一种钢材全形态晶粒的快速测量、精细分类方法
【专利摘要】本发明公开一种钢材全形态晶粒的快速测量、精细分类方法,对原始图像进依次进行滤波、去噪、灰度修正、二值分割处理,对目标晶粒二值图像还原;对还原后的图像设定标尺并对各目标晶粒进行区域标定,分别提取目标晶粒的形态特征参数:面积、周长、粒径、长宽比、圆形度、形态系数、晶内极角;用圆形度的一级阈值、形态系数的一级阈值区分出等轴、非等轴晶粒;用圆形度的二级阈值、形态系数的二级阈值从等轴晶粒中区分出类圆形、多边形晶粒;用长宽比和晶内极角一级、二级阈值从非等轴晶粒中识别出类条状、条状晶粒以及粗针、尖针状晶粒;测量精度高,为钢铁材料中全形态晶粒的快速精细微观分析提供了高效、精确的方法。
【专利说明】一种钢材全形态晶粒的快速测量、精细分类方法
【技术领域】
[0001]本发明涉及钢铁材料显微组织全形态晶粒的金相分析领域,具体涉及一种钢材全形态晶粒的快速测量、精细分类方法。
【背景技术】
[0002]随着钢铁材料科技的飞速发展,各类钢材的研发已经逐渐建立在成分、组织和性能定量关系的基础上,意即对于钢材可以通过制备和各种后续工艺控制其显微组织从而获得所需的性能。定量金相分析正是研究金属材料成分、组织、工艺及性能之间关系的重要方法,通过对各种钢材金相组织的定量分析,在其微观组织和宏观性能间构建定量关系。为探明钢中晶粒的所有形态及粒径对钢的力学性能影响规律,尤其是非等轴晶粒中的条状、粗针状、尖针状等晶粒对钢材塑韧性的影响规律,就必需对其进行精确表征与分类,以确保其组织及性能的可控性。
[0003]目前,因现有定量金相分析方法只能进行钢铁材料晶粒的面积及粒径的测量,而对于所有晶粒的形态表征及其形态分类则均未涉及。因此,在进行新钢种研发的成分、工艺、组织及其性能控制时,该项工作只能依靠人工或半人工测量、分析模式进行,而此模式必然产生人为误差,测量分类结果精度低、效率低以及大量占用人力。若能利用先进的图像处理分析技术,则能有效解决上述问题。
[0004]钢铁材料的晶粒面积及粒径的测量工作现在主要采用以下两种方法:一种方法是钢铁行业长期沿用的传统全人工模式方法:图像网格划分法,该方法首先在金相图片上划分N行M列的网格(行距等于列距),然后对视场内晶粒进行人工计数,并将已知的网格总面积除以人工计数所得的晶粒总个数,由此得到该视场晶粒的平均面积,再利用相应的等积圆的几何面积公式反推计算求出该金相图片晶粒的平均粒径。另一种方法是近年来较为流行的半人工模式方法:图像处理软件法,该方法首先通过商用PHOTOSHOP图像软件中的魔棒工具把待测金相图像中需要测量的晶粒选择出来,然后应用商用IMAGE-PRO-PLUS图像软件的COUNT模块对选择出来的的晶粒进行编号,再用该软件的MEASURE模块对所有编号晶粒进行晶粒测量并求出该金相图片的平均粒径。上述两种方法的主要缺点是只能进行晶粒测量且只能得到平均粒径,意即不能对粒径进行分类,更谈不上晶粒形态的表征及其分类工作,且其粒径分类工作需要后期再附加的人工模式加以实现。此外,这两种方法均无法解决金相图像中常见的晶界缺失、晶内孔洞等问题,必须由人工手动模式对缺失晶界和晶内孔洞分别加以连接还原和填充后方可进行晶粒测量工作,而由此人工手动模式,则势必导致其测量结果精度偏低、耗时太长等问题,使得材料晶粒的精确测量及分类工作成为新材料研发工作的瓶颈问题。
【发明内容】
[0005]本发明的目的是为克服上述现有技术的不足,提出一种基于晶粒形态特征的钢材全形态晶粒的快速测量、精细分类方法,利用计算机实现对钢铁材料全形态晶粒的高效测量、精确分类。
