利用emf检测和校正的过程变量变送器的制造方法
【专利摘要】在将任意激励电流施加于传感器前,将传感器两端预先存在的电压锁存至存储电容器。一旦施加了激励电流,就从传感器两端的差分电压中直接减去存储电容器上的电压。所述减法是在测量被转换为数字值并被传递给变送器前执行的。所述减法是以硬件执行的,并且对存储电容器两端的预先存在的电压进行采样和保持所需的时间在用于采集任何传感器测量所需的稳定时间以内。
【专利说明】利用EMF检测和校正的过程变量变送器
【技术领域】
[0001]本发明涉及在过程控制和监测系统中使用的过程变量变送器。更具体地,本发明涉及监测传感器两端的EMF电压。
【背景技术】
[0002]过程变量变送器用于测量过程控制或监测系统中的过程参数。基于微处理器的变送器通常包括:传感器、用于将传感器的输出转换为数字形式的模数(A/D)转换器、用于补偿数字化输出的微处理器、以及用于发送补偿输出的输出电路。当前,通常通过过程控制环(如,4-20毫安控制环)或以无线方式实现该发送。
[0003]这样的系统所测量的一个示例参数是温度。通过测量电阻性温度器件(RTD)的电阻或者热电耦输出的电压来感测温度,RTD有时也称为钼电阻温度计(或PRT)。当然,这些类型的温度传感器仅仅是示例,还可以使用其他温度传感器。类似地,温度仅仅是一个示例过程变量,还可以测量多种其他过程控制参数,包括例如pH、压力、流量等。因此,虽然关于温度传感器进行当前讨论,将意识到:关于其他参数的感测,可以一样容易地继续该讨论。
[0004]温度传感器和测量变送器之间存在可能发生故障或恶化的若干个连接点。当连接点或测量线路具有升高的电阻电平时,在这些连接点上引起影响传感器测量精度的较小的电流。由于导线磨损、腐蚀或者连接可能只是变松,传感器连接点和测量线路可能恶化,并且因此显示出这些升高的电阻电平。在这些情形中的任一情形下,有可能开始形成温度传感器两端或测量环路中较小的电压,并且该电压可能对温度改变敏感。这些电压可能引起测量误差。
[0005]作为一个具体示例,通过在比率计计算中使用多达6个独立的电压点来产生电阻性温度检测器(或RTD)欧姆测量。所有这些测量花费大约60毫秒来采集。在RTD计算的典型式中,可能重要的且馈入RTD计算的一项内容在变送器的最终输出中提供显著程度的精确度。该项是先于测量线路上的测量而存在的残留电压,称为V?f。
[0006] 为了获得Vailf的值,当不通过RTD引起激励电流时,每个传感器执行多达两个60毫秒的电压测量。这些测量表示由于磨损、腐蚀或松动连接等在传感器导线上引起的热电压。当存在激励电流时,可以软件方式从在RTD两端测量的电压降中减去这些测量。美国专利N0.6,356,191涉及该过程,并且该过程十分奏效。
[0007]然而,采集Vailf的测量花费时间。例如,在一个传统系统中,采集Vanf测量的时间大约是每传感器120毫秒。这可能不利地影响温度变送器上的更新率。
【发明内容】
[0008]使用差分电压来测量与过程变量有关的传感器的参数。在测量差分电压前,将传感器上预先存在的电压锁存至存储电容器。从传感器两端的差分电压中减去存储电容器上的锁存电压。在将测量转换为数字值前执行该减法。这降低了差分电压测量中的误差。【专利附图】
【附图说明】
[0009]图1是示出了包括温度传感器在内的工业过程控制系统的简化图,所述温度传感器感测过程流体的温度。
[0010]图2是更详细地示意了图1的变送器的框图。
[0011]图3A和3B是更详细地示出了带有EMF检测组件的变送器的示例示意和部分框图。
[0012]图4是示出了图1所示的电路的操作的一个示例的流程图。
【具体实施方式】
[0013]图1是工业过程控制系统5的简化图。在图1中,过程管道7承载过程流体。过程变量变送器10被配置为耦合至过程管道7。变送器10包括过程变量传感器18,在一个实施例中,过程变量传感器18包括电阻性温度器件或其他温度传感器。然而,这仅仅是示例,并且传感器18可以是包括流量传感器、pH传感器、压力传感器等在内的多种其他传感器中的任一个。
