一种利用导航卫星的高精度授时系统及方法

文档序号:6224025阅读:136来源:国知局
一种利用导航卫星的高精度授时系统及方法
【专利摘要】本发明涉及一种利用导航卫星的高精度授时系统及方法,所述方法包括以下步骤:S1、确认授时系统是否定位成功;S2、判断卫星信号接收模块提供的卫星PPS信号是否持续有效;S3、利用卫星PPS信号进行授时;S4、利用本地时钟信号进行守时。本发明提供的一种利用导航卫星的高精度授时系统及方法,在授时状态下利用导航卫星提供的PPS信号驯服恒温晶振,同时记录驯服过程中的控制参数的变化情况;在守时状态下根据控制参数在授时状态下的变化情况,对本地时钟信号的频率进行补偿调整。使得授时系统在丢失导航卫星基准信号后,由本地时钟信号分频得到的PPS基准信号仍能保持与卫星同步,大大增强了系统的守时能力,能够更加精确地完成长时间的守时工作。
【专利说明】 一种利用导航卫星的高精度授时系统及方法
【技术领域】
[0001]本发明涉及卫星导航领域,具体涉及一种利用导航卫星的高精度授时系统及方法。
【背景技术】
[0002]军工系统、金融系统、电信系统、电力系统在运行是都需要对时间、频率进行同步,时间频率标准的发展对于国家的经济、科学技术以及社会和国防安全有十分重要的意义。目前,时间频率标准的授时同步途径正在由短波、长波、电视等技术手段向导航卫星发展。利用导航卫星进行授时同步的主要原理是,通过导航卫星信号接收模块接收卫星信号,根据接收到的导航卫星信号中的IPPS (秒脉冲)信号实现系统授时及网络时钟同步。现阶段利用导航卫星授时的技术比较多,但其授时的精度均有待进一步提高,特别在失去卫星信号时,系统的守时能力较差,不能满足更高的同步授时精度要求。

【发明内容】

[0003]本发明的目的在于,提供一种利用导航卫星的高精度授时系统及方法,提高授时系统在失去卫星信号时的守时能力。
[0004]为实现上述目的,本发明采用以下技术方案:
[0005]一种用于授时系统的高精度授时方法,所述授时系统包括卫星信号接收模块、晶振控制模块和恒温晶振,包括以下步骤:
[0006]S1、确认授时系统是否定位成功:当授时系统定位成功时,进入授时状态;当授时系统定位失败时,进入守时状态;
[0007]S2、判断卫星信号接收模块提供的卫星PPS信号是否持续有效:当卫星PPS信号持续有效时,授时系统维持在授时状态;当卫星PPS信号失效时,授时系统进入守时状态;
[0008]S3、利用卫星PPS信号进行授时:当授时系统处于授时状态时,晶振控制模块根据卫星PPS信号对恒温晶振进行驯服,使恒温晶振输出的本地时钟信号的频率调整为卫星PPS信号的标称频率,然后对调整后本地时钟信号进行分频处理,得到PPS基准信号进行输出;
[0009]S4、利用本地时钟信号进行守时:当授时系统处于守时状态时,断开卫星PPS信号,对本地时钟信号进行分频处理,得到PPS基准信号进行输出。
[0010]进一步地,在SI中,当卫星信号接收模块跟踪到的卫星数量大于或等于4颗时,判定授时系统定位成功,否则定位失败。
[0011 ] 进一步地,在S2中,当卫星信号接收模块跟踪到的卫星数量大于或等于2颗时,卫星PPS信号有效;否则,卫星PPS信号失效。
[0012]进一步地,在S3中,还包括,记录晶振控制模块对恒温晶振进行驯服时输出的控制参数的变化情况;
[0013]在S4中,还包括,根据控制参数在授时状态下的变化情况,对本地时钟信号的频率进行补偿调整。
[0014]进一步地,在S3中,记录控制参数的变化情况的方法为:每间隔一段固定时间,将晶振控制模块输出的控制参数进行一次存储;