[0006]本发明的技术方案是采用如下步骤:(I)用图像采集系统获取钢材金相组织原始图像,对原始图像依次进行滤波、去噪、灰度修正、二值分割处理,得到目标晶粒二值图像,再对目标晶粒二值图像还原;(2)对还原后的图像设定标尺并对各目标晶粒进行区域标定,分别提取目标晶粒的形态特征参数:面积、周长、粒径、长宽比、圆形度、形态系数、晶内极角;(3)用圆形度C的一级阈值C1、形态系数M的一级阈值M1区分出等轴、非等轴晶粒;
(4)用圆形度C的二级阈值C2、形态系数M的二级阈值M2从等轴晶粒中区分出类圆形、多边形晶粒;用长宽比!\和晶内极角《的一级阈值? 二级阈值〃从非等轴晶粒中识别出类条状、条状晶粒以及粗针、尖针状晶椬。
[0007]当圆形度C的一级阈值C1≥0.768且形态系数M的一级阈值M1≥0.65时,视为等轴晶粒,否则视为非等轴晶粒;对于等轴晶粒,当圆形度C的二级阈值C2 > 0.907且形态系数M的二级阈值M2 ≥0.88时,视为类圆形晶粒,否则,视为多边形晶粒;对于非等轴晶粒,当长宽比T1 ≤ 2.306时,视为类条状晶粒;对于长宽比T1≥2.306的非等轴晶粒,当晶内极角《的一级阈值≥ 40°时,视为条状晶粒;当晶内极角《的二级阈值a2≤30°时,视为尖针状晶粒,否则视为粗针状晶粒。
[0008]本发明对于现有金相分析方法的优点在于:
1、全形态晶粒图像的测量精度高达±0.0OlMffl,为目前钢铁材料晶粒微观分析中的最高测量精度。整个测量、分类过程在标准配置的计算机上运行,完成一个视场的晶粒精细测量分类仅需20秒左右,其效率比半人工模式提高达数百倍之多。由此,就可在精确性、时效性上充分满足工业生产中对新钢种研发时待测材料图像数量非常巨大且晶粒形态复杂多样的测量及其分类的严苛要求。
[0009]2、采用本发明提出的形态分类方法可实现晶粒的全形态分类,尤其是利用本发明提出的晶内极角等特征参数可依次将对钢材塑韧性有较大负面影响的条状、粗针状、尖针状晶粒进行精细分类表征,达到目前晶粒分类方法中的分类最精细程度。由此,就可使得钢铁企业通过其产品的晶粒精细分类、制备工艺和性能,反求得出产生这些晶粒形态组织的重要工艺因素及水平,获得避免或减少该类组织产生的钢材优化制备工艺。
[0010]3、本发明的应用可完全改变过去钢材全形态晶粒的测量、精细分类需要人工干预的模式,彻底解决了人工模式中由于生理因素和主观因素所必然产生的测量、分类结果中的漏检、重检、误检等精度偏低问题,从而为钢铁材料中全形态晶粒的快速精细微观分析提供了高效、精确的方法。
[0011]4、本发明具有优异的普适性,可以推广应用于材料领域、医药/生物领域中一切背景复杂和形态复杂的粒状物精细测量分类工作。
【专利附图】
【附图说明】
[0012]下面结合附图和【具体实施方式】对本发明作进一步详细说明。
[0013]图1是本发明的流程框图;
图2是图象采集系统的硬件示意图;
图3是实施例1的原始图像;
图4是实施例1预处理后的图像; 图5是实施例1的二值分割图像;
图6中,Ca)图是改进的局部自适应阈值分割后的图像;(b)图在局部阈值分割基础上采用基于极限腐蚀修正分水岭分割算法后的还原图像;
图7中,Ca)图是待填充的晶内孔洞图像;(b)图是采用改进的种子算法填充晶内孔洞后的图像;
图8是实施例1还原后图像;
图9是晶内极角计算意图;
图10是从实施例1中识别出的类圆形晶粒图像;
图11是从实施例1中识别出的多边形晶粒图像;
图12是从实施例1中识别出的条状晶粒图像;
图13是从实施例1中识别出的粗针状晶粒图像;
图14是从实施例1中识别出的尖针状晶粒图像;
图15是从实施例1中识别出的类条状晶粒图像;
图16是实施例1晶粒粒径分布图表;
图17是实施例1的显微组织全形态晶粒分布图表;
图18是实施例2的原始图像;
图19是实施例2的二值分割图像;
图20是实施例2还原后图像;
图21是实施例2中条状晶粒意图;