[0014]变送器10向远程位置(如,过程控制室6)发送信息。该发送可以通过过程控制环(如,双线控制环11)。过程控制环可以根据任意期望格式,包括例如4-20毫安过程控制环、承载数字通信的过程控制环、无线过程控制环等。在图1所示的示例中,过程控制环11由控制室6处的电源6A供电。该电源用于向过程变量变送器10供电。传感电阻器6B用于感测流经环路11的电流,虽然还可以使用其他机制。
[0015]图2是图1所示的工业过程控制系统5的一部分的框图,并且更详细地示出了变送器10。在图2中,传感器18示意地是从正在感测的过程接收输入14的过程变量变送器。该输入示意地是流经管道7的过程流体,并且传感器18示意地是温度传感器,如,电阻性温度器件。传感器18示意地向变送器10中的A/D转换器22提供模拟输出20,该输出20指示感测到的参数(例如,温度)。
[0016]在一个实施例中,应注意到:来自传感器18的输出20可以示意地适合地提供给对模拟信号进行放大和滤波的电路(图2中未示出)。这可以是传感器18或变送器10的一部分或者单独的电路。在任意情况下,放大和滤波后的信号20接着被提供给A/D转换器22。A/D转换器22将数字化输出提供给处理器24,所述数字化输出是传感器18提供的模拟信号20的数字表示。
[0017]处理器24包括相关联的存储器和时钟电路,并且提供与通过过程控制环11感测到的参数有关的信息。应注意的是,处理器24可以包括输入/输出(I/O电路),或者可以单独提供I/O电路,I/O电路在环路11上以数字格式发送信息或者通过控制流经环路11的电流以模拟格式发送信息。因此,由变送器10通过过程控制环11提供与感测到的参数有关的信息。处理器24在该实施例中被示为与A/D转换器22分开。然而,其可以包括在A/D转换器22中,或者A/D转换器22可以具有与处理器24分开的其自身的状态机或处理器,控制A/D转换器22的其他部分并控制以下讨论的EMF补偿。仅以示例方式提供了本描述。
[0018]图2还示出了变送器10包括由处理器24控制的电流源30。电流源30可以根据需要向传感器18提供激励电流(又称控制信号)。例如,如果传感器18是电阻性温度器件,电流源30提供经过电阻性温度器件的激励电流,使得可以使用电阻性温度器件两端的电压来提供指示感测到的流体温度的输出20。
[0019]图2中所示的实施例还示出了 A/D转换器22包括EMF检测组件26。EMF检测组件26检测在施加激励电流前预先存在于传感器18两端的EMF电压。组件26可以在A/D转换器22内部或外部。在图2所示的示例中其被示为在A/D转换器22内部,但这仅仅是示例方式。EMF检测组件26向提供处理器24输出,指示检测到的预先存在的EMF电压的电平,并且其还被配置为在施加激励电流时从信号20中的电压中减去预先存在的EMF电压,以针对预先存在的EMF电压校正信号20。
[0020]图3A是变送器10的更详细的图,并且类似的项目以与图2相同的方式编号。图3A还具体示出了 A/D转换器22和EMF检测组件26的更多细节。在图3A所示的实施例中,A/D转换器22示意地包括差分放大器32和积分三角(sigma delta)转换器34。当然,积分三角转换器34仅仅是以示例方式示出的,并且还可以使用其他转换机制。
[0021]图3A还示出了 EMF检测组件26示意地包括电平检测器26 ;开关S1、S2和S3 ;以及电容器Cl。图3A示出了具有两个引线38和40的传感器18,引线38和40可以分别耦合至输入端子42和44。在一个实施例中,除了电压源46所表示的EMF电压以外,端子42和44之间的电压指示传感器18感测到的温度。传感器18可以示意地是两条附加引线分别耦合至附加端子的四引线传感器。参照以下描述的图3B更详细地对此进行了示出。然而,为了本示例,将参照具有与端子42和44相连的两个引线的传感器18继续描述。