[0015]在S4中,对本地时钟信号的频率进行补偿调整的方法为:计算出授时状态下的控制参数每改变I的时间周期;在守时状态下,每经过一个所述时间周期,将晶振控制模块输出的控制参数对应加I或减I。
[0016]一种利用导航卫星的高精度授时系统,包括:
[0017]卫星信号接收模块,用于跟踪接收多颗导航卫星发出的卫星PPS信号;
[0018]工作状态判断模块,用于实时监控卫星信号接收模块跟踪到的卫星数量,进而判断授时系统的工作状态为授时状态或守时状态;
[0019]晶振控制模块,用于通过一控制参数,控制恒温晶振输出的本地时钟信号的频率;
[0020]恒温晶振,用于在晶振控制模块的控制下输出本地时钟信号;
[0021]采样模块,用于对本地时钟信号进行采样,反馈给晶振控制模块和基准信号输出模块;
[0022]基准信号输出模块,用于向外部输出PPS基准信号;
[0023]其中,当授时系统工作于授时状态下时,晶振控制模块根据卫星PPS信号对恒温晶振进行驯服,使恒温晶振输出的本地时钟信号的频率调整为卫星PPS信号的标称频率,同时,记录控制参数的变化情况;基准信号输出模块对调整后的本地时钟信号进行分频处理,得到PPS基准信号进行输出;
[0024]当授时系统工作于守时状态下时,晶振控制模块根据控制参数在授时状态下的变化情况,对本地时钟信号的频率进行补偿调整;基准信号输出模块对补偿调整后的本地时钟信号进行分频处理,得到PPS基准信号进行输出。
[0025]进一步地,所述晶振控制模块包括数据处理模块、补偿控制模块、DAC控制模块和DAC ;
[0026]DAC控制模块用于向DAC输出控制参数;
[0027]DAC用于将DAC控制模块提供的控制参数转换为对应的压控电压,输出给恒温晶振,以控制恒温晶振输出的本地时钟信号的频率;
[0028]数据处理模块用于在授时状态下提取卫星PPS信号的标称频率,提供给DAC控制模块;
[0029]补偿控制模块用于在授时状态下记录DAC控制模块输出的控制参数的变化情况;还用于在守时状态下,根据控制参数在授时状态下的变化情况,向DAC控制模块发出补偿指令;
[0030]DAC控制模块还用于在授时状态下,根据标称频率和本地时钟信号频率之间的差异,对输出的控制参数进行调整,使本地时钟信号的频率趋向于标称频率;还用于在守时状态下,根据补偿控制模块的补偿指令,对输出的控制参数进行补偿调整。
[0031]进一步地,在授时状态下,所述补偿控制模块每间隔一段固定时间,对DAC控制模块输出的控制参数进行一次存储;
[0032]在守时状态下,补偿控制模块根据授时状态下存储的控制参数,计算出控制参数每改变I的时间周期;每经过一个所述时间周期,补偿控制模块向DAC控制模块发送一个补偿指令,使DAC控制模块输出的控制参数对应加I或减I。
[0033]本发明提供的一种利用导航卫星的高精度授时系统及方法,在授时状态下利用导航卫星提供的PPS信号驯服恒温晶振,使恒温晶体振荡器输出的本地时钟信号的频率趋向标称频率,同时记录驯服过程中的控制参数的变化情况;在守时状态下根据控制参数在授时状态下的变化情况,对本地时钟信号的频率进行补偿调整。使得授时系统在丢失导航卫星基准信号后,由本地时钟信号分频得到的PPS基准信号仍能保持与卫星同步,大大增强了系统的守时能力,能够更加精确地完成长时间的守时工作。
【专利附图】

【附图说明】
[0034]图1为本发明实施例一的流程示意图。
[0035]图2为本发明实施例一中恒温晶振的控制结构示意图。
[0036]图3为本发明实施例一中的控制参数的记录方法示意图。
[0037]图4为本发明实施例二的功能模块示意图。