图22是实施例2中粗针状晶粒示意图;
图23是实施例2中尖针状晶粒示意图;
图24是实例2晶粒粒径分布图表;
图25是实施例2的显微组织全形态晶粒分布图表;
图26是实施例3的原始图像;
图27是实施例3的二值分割图像;
图28是实施例3还原后图像;
图29是实施例3中条状晶粒意图;
图30是实施例3中粗针状晶粒示意图;
图31是实施例3中尖针状晶粒示意图;
图32是实施例3晶粒粒径分布图;
图33是实施例3的显微组织全形态晶粒分布图。
【具体实施方式】
[0014]本发明首先利用图像采集系统获取钢材金相组织原始图像(目标晶粒图像),并将其存入系统附带的图像采集卡。对原始图像进行预处理,就是先用常规的形态梯度重构滤波去除噪音,再用常规的顶帽一底帽变换相结合的方法对其进行灰度修正,使图像变得清晰而易识别,鉴于本发明的目的仅涉及晶粒的形态特征,而与颜色信息无关,故对其用本发明改进的局部自适应阈值分割算法进行二值分割,得到目标图像的黑白模板,即晶粒的二值图像。由于晶粒二值图像保留了原始图像惯有的晶界缺失、晶内孔洞等问题,还必须通过本发明提出的新的基于极限腐蚀的修正分水岭分割算法还原晶界,用改进的种子填充法填充孔洞。在进行晶粒测量时,先对上述图像设定标尺并对各晶粒进行区域标定,采用追溯法并以像素点为测量单位,对目标晶粒分别提取形态特征参数:面积、周长、粒径、长宽比、圆形度、形态系数、晶内极角等,由此,即可根据晶粒粒径对目标图像进行晶粒粒径的分类统计分析,得到相应的分析图表;然后,分别用本发明提出的各形态表征参数的各级阈值对待测晶粒进行定量表征和全形态分类:用圆形度、形态系数的一级阈值区分出等轴、非等轴晶粒;用圆形度与形态系数的二级阈值从等轴晶粒中区分出类圆形、多边形晶粒;用长宽比一级阈值和晶内极角一级、二级阈值从非等轴晶粒中识别出类条状、条状晶粒以及粗针、尖针状晶粒;最后,将以上所有识别出的晶粒形态的自动分类结果存档并以图表文件输出。本发明涉及到的常规形态重构滤波、顶帽-低帽变换,其具体内容均是本领域的公知常识,可参见:阮秋琦、阮宇智翻译.数字图像处理(2011年2月第三版).电子工业出版社.ISBN978-7-121-11008-5/TN911.73..PP:428-435?[0015]如图1所示,本发明首先利用包括了摄像头和专业显微镜的图像采集系统获取钢材金相组织原始图像(目标晶粒图像),并将其存入系统附带的图像采集卡。对原始图像进行预处理,就是先进行常规形态梯度重构滤波去除噪音,再采用常规顶帽一底帽变换相结合的方法对其进行灰度修正,使图像变得清晰而易识别。再对图像进行分割,鉴于本发明的目的仅涉及晶粒的形态特征,而与颜色信息无关,故对其用本发明改进的局部自适应阈值分割算法进行二值分割((对于改进的局部自适应阈值分割算法,凡省略的内容均为公知常识,可参见:赵小川.现代数字图像处理技术提高及应用案例详解(2012年4月第一版).北京航空航天大学出版社.工 SBN978 一 7 — 5124-0719-0/TP391.41..PP87-88 一书),得到目标图像的黑白模板,即晶粒的二值图像。由于晶粒二值图像保留了原始图像惯有的晶界缺失、晶内孔洞等问题,还必须进行图像还原,通过本发明提出的新的基于极限腐蚀的修正分水岭分割算法还原晶界(对于基于极限腐蚀的修正分水岭分割算法,凡省略的内容均为公知常识,可参见:We1-Yen Hsu.1mproved watershed transform for tumorsegmentation: Application to mammogram image compression[J].Expert Systems withApplications, March2012, 39(4),PP:3950-3955 —文),用改进的种子填充法填充孔洞。在进行晶粒测量时,先对还原后的图像标注,对还原后的图像设定标尺并对各晶粒进行区域标定,采用追溯法并以像素点为测量单位,对目标晶粒分别提取一系列形态特征参数:面积、周长、粒径、长宽比、圆形度、形态系数、晶内极角等。由此,即可根据晶粒粒径对目标图像进行晶粒粒径的分类统计分析,得到相应的分析图表。
