专利名称:基于多普勒效应的水下目标定位装置的利记博彩app
技术领域:
本实用新型涉及水声通信技术中的水下目标定位,具体地说,涉及一种基于多普勒效应的水下目标定位方法和装置。
背景技术:
水声定位技术是国民经济建设和国防建设的关键技术,具有广泛的应用前景,它始终是一个倍受关注的重大课题。对于军事系统来说,水声定位技术有助于对目标的正确估计和精确打击,为最终摧毁、消灭对方提供有力的手段。对于民用事业,如海洋开发、渔业资源的探测和开发、海洋环境监测、海上科学考察、水下机器人导航,水声定位技术可以为目标提供可靠的服务,乃至起到安全保障的作用等。(水下定位导航是一切海洋开发活动和海洋高技术发展的基本前提,水下运动载体或设备平台是海洋开发的重要工具,在实际应用中为了确定其在水下的具体位置,常需要对其定位。)由于电磁波在水中衰减严重,陆地GPS系统不适用于水下目标的定位,而声波在水中具有良好的传播特性,所以目前的水下定位技术一般以声波为媒介。水下声定位系统[1- 4]是指利用水下声波进行定位的系统,一般简称为水声定位系统。水声定位系统的基本组成部分为基元,基元间的连线称为基线。参照[I],根据接收基阵中基线长度来分类,水声定位系统可以分为短基线(Short Baseline, SBL)、超短基线(Ultra Short Base line, USBL 或 Super Short Baseline, SSBL)和长基线(Long Baseline, LBL)定位系统,还有一种定位系统就是他们之间的组合构成的水声定位系统。水声定位系统的实质是利用沿不同距离路径传播的水下声脉冲的时间差或者相位差估计目标到接收阵列的距离或者距离差,再利用阵元间的几何关系解算出目标的相对位置。这些系统都存在缺陷[5],如长基线系统的缺点在于系统复杂,操作繁琐,声基阵数量巨大,费用昂贵,需要长时间布设和收回海底声基阵,需要对海底声基阵校准测量;短基线的主要缺点是深水测量要达到高的精度,基线长度一般需要大于40m,系统安装时,换能器需在船坞严格校准;超短基线的主要缺点是定位精度低,系统安装后的校准需要非常准确,而这往往难以达到,测量目标的绝对位置精度依赖于外围设备精度——电罗经、姿态传感器和深度传感器。
实用新型内容本实用新型在针对于现有技术存在的缺陷,提供一种简便的,功耗小的基于多普勒效应的水下目标定位装置。多普勒效应是指物体辐射的波长因为波源和观测者的相对运动而产生变化。在运动的波源前面,波被压缩,波长变得较短,频率变得较高;当运动在波源后面时,会产生相反的效应。本实用新型观察点设置的接收阵列做匀速圆周运动,接收到被测点发射出的声信号,产生多普勒效应,通过其在匀速圆周运动过程中不同的频率现象来对水下目标的位置定位。本实用新型目的通过如下技术方案实现:[0006]基于多普勒效应的水下目标定位装置,包括第一圆盘、第二圆盘、第三圆盘、水声阵列信号收发器、GPS接收器、第一微处理器和信号接收发射器;所述第一圆盘、第二圆盘和第三圆盘分别位于三个相互正交的平面上,分别与旋转驱动装置连接;三个水声阵列信号收发器分别位于第一圆盘、第二圆盘和第三圆盘上;信号接收发射器位于水下定位目标上;第一微处理器分别与水声阵列信号收发器、GPS接收器和信号接收发射器信号连接;水声阵列信号收发器和信号接收发射器与第一微处理器信号连接;第一圆盘、第二圆盘和第三圆盘的中心点位于同一条直线上;第一圆盘、第二圆盘、第三圆盘、水声阵列信号收发器、GPS接收器和第一微处理器组成船载测量装置,设置在船体上。为进一步实现本实用新型目的,所述位于水下目标上的信号接收发射器电路包括依次连接的接收换能器、放大器、带通滤波器、信号检测器、第二微处理器、信号生成器和发射换能器;信号接收发射器还包括信道监听器,接收换能器通过信道监听器直接与第二微处理器连接;所述带通滤波器为有源带通滤波器电路。