[0038]图5为本发明实施例二中的晶振控制模块的结构示意图。
【具体实施方式】
[0039]下面将结合附图和具体的实施例对本发明的技术方案进行详细说明。
[0040]实施例一
[0041]本发明实施例提供了一种用于授时系统的高精度授时方法,所述授时系统为卫星授时系统,包括卫星信号接收模块、晶振控制模块和恒温晶振。如图1所示,本发明实施例提供的授时方法包括:
[0042]S1、确认授时系统是否定位成功:当授时系统定位成功时,进入授时状态;当授时系统定位失败时,进入守时状态;
[0043]S2、判断卫星信号接收模块提供的卫星PPS (Pulse Per Second,每秒脉冲数)信号是否持续有效:当卫星PPS信号持续有效时,授时系统维持在授时状态;当卫星PPS信号失效时,授时系统进入守时状态;
[0044]S3、利用卫星PPS信号进行授时:当授时系统处于授时状态时,晶振控制模块根据卫星PPS信号对恒温晶振进行驯服,使恒温晶振输出的本地时钟信号的频率调整为卫星PPS信号的标称频率,然后对调整后本地时钟信号进行分频处理,得到PPS基准信号进行输出;
[0045]S4、利用本地时钟信号进行守时:当授时系统处于守时状态时,断开卫星PPS信号,对本地时钟信号进行分频处理,得到PPS基准信号进行输出。
[0046]其中,SI和S2的目的在于判断卫星信号接收模块提供的卫星PPS信号的有效性,进而决定授时系统目前应当工作于授时状态还是守时状态。
[0047]具体地,在SI中,当卫星信号接收模块跟踪到的卫星数量大于或等于4颗时,则判定授时系统定位成功,即卫星信号接收模块提供的卫星PPS信号有效,授时系统进入授时状态。跟踪到的卫星数量小于4颗时,则判定授时系统定位失败,即卫星信号接收模块提供的卫星PPS信号无效,授时系统进入守时状态。[0048]在S2中,当卫星信号接收模块跟踪到的卫星数量持续大于2或等于2颗时,则认定卫星信号接收模块提供的卫星PPS信号依然保持有效,该卫星PPS信号可用于授时,授时系统维持在授时状态;而一旦跟踪到的卫星数量小于2颗,则认定卫星信号接收模块提供的卫星PPS信号失效,该卫星PPS信号不可用于授时,授时系统转换到守时状态。当授时系统处于守时状态时,需要重新按照Si的判断条件定位成功后才可转换到授时状态。
[0049]需要说明的是,S3和S4是并列的,分别定义了授时系统在授时状态和守时状态下的工作方式,两者之间并不存在先后关系。通过SI和S2的判断,使授时系统在S3的授时状态和S4的守时状态之间切换。
[0050]为了在卫星PPS信号失效后,授时系统的本地时钟信号频率仍能保持较高的精度,从而使得在守时状态下有本地时钟信号分频得到的PPS基准信号仍能保持与卫星同步,本发明实施例对S3和S4的具体工作方式进行了改进。
[0051]作为改进,在S3中,还包括,记录晶振控制模块对恒温晶振进行驯服时输出的控制参数的变化情况;
[0052]在S4中,在对本地时钟信号进行分频处理之前,还包括,根据控制参数在授时状态下的变化情况,对本地时钟信号的频率进行补偿调整。
[0053]从本质上来说,本发明实施例对于S3和S4的改进在于,在授时状态下记录本地时钟信号的频率变化情况,并且总结其变化规律,以期实现在守时状态下对本地时钟信号的频率进行自动补偿。
[0054]实际上,由于在驯服过程中,所述恒温晶振输出的本地时钟信号的频率是不断调整的,即晶振控制模块每一时刻都在使恒温晶振的输出频率趋向于标称频率,这种调整需要一个时间过程,而不是能够立即实现的;因此,我们无法直接记录本地时钟信号的频率变化。