[0016]然后,分别用本发明提出的各形态特征参数的各级阈值对晶粒图像进行定量表征和全形态分类:用圆形度C的一级阈值C1、形态系数M的一级阈值M1区分出等轴、非等轴晶粒;用圆形度C的二级阈值C2与形态系数M的二级阈值M2从等轴晶粒中区分出类圆形、多边形晶粒;用长宽比T1和晶内极角《的一级阈值〃,和二级阈值《 2从非等轴晶粒中识别出类条状、条状晶粒以及粗针、尖针状晶粒。
[0017]上述对晶粒图像进行定量表征和全形态分类流程的具体步骤为:
(1)当圆形度C的一级阈值C1≥0.768且形态系数M的一级阈值M1≥0.65时,视为等轴晶粒,否则视为非等轴晶粒;
(2)对于等轴晶粒,当圆形度C的二级阈值C2≥ 0.907且形态系数的二级阈值M2 ^ 0.88时,视为类圆形晶粒,否则,视为多边形晶粒。
[0018](3)对于非等轴晶粒,当长宽比T1 ( 2.306时,视为类条状晶粒;
(4)对于长宽比T1 ^ 2.306的非等轴晶粒,再由本专利所提出的晶内极角《阀值进一步加以详细分类,当晶内极角《的一级阈值^ 40°时,视为条状晶粒;当晶内极角β的二级阈值β ( 30°时,视为天针状晶粒,否则视为粗针状晶粒。
[0019]最后,将以上所有识别出的晶粒形态的自动分类结果存档并以图表文件输出,同时将粒径的分类统计结果也输出。
[0020]下面通过3个实施例对本发明加以详细说明:
实施例1
利用图像采集系统获得钢金相织原始图像,图像采集系统的硬件如图2所示:包括钢材试样1、专业显微镜2、摄像头(CCD) 3、计算机4、打印机5,计算机4内插有图像采集卡,图像采集的具体步骤是利用显微镜将图像调至合适焦距,在图像最清晰时摄像并存储到图像采集卡中(原始图像), 即可进行后续的图形处理。
[0021]本实施例的原始图像如图3所示。先对图3的原始图像采用常规形态重构滤波对目标图像进行去噪处理。为了将原始图像进一步处理成清晰且含有大量有用信息的图像,需利用常规顶帽一底帽变换相结合法加大图像的对比度,经上述预处理后的效果如图4所
/Jn ο
[0022]对图4还需进行二值分割以得到晶粒的二值图像。由于钢铁金相图像晶粒形态的复杂性、多样性,故本发明采用基于区域划分的自适应闽值分割算法对图像进行二值分割。基于区域划分的自适应阈值分割算法即对图像按坐标分块,对每一子块分别用大津法自动获得其阈值,由此获得阈值矩阵!\。
[0023]为了获得更高的图像处理精度,通常都对图像进行更细的分割,但是,当分割更细时,往往伴随有较多的全背景子区域,此时采用大津法分割,则势必在这些全背景子区域中产生伪目标粒子,即为“伪标现象”。伪标现象的存在,极大的降低了待测图像的分割精度,使误分割现象大大增加。为解决此问题,本发明提出了新的基于阈值矩阵滤波+插值再处理的局部自适应阈值分割算法,即为改进的局部自适应阈值分割算法。该算法主要通过对目标图像的阈值矩阵进行滤波和插值两步再处理,使之成为和原图像像素数目相等的新阈值矩阵,然后利用此阈值矩阵完成图像分割,以此消除伪标现象造成的误分割。
[0024]上述基于阈值矩阵滤波+插值再处理的改进的局部自适应阈值分割算法具体过程为:
I首先对阈值矩阵!\进行滤波处理,使每个子图像的阈值与其周围子图像的阈值相均衡,以此减少邻近阈值元素间的突变,意即将T1中每个阈值元素和其周围8邻域中的各个阈值元素相加,求取其均值,并用此均值来取代原来的阈值,由此得到滤波矩阵Τ2。
