慢性胃炎和健康对照组,唾液标本的收集和处理,每个唾液样本采集量为2ml~5ml,所有收集的样品放入冰盒后,立即转送实验室,4C冰箱过夜后尚心,分装后于_80°C冰箱保存,实验时由_80°C冰箱取出样本,常温解冻,避免反复冻融;步骤二,采用WCX磁珠处理唾液样品,加入稳定缓冲液的洗脱液可以用来直接质谱分析或冻存_20°C,24小时之内质谱分析;步骤三,点样及质谱分析,将磁珠处理好的多肽样品溶液各取分别点靶,室温下干燥后,再各点基质溶液,然后将制备好的点样板置于MALD1-TOF质谱仪上进行分析,应用线性模式;步骤四,据统计学分析,用FlexAnalysis3.0软件进行标峰和校正峰,用软件ClinProTools2.1中的统计学检验方法寻找差异蛋白,分析有差异趋势的多肽,并利用软件中的遗传算法结合KNN建立分类预测模型;建立分类预测模型的具体方法为:首先使用遗传算法,设变异率为0.2,交叉率为0.5,初始染色体个数为1000,适应度函数用KNN判定结果的准确率,最终经过10000次进化,遍历k,最终在差异蛋白中,选用了几个蛋白峰,建立模型,计算模型的特异性、敏感性及平均准确率用随机抽样方法,随机选择80%样本建立模型,其余的20%作为验证样本,运行十次,验证模型的有效性,平均特异性、灵敏性及平均正确率,P小于0.05为差异有统计学意义。2.如权利要求1所述的慢性胃炎诊断的唾液蛋白诊断模型的构建方法,其特征在于,在步骤三中,采集相对分子量范围1000Da~lOOOODa,激光能量为20%,累计400shots,质谱信号单次扫描累加50次,获得肽质量指纹图。3.如权利要求1所述的慢性胃炎诊断的唾液蛋白诊断模型的构建方法,其特征在于,该慢性胃炎诊断的唾液蛋白诊断模型的构建方法的步骤为:第一步,唾液收集时间为6:00AM~8:00AM,收集前一晚睡前不再进食及服用任何药物,收集前2h开始禁食水,并用清水漱口后静坐于椅子上,前5min内的唾液自然吞下后开始收集,口腔唾液积聚,吐入置于经过冰浴预冷的50ml离心管内,每个唾液样本采集量为2ml~5ml,米集时间为20min~30min,每个样本米集完立即放入冰盒内;第二步,标本处理:所有收集的样品放入冰盒后,立即转送实验室,4°C冰箱过夜后3000r/min离心IOmin,再以10000r/min,5min,4°C离心,取50ul唾液分装在0.5mlEP管中,于-80°C冰箱保存,实验时由-80°C冰箱取出样本,常温解冻,所有检测唾液均避免反复冻融;第三步,磁珠选择:选择WCX磁珠进行实验;第四步,磁珠处理步骤:步骤一,4°C冰箱取出磁珠试剂盒,取出WCX磁珠悬浮液一管,手动上下摇动,完全混匀磁珠悬浮液,I分钟;步骤二,取出IOul磁珠结合缓冲液加入200ul样品管中,再加入IOul磁珠至样品管,用加样枪上下吸打混匀,避免起泡;步骤三,向样品管加5ul已处理唾液,用加样枪上下吸打混匀至少5次,避免起泡;步骤四,将样品管室温下静置5分钟;步骤五,将样品管放入磁珠分离器,使磁珠贴壁I分钟,磁珠与悬浮的液体分离,液体应清澈;步骤六,用加样枪吸去悬浮的液体,枪头应避免接触到磁珠,避免吸走磁珠;步骤七,再向样品管中加入IOOul磁珠清洗缓冲液;步骤八,在磁珠分离器前后相邻两孔间反复移动样品管10次;步骤九,使样品管在磁珠分离器上静置,磁珠贴壁,磁珠与悬浮的液体分离,液体应清澈;步骤十,用加样枪吸去悬浮的液体,枪头应避免接触到磁珠,避免吸走磁珠;步骤十一,重复步骤七-步骤十步骤两次,最后一次加样枪吸去悬浮的液体时,要保证悬浮液完全被吸走;步骤十二,从磁珠分离器上取下样品管,并向样品管中加入5ul磁珠洗脱缓冲液,混匀贴壁的磁珠,反复吸打10次,吹打过程中应避免起泡;步骤十三,样品管放入磁珠分离器,磁珠贴壁2min,磁珠与悬浮的液体充分分离后,将上清液移入干净的0.5ml样品管;步骤十四,向0.5ml样品管中加入5ul稳定缓冲液,用加样枪吸打混匀;步骤十五,加入稳定缓冲液的洗脱液可以用来直接质谱分析或冻存_20°C,24小时之内质谱分析;第五步,点样及质谱分析将磁珠处理好的多肽样品溶液各取Iul分别点靶,室温下干燥后,再各点Iul浓度为.0.3g/L,[乙醇(色谱级)/丙酮(色谱级)=2/1,新鲜配置]的α—氰基一4一羟基肉桂酸基质溶液(溶于50%乙腈,2%三氟乙酸),然后将制备好的点样板置于MALD1-TOF质谱仪上进行分析,应用线性模式,采集相对分子量范围1000Da~lOOOODa,激光能量为20%,累计400shots,质谱信号单次扫描累加50次,获得肽质量指纹图;第六步,数据统计学分析使用仪器上配置的由Bruker公司开发的数据分析系统,系统包括FlexAnalysis3.0和ClinProTools2.1两个软件,用FlexAnalysis3.0软件进行标峰和校正峰,用软件ClinProTools2.1中的统计学检验方法寻找差异蛋白,分析有差异趋势的多肽,并利用软件中的遗传算法结合KNN建立分类预测模型,首先使用遗传算法,设变异率为0.2,交叉率为.0.5,初始染色体个数为1000,适应度函数用KNN判定结果的准确率,最终经过10000次进化,遍历k,最终在差异蛋白中,选用了几个蛋白峰,建立模型,计算模型的特异性、敏感性及平均准确率,用随机抽样方法,随机选择80%样本建立模型,其余的20%作为验证样本,运行十次,验证模型的有效性,平均特异性、灵敏性及平均正确率,P<0.05为差异有统计学意义。4.一种慢性胃炎诊断的唾液蛋白诊断模型,其特征在于,该慢性胃炎诊断的唾液蛋白诊断模型由人唾液蛋白中质荷比分别为5502.36Da、1441.75Da和3442.47Da的3个唾液蛋白峰组成。【文档编号】G01N27/62GK104007166SQ201410234499【公开日】2014年8月27日申请日期:2014年5月29日优先权日:2014年5月29日【发明者】吴正治,孙珂焕,曹美群申请人:深圳市第二人民医院