[0055]现有技术中,晶振控制模块通常包括一 DAC (Digital to analog converter,数字/模拟转换器)和一 DAC控制模块,如图2所示,DAC控制模块(通常为单片机)向DAC发送20位的DAC_DATA,DAC根据DAC_DATA的大小改变其输出的压控电压Vc,压控电压Vc输入到恒温晶振的压控脚,压控电压Vc改变,恒温晶振的输出频率也跟着变化。压控电压Vc的大小与DAC_DATA的大小成正比关系,而恒温晶振的输出频率大小又与压控电压Vc成正比关系。其中,DAC_DATA即为以上所述的控制参数。
[0056]驯服过程中,为了把恒温晶振的输出频率锁定在标称频率,DAC_DATA是不断变化的,DAC_DATA值随时间的变化即对应地反映了恒温晶振的输出频率随时间的变化;所以,可以通过记录DAC_DATA的值来代替所述本地时钟信号的频率。
[0057]具体地,在S3的授时状态下记录控制参数变化情况的方法为:每隔I个小时,将晶振控制模块输出的控制参数(即以上所述的DAC控制模块输出的DAC_DATA)进行一次存储,连续记录24小时。如图3所示,最新的数据保存到DAC24,前面的数据依次替换,DAC24与DACl的时间间隔为24小时,超过24小时以上的控制参数自动删除。通过存储的控制参数,我们就能知道本地时钟信号的频率在24小时内的变化值。
[0058]当卫星PPS信号失效时,授时系统进入守时状态,由授时系统在授时状态下记录的控制参数,能够计算出该控制参数在24小时内的变化值ADAC=DAC24-DAC1。为了使所述本地时钟信号的频率与标称频率保持相对恒定,在未来24小时内,所述DAC控制模块必须改变等值的DAC_DATA来补偿恒温晶振。当ΛDAC为正时,DAC_DATA在24小时内增加I ADAC I,当ADAC为负时,DAC_DATA在24小时内减小| ADAC |。
[0059]具体地,在S4中,对本地时钟信号的频率进行补偿调整的方法为:以秒为单位,计算出授时状态下的控制参数每改变I的时间周期Λ Τ=24*60*60/Λ DAC ;在守时状态下,每经过一个所述时间周期,将晶振控制模块输出的控制参数对应加I或减I ;DAC输出的压控电压Vc也随着增大或者减小,从而控制恒温晶振的输出频率保持恒定。
[0060]实施例二
[0061]本发明实施例提供一种利用导航卫星的高精度授时系统,能够使用以上所述的方法进行高精度授时。如图4所示,所述高精度授时系统包括:
[0062]卫星信号接收模块,用于跟踪接收多颗导航卫星发出的卫星PPS信号;
[0063]工作状态判断模块,用于实时监控卫星信号接收模块跟踪到的卫星数量,进而判断授时系统的工作状态为授时状态或守时状态;
[0064]晶振控制模块,用于通过一控制参数,控制恒温晶振输出的本地时钟信号的频率;
[0065]恒温晶振,用于在晶振控制模块的控制下输出本地时钟信号;
[0066]采样模块,用于对本地时钟信号进行采样,反馈给晶振控制模块和基准信号输出模块;
[0067]基准信号输出模块,用于向外部输出PPS基准信号;
[0068]其中,当授时系统工作于授时状态下时,晶振控制模块根据卫星PPS信号对恒温晶振进行驯服,使恒温晶振输出的本地时钟信号的频率调整为卫星PPS信号的标称频率,同时,记录控制参数的变化情况;基准信号输出模块对调整后的本地时钟信号进行分频处理,得到PPS基准信号进行输出;
[0069]当授时系统工作于守时状态下时,工作状态判断模块断开卫星PPS信号,晶振控制模块根据控制参数在授时状态下的变化情况,对本地时钟信号的频率进行补偿调整;基准信号输出模块对补偿调整后的本地时钟信号进行分频处理,得到PPS基准信号进行输出。