[0025]t对滤波矩阵T2进行插值处理,考虑到处理效果和所费时间的双重要求,本算法对滤波矩阵采用线性插值法,以求得到和图4像素数目相等的新阈值矩阵T3,再用该矩阵对图4进行二值分割。
[0026]经过以上滤波+插值再处理改进的局部自适应阈值分割算法的分割效果如图5所
/Jn ο
[0027]鉴于图5中仍存在着诸如晶界缺失(如图6a所示)、晶内孔洞等图像缺陷,为解决此问题,本发明提出了新的基于极限腐蚀的修正分水岭分割算法进行晶界还原。该算法主要通过对目标图像进行逐层腐蚀,直到无法腐蚀为止,从而获得被腐蚀晶粒的几何中心即晶粒核心(晶核),为确保该晶核确为真实晶核而非伪晶核,故必须对此晶核进行修正,以避免过度分割造成的精度降低,对修正后的晶粒图像再应用分水岭分割算法还原晶界。
[0028]上述基于极限腐蚀的修正分水岭分割算法的具体过程为:
①首先对图5中的粘连对象进行逐层腐蚀直到无法腐蚀为止,并逐层编号;:将编号后各晶粒的局部极大值区域视为该晶粒的几何中心(晶核),令对应的像素点灰度值定为1,其余像素点灰度值皆为零;f对各晶核进行3次膨胀处理,获得其修正后的极大值区域(晶粒几何中心),若膨胀之后两局部极大区域粘连,则将其视为一个极大值区域,统一编号,以此杜绝伪极大值(伪晶核)的出现,得到了无伪晶核的二值图像(掩模);?最后,将掩模中的真实晶核定为汇水盆地,进行分水岭分割即可。
[0029]经过以上本发明提出的新的基于极限腐蚀的修正分水岭分割算法后,对晶界还原的处理效果如图6b所示。
[0030]另外,对于如图7a所示的晶内孔洞缺陷,本发明采用改进的种子填充算法进行填充处理,填充后的图像如图7b所示。该填充算法详见中国专利申请号:200910030216.1、名称为“一种钢中析出粒子的自动测量及其形态分类方法”,该种子填充改进算法的基本流程如下:
(I)种子像素压入堆栈。
[0031](2)当堆栈非空时,从堆栈中推出一个像素,并将该像素设置成所要的值。
[0032](3)对于每个与当前像素邻接的四连通或八连通像素,进行测试,以确定测试点的像素是否处在区域内且未被访问过。
[0033](4)若所测试的像素在区域内没有被填充,则将该像素压入堆栈。
[0034]综上所述,对目标图像分别进行了预处理、二值分割、晶界还原及孔洞填充各步骤处理后,即可得到还原后的图像,如图8所示。
[0035]至此,即可进行钢材显微组织全形态晶粒的精细测量、分类工作。
[0036]1、先设定图像标尺,即标定图像中每个像素的实际尺寸,其算法如下:
(1)在目标图像中画一条水平直线,记下起始点坐标(xl,y)和终点坐标(x2,y),并计算该线段的长度LI= I xl-x2 I (单位:微米)和所划过的像素NI ;
(2)在目标图像中画一条竖直线,记下起始点坐标(xl,yl)和终点坐标(x2,y2),并计算该线段的长度L2= I yl-y2 | (单位:微米)和所划过的像素N2 ;
(3)设定此金相图像的放大倍数A。
【权利要求】
1.一种钢材全形态晶粒的快速测量、精细分类方法,其特征是采用如下步骤: (1)用图像采集系统获取钢材金相组织原始图像,对原始图像依次进行滤波、去噪、灰度修正、二值分割处理,得到目标晶粒二值图像,再对目标晶粒二值图像还原; (2)对还原后的图像设定标尺并对各目标晶粒进行区域标定,分别提取目标晶粒的形态特征参数:面积、周长、粒径、长宽比、圆形度、形态系数、晶内极角; (3)用圆形度C的一级阈值C1、形态系数M的一级阈值M1区分出等轴、非等轴晶粒; (4)用圆形度C的二级阈值C2、形态系数M的二级阈值M2从等轴晶粒中区分出类圆形、多边形晶粒;用长宽比1\和晶内极角《的一级阈值'、二级阈值《2从非等轴晶粒中识别出类条状、条状晶粒以及粗针、尖针状晶粒。