所述带通滤波器包括第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第一电容、第二电容,放大器;第一电阻、第一电容组成的低通滤波电路和由第二电容、第二电阻组成的高通滤波电路接入放大器正相输入端;放大器的反相输入端经第四电阻接地;第三电阻一端与放大器的输出端,另一端与低通滤波电路和高通滤波电路连接;第五电阻一端与放大器358的输出端,另一端与放大器的反相输入端连接。所述第一圆盘位于竖直平面上,第二圆盘位于水平面上,第三圆盘位于与水平面和竖直平面相互正交平面上。所述第一圆盘、第二圆盘和第三圆盘的半径优选为0.5 - 3m。所述第一圆盘、第二圆盘和第三圆盘的半径相同,且相邻两个圆盘中心点之间的间距为2倍半径值+10cm。所述水声阵列信号收发器分别安装在第一圆盘、第二圆盘和第三圆盘的外缘上。本实用新型与现有技术相比,具有如下优点和效果:1.本实用新型充分利用了多普勒效应,只通过测量声波信号频率的多普勒频差来定位,避免了传统水声定位系统所采用的基于时延差或相位差来对水下目标的定位方法的复杂性。2.本实用新型只在接收到来自水下目标的定位请求后才工作,当没有来自水下目标的定位请求时,除了水声收听器外,其他模块均处于休眠状态,功耗小可延长电池寿命。
图1为基于多普勒效应的水下目标定位装置的结构示意图;图2为图1中船载测量装置信号连接关系示意图;图3为图1中船载测量装置通信模式图;图4为信号接收发射器的组成示意图;图5为带通滤波器的电路图;图6为多普勒效应原理介绍简图;图7为水下目标上的水声收发器接收信号工作流程;[0024]图8为船载测量装置工作流程图;图9为船载测量装置对水下目标的定位流程图。
具体实施方式
以下结合附图和实施方式对本实用新型作进一步的说明,但本实用新型要求保护的范围并不局限于实施方式表述的范围,凡是根据本实用新型进行技术方案等同的变换,都属于本实用新型保护的范围。如图1、2所示,基于多普勒效应的水下目标定位装置,包括第一圆盘1、第二圆盘
2、第三圆盘3、水声阵列信号收发器4、GPS接收器5、第一微处理器6和信号接收发射器7 ;第一圆盘1、第二圆盘2和第三圆盘3分别位于三个相互正交的平面上,分别与旋转驱动装置连接,使三个圆盘做匀速圆周运动;第一圆盘I位于竖直平面上,第二圆盘2位于水平面上,第三圆盘3位于与水平面和竖直平面相互正交平面上;三个水声阵列信号收发器4分别位于第一圆盘1、第二圆盘2和第三圆盘3上,与圆盘一起分别做匀速圆周运动;三个正交圆盘为水声阵列收发器4提供运动轨道。信号接收发射器7位于水下定位目标上;第一微处理器6分别与水声阵列信号收发器4、GPS接收器5和信号接收发射器7信号连接;水声阵列信号收发器4和信号接收发射器7与第一微处理器6信号连接;第一圆盘1、第二圆盘2和第三圆盘3的半径优选为0.5 _3m,水声阵列信号收发器4优选安装在第一圆盘1、第二圆盘2和第三圆盘3的外缘上。第一圆盘1、第二圆盘2和第三圆盘3的中心点位于同一条直线上,为避免三个圆盘接收到的信号多普勒效应不明显,优选第一圆盘1、第二圆盘2和第三圆盘3的半径相同,且相邻两个圆盘中心点之间的间距为2倍半径值+10cm。第一圆盘1、第二圆盘2、第三圆盘3、水声阵列信号收发器4、GPS接收器5和第一微处理器6组成船载测量装置,设置在船体上;位于水下定位目标上的信号接收发射器7通过声波与船载测量装置的第一微处理器6进行通信。如图3所示,水声阵列信号收发器4其通过数据线、地址线和控制线与第一微处理器6连接,负责监听来自水下目标的定位请求及把定位结果发送回给水下目标;第一微处理器6通过数据线和控制线与水声阵列接收器4连接,用于完成接收信号的预处理及声波信号的多普勒频率计算;GPS接收器5通过数据线,地址线和控制线与第一微处理器6,用于接收由卫星和GPS基准站的信号,从而确定船体在大地坐标系下的位置;第一微处理器6是控制中心,当其接到来自信号接收发射器7传来的定位请求信息后,启动GPS接收器5、匀速转动的三个圆盘上的水声阵列信号接收器4工作,把第一微处理器6提供的声波多普勒频率,结合GPS接收器5提供的船体位置信息进行数据融合从而确定水下目标的位置信息,再通过水声阵列信号收发器4发送定位结果;信号接收发射器7用于向水声阵列信号收发器4传递位置请求信号及发送用于定位的超声波信号。