[0070]其中,工作状态判断模块的作用是按照实施例一中SI和S2的判定规则,使授时系统在授时状态和守时状态之间切换。具体的判定条件在实施例一中已详细说明,在此不再赘述。
[0071]进一步地,如图5所示,所述晶振控制模块包括数据处理模块、补偿控制模块、DAC控制模块和DAC (Digital to analog converter,数字/模拟转换器);
[0072]DAC控制模块用于向DAC输出控制参数;
[0073]DAC用于将DAC控制模块提供的控制参数转换为对应的压控电压,输出给恒温晶振,以控制恒温晶振输出的本地时钟信号的频率;
[0074]数据处理模块用于在授时状态下提取卫星PPS信号的标称频率,提供给DAC控制模块;
[0075]补偿控制模块用于在授时状态下记录DAC控制模块输出的控制参数的变化情况;还用于在守时状态下,根据控制参数在授时状态下的变化情况,向DAC控制模块发出补偿指令;[0076]DAC控制模块还用于在授时状态下,根据卫星PPS信号的标称频率和本地时钟采样信号的频率之间的差异,对输出的控制参数进行调整,使本地时钟信号的频率趋向于标称频率;还用于在守时状态下,根据补偿控制模块的补偿指令,对输出的控制参数进行补偿调整。
[0077]具体地,在授时状态下,所述补偿控制模块每间隔一段固定时间,对DAC控制模块输出的控制参数进行一次存储;
[0078]在守时状态下,补偿控制模块根据授时状态下存储的控制参数,计算出控制参数每改变I的时间周期;每经过一个所述时间周期,补偿控制模块向DAC控制模块发送一个补偿指令,使DAC控制模块输出的控制参数对应加I或减I。补偿控制模块和DAC控制模块的存储及补偿调整过程也已在实施例一中详细说明,在此不再赘述。
[0079]本发明提供的一种利用导航卫星的高精度授时系统及方法,在授时状态下利用导航卫星提供的PPS信号驯服恒温晶振,使恒温晶体振荡器输出的本地时钟信号的频率趋向标称频率,同时记录驯服过程中的控制参数的变化情况;在守时状态下根据控制参数在授时状态下的变化情况,对本地时钟信号的频率进行补偿调整。使得授时系统在丢失导航卫星基准信号后,由本地时钟信号分频得到的PPS基准信号仍能保持与卫星同步,大大增强了系统的守时能力,能够更加精确地完成长时间的守时工作。
[0080]以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
【权利要求】
1.一种用于授时系统的高精度授时方法,所述授时系统包括卫星信号接收模块、晶振控制模块和恒温晶振,其特征在于,包括以下步骤: 51、确认授时系统是否定位成功:当授时系统定位成功时,进入授时状态;当授时系统定位失败时,进入守时状态; 52、判断卫星信号接收模块提供的卫星PPS信号是否持续有效:当卫星PPS信号持续有效时,授时系统维持在授时状态;当卫星PPS信号失效时,授时系统进入守时状态; 53、利用卫星PPS信号进行授时:当授时系统处于授时状态时,晶振控制模块根据卫星PPS信号对恒温晶振进行驯服,使 恒温晶振输出的本地时钟信号的频率调整为卫星PPS信号的标称频率,然后对调整后本地时钟信号进行分频处理,得到PPS基准信号进行输出; 54、利用本地时钟信号进行守时:当授时系统处于守时状态时,断开卫星PPS信号,对本地时钟信号进行分频处理,得到PPS基准信号进行输出。
2.根据权利要求1所述的方法,其特征在于,在SI中,当卫星信号接收模块跟踪到的卫星数量大于或等于4颗时,判定授时系统定位成功,否则定位失败。