2.根据权利要求1所述快速测量、精细分类方法,其特征是: 步骤(3)中,当圆形度C的一级阈值C1≥0.768且形态系数M的一级阈值M1≥0.65时,视为等轴晶粒,否则视为非等轴晶粒; 步骤(4)中,对于等轴晶粒,当圆形度C的二级阈值C2 ^ 0.907且形态系数M的二级阈值M2 ^ 0.88时,视为类圆形晶粒,否则,视为多边形晶粒;对于非等轴晶粒,当长宽比T1(2.306时,视为类条状晶粒; 对于长宽比T1 ^ 2.306的非等轴晶粒,当晶内极角.?的一级阈值? , ^ 40°时,视为条状晶粒;当晶内极角?的二级阈值? 2 ^ 3013时,视为大针状晶粒,否则视为粗针状晶粒。
3.根据权利要求1所述的快速测量、精细分类方法,其特征是: 步骤(1)中所述二值分割的方法是: I对图像按坐标分块,对每一子块自动获得其阈值,并获得阈值矩阵!\,对阈值矩阵T1滤波处理,将阈值矩阵T1中每个阈值元素和其周围8邻域中的各个阈值元素相加,求取其均值,并用此均值取代原来的阈值,得到滤波矩阵T2 ; %对滤波矩阵Τ2采用线性插值法处理,得到新阈值矩阵T3,再用新阈值矩阵T3进行二值分割。
4.根据权利要求1所述快速测量、精细分类方法,其特征是: 步骤(1)中所述图像还原的方法是: 1:对图像中的粘连对象逐层腐蚀直到无法腐蚀为止,并逐层编号; 2将编号后各晶粒的局部极大值区域视为该晶粒的几何中心即晶核,令对应的像素点灰度值定为1,其余像素点灰度值皆为零; S对各晶核进行膨胀处理,获得其修正后的极大值区域即晶粒几何中心,若膨胀之后两局部极大区域粘连,则将其视为一个极大值区域,统一编号,得到无伪晶核的二值图像; I将无伪晶核的二值图像中的真实晶核定为汇水盆地,进行分水岭分割还原晶界。
5.根据权利要求1所述快速测量、精细分类方法,其特征是: 步骤(2)中,对还原后的图像设定标尺的方法是: (1)在目标图像中画一条水平直线,记下起始点坐标(xl,y)和终点坐标(x2,y),并计算该线段的长度Ll=|xl-x2|和所划过的像素NI ; (2)在目标图像中画一条竖直线,记下起始点坐标(xl,yl)和终点坐标(x2,y2),并计算该线段的长度L2= I yl-y2 |和所划过的像素N2 ; (3)设定此金相图像的放大倍数A ;
6.根据权利要求1所述快速测量、精细分类方法,其特征是: 步骤(2)中,对各目标晶粒区域标定的方法是: (1)按从左到右,从上到下以TV光栅的方式从图像的左上角开始扫描;直到发现一个没有标记的I像素点; (2)对此I像素点赋予一个新的标记; (3)按图的编号次序,对此目标像素点的8个邻点扫描,如果遇到没有标记的I像素点就把它标记为新的标记;按次序扫描8个邻点中的I像素的8个邻点,如遇到没有标记的I像素,又将它标记为新的标记;在邻点中遇到没有标记的I像素点,递推一层,直到没有标记的I像素点被耗尽才开始层层返回; (4)递归结束,继续扫描没有标记的I像素点。
7.根据权利要求1所述快速测量、精细分类方法,其特征是: 步骤(2)中,提取待测晶粒图像的几何形态特征参数的方法是: 对二值图像模板数组进行扫描,计算出目标区域中灰度值为I的像素点总数,得出目标区域面积A ; 对二值图像模板数组进行遍历扫描,跟踪目标晶粒区域的边界,将边界点坐标转换成8方向链码,得出目标区域晶粒周长P ; 晶粒长宽比
8.根据权利要求1所述快速测量、精细分类方法,其特征是:所述晶内极角
【文档编号】G01N15/02GK103940708SQ201410141030
【公开日】2014年7月23日 申请日期:2014年4月10日 优先权日:2014年4月10日
【发明者】李新城, 马正建, 朱伟兴, 陈轶, 邵科男, 江涛, 庄志平 申请人:江苏大学