[0022]以下参照图4描述EMF检测组件26的更详细的操作。然而,简言之,在提供通过传感器18的激励电流Irtd前,首先将端子42和44之间的电压锁存在电容器Cl两端。这有效地使得存储电容器Cl存储传感器18上预先存在的电压(即,EMF电压46)。接着,断开开关S2,并闭合开关SI和S3。处理器24控制电流源30通过传感器18施加激励电流Irtd,从而在传感器18两端产生电压,以进行温度测量。该电路配置工作,以从端子42和44之间的电压中减去电容器Cl上的电压,然后将其输入差分放大器32。即,端子42和电路节点60之间的差分放大器32的输入处的电压差有效地从中移除了 EMF电压46,这是由于其被事先存储在电容器Cl中。同时,电平检测器36检测电容器Cl两端的指示EMF电压46的电压电平。在一个实施例中,电平检测器36是将EMF电压与可以根据经验或以其他方式设置的一个或多个阈值进行比较的比较器。如果EMF电压超过阈值中的任一个,检测器36向处理器24输出对此的指示。接着,处理器24可以确定EMF电压过大并且要求进一步的动作。
[0023]因此,差分放大器32向积分三角转换器34提供输出,指示传感器18两端的电压而不是EMF电压46,这是由于已从端子42和44之间的电压中减去了 EMF电压46。将电平检测器36的输出和转换器34的输出提供至处理器24,用于进一步处理。
[0024]图4更详细地示意了变送器10的操作。下面将彼此结合地参照图2、3A和4来描述变送器10的操作。
[0025]处理器24首先提供控制信号,以闭合开关S2并断开开关SI和S3。这由图4中的框80指示,并且是在处理器24控制电流源30通过电阻器18施加激励电流Irtd前执行的。因此,这具有在存储电容器Cl两端锁存预先存在的EMF电压的效果。这由图4中的框82指示。
[0026]接着,处理器24断开开关S2并闭合开关SI和S3。这由图4中的框84指示。接着,处理器24开启电流源30,以通过传感器18施加激励电流Irtd。这由图4中的框86指
/Jn ο
[0027]因此,传感器18两端的电压以及EMF电压46被施加在端子42和44之间。电容器Cl工作,以从输入电压中减去EMF电压,从而施加至差分放大器32的输入的(端子42和节点60之间的)电压实质上仅仅是传感器18两端的电压。从差分放大器32的输入处的传感器输入电压中减去EMF电压由图4中的框88指示。
[0028]差分放大器32接着向积分三角转换器34提供输入,所述输入指示传感器18两端电压的测量。这由图4中的框90指示。
[0029]转换器34接着对差分放大器32输出的测量信号进行数字化,并向处理器24提供传感器电压的数字表示。这由图4中的框92指示。
[0030]电平检测器36检测电容器Cl两端的电压电平,该电压电平实质上等于EMF电压46。如上所述,这可以通过将电容器Cl上的EMF电压与一个或多个阈值比较来实现。当然,还可以对其进行数字化。检测EMF电压电平由图4中的框94指示。
[0031]EMF电压电平被提供至处理器24,从而处理器24可以确定EMF电压是否高到足以指示警告情形或者用户应当意识到的其他问题。例如,当电压电平超过预定阈值时,这可以指示引线38和40的过度磨损或腐蚀,或者其可以指示端子42和44中至少一个处松动的连接,或者其可以指示用于将传感器18连接至A/D转换器22的导线的磨损或腐蚀、或者多种其他情形中的任一情形。例如,当暴露于热梯度下时,在连接点处还可能存在增加EMF电压的热电耦节。还可以在EMF电压46中对此进行捕捉。可以根据经验或以其他方式设置特定电压阈值,并且还可以设置多于一个的阈值。在一个实施例中,其被设置为大约+/_12mV,虽然还可以使用任意其他期望的电压电平。检测EMF电压电平是否过大由图4中的框96指示。