3.根据权利要求1所述的方法,其特征在于,在S2中,当卫星信号接收模块跟踪到的卫星数量大于或等于2颗时,卫星PPS信号有效;否则,卫星PPS信号失效。
4.根据权利要求1所述的方法,其特征在于,在S3中,还包括,记录晶振控制模块对恒温晶振进行驯服时输出的控制参数的变化情况; 在S4中,还包括,根据控制参数在授时状态下的变化情况,对本地时钟信号的频率进行补偿调整。
5.根据权利要求4所述的方法,其特征在于,在S3中,记录控制参数的变化情况的方法为:每间隔一段固定时间,将晶振控制模块输出的控制参数进行一次存储; 在S4中,对本地时钟信号的频率进行补偿调整的方法为:计算出授时状态下的控制参数每改变I的时间周期;在守时状态下,每经过一个所述时间周期,将晶振控制模块输出的控制参数对应加I或减I。
6.一种利用导航卫星的高精度授时系统,其特征在于,包括: 卫星信号接收模块,用于跟踪接收多颗导航卫星发出的卫星PPS信号; 工作状态判断模块,用于实时监控卫星信号接收模块跟踪到的卫星数量,进而判断授时系统的工作状态为授时状态或守时状态; 晶振控制模块,用于通过一控制参数,控制恒温晶振输出的本地时钟信号的频率; 恒温晶振,用于在晶振控制模块的控制下输出本地时钟信号; 采样模块,用于对本地时钟信号进行采样,反馈给晶振控制模块和基准信号输出模块; 基准信号输出模块,用于向外部输出PPS基准信号; 其中,当授时系统工作于授时状态下时,晶振控制模块根据卫星PPS信号对恒温晶振进行驯服,使恒温晶振输出的本地时钟信号的频率调整为卫星PPS信号的标称频率,同时,记录控制参数的变化情况;基准信号输出模块对调整后的本地时钟信号进行分频处理,得到 PPS基准信号进行输出; 当授时系统工作于守时状态下时,晶振控制模块根据控制参数在授时状态下的变化情况,对本地时钟信号的频率进行补偿调整;基准信号输出模块对补偿调整后的本地时钟信号进行分频处理,得到PPS基准信号进行输出。
7.根据权利要求6所述的利用导航卫星的高精度授时系统,其特征在于,所述晶振控制模块包括数据处理模块、补偿控制模块、DAC控制模块和DAC ; DAC控制模块用于向DAC输出控制参数; DAC用于将DAC控制模块提供的控制参数转换为对应的压控电压,输出给恒温晶振,以控制恒温晶振输出的本地时钟信号的频率; 数据处理模块用于在授时状态下提取卫星PPS信号的标称频率,提供给DAC控制模块;补偿控制模块用于在授时状态下记录DAC控制模块输出的控制参数的变化情况;还用于在守时状态下,根据控制参数在授时状态下的变化情况,向DAC控制模块发出补偿指令;DAC控制模块还用于在授时状态下,根据标称频率和本地时钟信号频率之间的差异,对输出的控制参数进行调整,使本地时钟信号的频率趋向于标称频率;还用于在守时状态下,根据补偿控制模块的补偿指令,对输出的控制参数进行补偿调整。
8.根据权利要求7所述的利用导航卫星的高精度授时系统,其特征在于,在授时状态下,所述补偿控制模块每间隔一段固定时间,对DAC控制模块输出的控制参数进行一次存储; 在守时状态下,补偿控制模块根据授时状态下存储的控制参数,计算出控制参数每改变1的时间周期;每经过一个所述时间周期,补偿控制模块向DAC控制模块发送一个补偿指令,使DAC控制模块输出的控制参数对应加1或减1。
【文档编号】G01S19/27GK103913753SQ201410148469
【公开日】2014年7月9日 申请日期:2014年4月14日 优先权日:2014年4月14日
【发明者】杨坤, 姚鑫荣 申请人:杨坤
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1