如图4所示,位于水下目标上的信号接收发射器7电路包括依次连接的接收换能器、放大器、带通滤波器、信号检测器、第二微处理器、信号生成器和发射换能器;信号接收发射器7还包括信道监听器,接收换能器通过信道监听器直接与第二微处理器连接;信道监听器为一个普通的超声波信号换能器,选型号TCRT40-16,用于捕获和监听信道的状态,当检测扫信道空闲时才允许第二微处理器产生信号并通过发送换能器发送相应数据;信号检测器一端通过带通滤波器与放大器连接,另一端和第二微处理器连接,用于对接收换能器接收的信号进行检测,判断接收的信号是否是定位请求回馈信号;第二微处理器是该部分的控制中心,与信号生成器,信号检测器及信道监听部分连接,接收信号检测器的判断结果决定确定信号类型再做出响应。第二微处理器可选择MCU芯片STM8S103F3。放大器选用音频功率放大器LM386搭建;信号检测器与信号监听器相同的结构相同。接收换能器和发射换能器都可选用西湖牌,型号XIHU -3002202ABS换能器。水声阵列信号收发器优选西湖牌4*4排列的超声波发射接收器,型号XIHU - 3002202ABS。带通滤波器为有源带通滤波器电路,优选如图5所示,带通滤波器包括第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第一电容Cl、第二电容C2,放大器358;第一电阻R1、第一电容Cl组成的低通滤波电路和第二电容C2、第二电阻R2组成的高通滤波电路接入放大器358正相输入端;放大器358的反相输入端经第四电阻R4接地;第三电阻R3 —端与放大器358的输出端,另一端与低通滤波电路和高通滤波电路连接;第五电阻R5 —端与放大器358的输出端,另一端与放大器358的反相输入端连接;信号通过第一电阻R1、第一电容Cl组成的低通滤波电路和第二电容C2、第二电阻R2组成的高通滤波电路接入放大器358正相输入端;经过第三电阻R3和第五电阻R5分别为反相输入端和正相输入端提供反馈信号。有源带通滤波器电路中心频率f0可控制Wie40kHz,优选的第一电阻R1、第二电阻R2、第三电阻R3、第四电阻R4、第五电阻R5、第一电容Cl的第二电容C2的阻值参数选择如下:R1=R2=R3=5.6K,R4=10K, R5=20K, Cl=C2=lnF。(这一段请审查表示是否准确)作为控制中心的第一微处理器6优选MCU芯片STM8S103F3,第一微处理器协调各组成部件工作并实现数据融合模块功能;水声阵列信号收发器4在第一微处理器6的控制下实现定位请求检测及发送定位结果功能,当处于定位过程时,匀速转动的圆盘上的水声阵列信号收发器4接收声波信号并由微处理器6处理所接收到的信号;第一微处理器6与水声阵列信号收发器4共同完成接收信号和阵列信号处理模块的功能;GPS接收器5实现确定船体位置信息的功能。水声 阵列信号收发器4接收到的信号与GPS接收器5接收到的数据共同传输给第一微处理器6。如图1、6所示,处于正交平面上的三个匀速转动的圆盘上的水声阵列信号收发器4各自接收声波信号并将收到的信号传送到第一微处理器6处理,由于多普勒效应的影响,微处理器6接收到的声波信号频率f并不等于固定频率A,即水声阵列信号收发器4 (超声波信号接收发射器)发射出的信号的频率根据多普勒频移公式,得到三个接收频率f’、f/、f2’,表达式为:
「 u +1'cosθ...[0034]/ =-/ (I)
U/;= ± £££ /ο ⑶