[0032]如果处理器24确定EMF电压电平过大,其产生可由用户检测到的过大EMF指示符,从而用户知道该情形。这由图4中的框98指示。在一个实施例中,例如,处理器24简单地设置状态比特来指示EMF电压过大,并且使用环路11将该信息发送至控制室6。当然,还可以使用其他类型的指示符。
[0033]再次地,将注意到:虽然图3A示出了传感器18仅连接至端子42和44,这仅仅是示例。图3B示出了实施例,其中,传感器18是两条附加引线48和50分别耦合至端子52和54的四引线传感器。在端子52和引线50处从电流源30向传感器18施加激励电流Irtd。处理器24控制从端子42、44、52和54接收输入的复用器53,从而期望电压被输入至差分放大器32和EMF检测组件26。由于激励电流Irtd基本全部在端子52和54间且通过电阻器Rl流动,可以大致估计端子42和44的连接中的电压降。这提高了精确性。然而,在电路中仍可能存在非期望的预先存在的电压46,并且可以根据以上参照图3A和4阐述的那样对其进行检测和补偿。
[0034]在使用热电耦(或其他电压传感器)的实施例中,将存在来自传感器的电压,但由于连接至传感器的导线和接头的高电阻率,电阻还将存在于传感器环路上。当该电阻改变时,其可以指示如以上在其他实施例中描述的某些类型的恶化情形。在这样的实施例中,可以通过与感测RTD的电阻相同的方式施加激励电流来测量传感器环路上的电路。补偿热电耦(或其他传感器)电压(如上述预先存在的EMF电压46),以获得环路电阻的测量。可以间歇进行,以监测环路电阻。
[0035]因此可以看出:本系统自动补偿存在于系统中测量线路或端子上的残留(预先存在的)EMF电压。虽然参照电阻性温度器件对其进行了描述,其还可以应用于热电耦,以测量热电耦的环路电阻。当然,其可以应用于其他传感器,以感测其他参数,并且仅以示例方式对温度进行描述。还可以看出:补偿是在数字化传感器测量之前以硬件方式极快地完成的。因此,可以在测量电路的常规稳定时间(settling time)内良好地执行补偿。
[0036]虽然参照优选实施例描述了本发明,本领域技术人员将认识到:可以在不背离本发明精神和范围的前提下做出形式和细节上的改变。
【权利要求】
1.一种过程变量变送器,包括: 模数A/D转换器,从传感器接收传感器信号,所述传感器信号指示感测到的过程变量,所述传感器能够被控制为接收控制信号并响应所述控制信号输出所述传感器信号,所述A/D转换器将所述传感器信号转换为数字信号; 处理器,将所述控制信号提供给所述传感器,以及接收所述数字信号并提供指示所述数字信号的测量输出;以及 检测组件,在控制器将所述控制信号提供给所述传感器前,从所述传感器接收预先存在的输入,并向所述处理器提供检测信号,所述检测信号指示所述预先存在的输入的电平。
2.根据权利要求1所述的过程变量变送器,其中,所述传感器信号包括:指示所述感测到的过程变量的电压;并且,所述检测组件检测所述预先存在的输入作为所述预先存在的输入中预先存在的电压。
3.根据权利要求2所述的过程变量变送器,还包括: 电流源,可控地耦合至所述处理器,以将所述控制信号作为控制电流提供给所述传感器。
4.根据权利要求3所述的过程变量变送器,其中,所述传感器包括电阻性温度器件;并且,所述控制电流包括激励电流,所述激励电流被施加于所述电阻性温度器件以获得指示感测到的温度的电压。
5.根据权利要求3所述的过程变量变送器,其中,所述检测组件存储所述预先存在的电压,并对传感器信号补偿预先存在的电压,以获得补偿后的传感器信号。
6.根据权利要求5所述的过程变量变送器,其中,所述检测组件在A/D转换器接收所述传感器信号前补偿所述预先存在的电压,从而A/D转换器接收到的传感器信号包括补偿后的传感器信号。
7.根据权利要求6所述的过程变量变送器,其中,所述检测组件通过从所述传感器信号中减去所述预先存在的电压而对所述传感器信号进行补偿,以获得补偿后的传感器信号。
8.根据权利要求7所述的过程变量变送器,其中,减法是由硬件组件执行的。
9.根据权利要求8所述的过程变量变送器,其中,所述检测组件将所述预先存在的电压存储在存储电容器中;并且,所述存储电容器切换至A/D转换器的输入,以从所述A/D转换器的输入处的所述传感器信号中减去所述预先存在的电压。
10.根据权利要求7所述的过程变量变送器,其中,所述A/D转换器包括耦合至A/D转换机制的差分放大器;并且,所述检测组件对所述差分放大器的输入处的所述传感器信号进行补偿。
11.根据权利要求10所述的过程变量变送器,其中,所述检测组件向所述处理器提供检测信号,所述检测信号指示所述预先存在的电压的电平;并且,当所述预先存在的电压超过预定阈值电压时,所述处理器提供指示所述预先存在的电压过大的输出。
12.根据权利要求11所述的过程变量变送器,其中,所述处理器通过控制环提供输出。
13.根据权利要求12所述的过程变量变送器,其中,所述控制环包括4-20mA控制环。
14.根据权利要求1所述的过程变量变送器,其中,所述A/D转换器从热电耦接收所述传感器信号。
15.根据权利要求1所述的过程变量变送器,其中,所述处理器是所述A/D转换器的一部分。
16.根据权利要求1所述的过程变量变送器,其中,所述处理器包括:与所述A/D转换器分开的第一处理器;以及作为A/D转换器一部分的第二处理器。
17.一种感测过程控制系统中的过程变量的方法,所述方法包括: 向传感器提供控制信号,以在传感器输入处从所述传感器获得指示所述过程变量的传感器信号; 将所述传感器信号从模拟信号转换为数字信号; 在过程控制环上提供指示所述数字信号的输出; 在提供所述控制信号前,检测传感器输入处的预先存在的信号电平;以及在提供所述控制信号后,在将所述传感器信号转换为所述数字信号前,对所述传感器信号补偿预先存在的信号电平。
18.根据权利要求17所述的方法,还包括: 检测预先存在的信号电平是否超过预定阈值电平;以及 如果超过,在过程控制环上提供输出,以指示所述预先存在的信号电平超过预定阈值电平。
19.根据权利要求18所述的方法,其中,所述传感器包括电阻性器件;并且,提供所述控制信号包括: 向所述电阻性器件提 供激励电流。
20.根据权利要求19所述的方法,其中,转换所述传感器信号是由测量电路执行的,所述传感器信号包括传感器电压,所述预先存在的信号电平包括预先存在的电压,并且,补偿包括: 在提供所述激励电流前在电容器上存储所述预先存在的电压;以及在将传感器电压转化为所述数字信号前,将电容器切换至测量电路,以从所述传感器电压中减去所述预先存在的电压。
21.一种过程控制系统,包括: 传感器,感测过程变量,并提供模拟传感器信号,所述模拟传感器信号指示感测到的过程变量,所述传感器能够被控制为接收控制信号并响应所述控制信号输出所述模拟传感器信号; 过程变量变送器,包括: 模数A/D转换器,在传感器输入处从所述传感器接收所述模拟传感器信号,所述A/D转换器将传感器信号转换为数字信号; 处理器,耦合至所述A/D转换器,向所述传感器提供所述控制信号,以及接收所述数字信号并提供指示所述数字信号的测量输出;以及 检测组件,在控制器将控制信号提供给所述传感器前,在传感器输入处检测预先存在的信号电平,并向所述处理器提供检测信号,所述检测信号指示预先存在的输入的电平,所述检测器在所述处理器向所述传感器提供所述控制信号后对所述模拟传感器信号补偿所述预先存在的信号电平;以及 控制环,所述处理器在所述控制环上提供测量输出。
22 .根据权利要求21所述的过程控制系统,其中,所述传感器包括温度传感器,并且,所述控制信号包括所述温度传感器的激励电流。
【文档编号】G01K7/02GK103698040SQ201210512993
【公开日】2014年4月2日 申请日期:2012年12月4日 优先权日:2012年9月27日
【发明者】杰森·H·鲁德 申请人:罗斯蒙德公司