u
「 π I, u + Vs COSθ, r/2 =——=-lZ0(3)
U其中,U是声波速度,f’是处于水平面上的圆盘阵列信号接收器接收到的频率信号,Θ是第二圆盘(水平圆盘)匀速转动时切线速度与切点跟水下目标点连线之间的夹角,V,单位是m/s,r是水平面上圆盘的半径0.5m≤r≤3m)是水平圆盘匀速转
动的线速度;f/是处于竖直平面上的圆盘阵列信号接收器接收到的频率信号,Q1是竖直
圆盘匀速转动时切线速度与切点跟水下目标点连线之间的夹角
权利要求1.基于多普勒效应的水下目标定位装置,其特征在于包括第一圆盘、第二圆盘、第三圆盘、水声阵列信号收发器、GPS接收器、第一微处理器和信号接收发射器;所述第一圆盘、第二圆盘和第三圆盘分别位于三个相互正交的平面上,分别与旋转驱动装置连接;三个水声阵列信号收发器分别位于第一圆盘、第二圆盘和第三圆盘上;信号接收发射器位于水下定位目标上;第一微处理器分别与水声阵列信号收发器、GPS接收器和信号接收发射器信号连接;水声阵列信号收发器和信号接收发射器与第一微处理器信号连接;第一圆盘、第二圆盘和第三圆盘的中心点位于同一条直线上; 第一圆盘、第二圆盘、第三圆盘、水声阵列信号收发器、GPS接收器和第一微处理器组成船载测量装置,设置在船体上。
2.根据权利要求1所述的基于多普勒效应的水下目标定位装置,其特征在于:所述位于水下目标上的信号接收发射器电路包括依次连接的接收换能器、放大器、带通滤波器、信号检测器、第二微处理器、信号生成器和发射换能器;信号接收发射器还包括信道监听器,接收换能器通过信道监听器直接与第二微处理器连接;所述带通滤波器为有源带通滤波器电路。
3.根据权利要求2所述的基于多普勒效应的水下目标定位装置,其特征在于:所述有源带通滤波器电路包括第一电阻、第二电阻、第三电阻、第四电阻、第五电阻、第一电容、第二电容,放大器;第一电阻、第一电容组成的低通滤波电路和由第二电容、第二电阻组成的高通滤波电路接入放大器正相输入端;放大器的反相输入端经第四电阻接地;第三电阻一端与放大器的输出端,另一端与低通滤波电路和高通滤波电路连接;第五电阻一端与放大器358的输出端,另一端与放大器的反相输入端连接。
4.根据权利要求1所述的基于多普勒效应的水下目标定位装置,其特征在于:所述第一圆盘位于竖直平面上,第二圆盘位于水平面上,第三圆盘位于与水平面和竖直平面相互正交平面上。
5.根据权利要求1所述的基于多普勒效应的水下目标定位装置,其特征在于:所述第一圆盘、第二圆盘和第三圆盘的半径为0.5 - 3m。
6.根据权利要求5所述的基于多普勒效应的水下目标定位装置,其特征在于:所述第一圆盘、第二圆盘和第三圆盘的半径相同,且相邻两个圆盘中心点之间的间距为2倍半径值 +10cm。
7.根据权利要求1所述的基于多普勒效应的水下目标定位装置,其特征在于:所述水声阵列信号收发器分别安装在第一圆盘、第二圆盘和第三圆盘的外缘上。
专利摘要本实用新型公开了基于多普勒效应的水下目标定位装置,该装置的第一圆盘、第二圆盘和第三圆盘分别位于三个相互正交的平面上,分别与旋转驱动装置连接;三个水声阵列信号收发器分别位于第一圆盘、第二圆盘和第三圆盘上;信号接收发射器位于水下定位目标上;第一微处理器分别与水声阵列信号收发器、GPS接收器和信号接收发射器信号连接;水声阵列信号收发器和信号接收发射器与第一微处理器信号连接;第一圆盘、第二圆盘和第三圆盘的中心点位于同一条直线上;本实用新型利用了多普勒效应,只通过测量声波信号频率的多普勒频差来定位,避免了传统水声定位系统所采用的基于时延差或相位差来对水下目标的定位方法的复杂性。
文档编号G01S15/50GK203164417SQ20132011657
公开日2013年8月28日 申请日期2013年3月14日 优先权日2013年3月14日
发明者史景伦, 张楠, 徐初杰, 李咏梅 申请人:华南理工大学