基于实时测量多频段频率分量占比判断直流电弧故障的方法

文档序号:5959089阅读:542来源:国知局
专利名称:基于实时测量多频段频率分量占比判断直流电弧故障的方法
技术领域
本发明属光伏电气故障检测技术领域,更准确地说本发明涉及一种基于实时测量电压电流中多个频段的频率分量占比,判断光伏系统中是否发生了直流电弧故障的方法。
背景技术
电弧故障保护并不是一个新的事物,研究发现在没有过电流发生的情况下由小电流引起的故障电弧也有足够的能量引发打火从而引起火灾,从二十世纪九十年代开始,在北美,交流系统中配备电弧故障保护器成为一个安全性的强制性标准。随着光伏发电的大规模应用,特别是光伏电池板在建筑物屋顶和外墙的广泛应用,多地多处发生了由于光伏
发电系统所导致的火灾。通过分析发现,这类火灾基本是由光伏发电系统的直流电弧故障引起的,因此检测和隔离引发设备损坏及火灾隐患的直流电弧故障就成为必须解决的问题。但以往的电弧故障保护器应用在光伏系统中,有两个方面是不一致的第一、这种电弧故障是由直流引发的;第二、这种电弧故障产生地点可能在远端,距离电弧检测设备安装位置之间可能隔有正常发电的光伏电池板。这两方面的因素导致常规的交流电弧故障保护器并不能应用在这种场合,必须研制一种新型的直流电弧故障保护设备以满足光伏系统的需要。目前常规的电弧故障检测原理是根据对负载电流和电压的模数转换采样,在短时间内检测出电弧的产生,之后根据当时电压和电流的关系,采用傅立叶变换法则,得到负载的相位角状态,进而获得负载类型,并与已知的绝大多数负载电弧特征曲线与电弧特征比较,同时采用自学习方式,实时更新运行状态产生的正常电弧,并与之比较,进行判断得出结论,确定是负载运转所产生的正常电弧还是负载在非正常状态所产生的故障电弧。这种方式运用在交流低压系统中还是具有可行性的,但在光伏直流系统中,由于光伏发电特性是随时间和环境不可预测变化的;各类逆变器干扰波形也是不同且随负载变化;电弧故障发生地点和检测点之间还有不等数量的发电光伏板间隔,造成故障电弧波形的畸变也是不可预测变化的,因此前述的与已知故障特性比较和自学习两种模式都不适用于光伏发电系统中的直流电弧故障检测。本发明通过研究故障电弧的本质,检测电压电流波形中的多个频率段的频谱分量能量占总频谱的能源比这一方法,创新性的开拓了一种新的直流电弧故障检测方法,可快速可靠的检测出可能引发火灾的直流电弧故障,确保光伏系统的安全。

发明内容
本发明目的是通过检测电压电流波形中的多频率段的频谱分量能量占总频谱的能量比,确认系统中是否产生了可能引发火灾的直流电弧故障,确保光伏系统的安全运行,防止故障电弧引起的火灾发生。电弧故障可能引发火灾的原因是在于其电弧中蕴含能量比较大,从电弧波形中分析,其主要能量分布在一个或多个较宽的频率带中。因此本发明通过检测光伏发电系统中的直流分量与其他高次频谱的能量比率关系来作为区分直流电弧故障的主要依据。本发明采用以下的技术方案来实现,包括下述步骤I)实时采集电压值和电流值,并通过IHz低通数字滤波得到电压直流分量Udc和电流直流分量ID。;通过IHz高通数字滤波得到其他频率分量的噪音电压Uhy与噪音电流U。2)实时计算直流分量功率Sdc = UDC*IDC及其他频谱功率Shy = Uhy^Ihyo3)实时计算电弧功率比系数KaM = SHY/SDC,当KaM小于预先设定的定值KNOTmal,则判断此时光伏系统处于正常状态,返回到步骤I);如果Karc大于预先设定的定值KNOTmal,则判断此时光伏系统处于电弧故障检测状态,转向步骤4),并保存此时的SD。为SDCNOTmal。4)当光伏系统处于电弧故障检测状态时,每5kHz设一个数字带通滤波器,左右带宽各为2. 5kHz,实时计算I-IMHz频率范围内的各频率段的电压值和电流值,并根据功率计 算公式S = U*I,得到有功功率值Sm,Shy2, . . . Shy2c ,并计算得到每个频段功率值与正常状态下直流功率值比 KflYl — SHY1/SDCNormal, Khy2 — S^/SncNormal · · · Khy200 — SHY20o/SDCNormal。5)设定值Kstring = 1+Nstring/100, Nstring为一串光伏阵列板中的光伏板总数量(一般为 10 至 21 个);计算浮动门槛值 Kakc = Kstring* (KHY1+KHY2+. . . +Khy2J/200。6)实时判断KHY1,KHY2,. . . Khy200是否大于浮动门槛值KAK,当判断出有KHYi (i为I至200)大于Kak时,对该频段的Sm (i为I至200)进行时间累计,获得该频段在Tak时间段内的超过浮动门槛值Kakc的能量值WAKi (i为I至200),其中Takc为从步骤3判断出的非正常状态开始累计时间,最长到2000ms,超过2000ms如果还没有进入步骤I正常状态或判断出电弧故障(步骤9),则Taec按时间反向递减至O, 2000ms前SHYi (i为I至200)累计的并计入WAKi (i为I至200)的功率值依次减去。7)根据Sratomal,虚拟计算得到在Tak时间内的累计的能量Wramial =
SDCNormal*TARC °8)实时判断Km,KHY2,. . . Khy200中大于Kakc的频段数,当等于或超过5个时,即累加所有Wakm (i为I至200),得到WAKSum = Σ WAKi,转向步骤9);如果大于Kak的频段数不到5个时,则转向步骤4)。9)实时判断WA_是否大于WA_eE =,其中Kkk为事前设定的判断电弧故障的可靠性系数,一般为O. 8,当Wakkud大于WAKJUDeE时,判断光伏系统发生了直流电弧故障,否则没有发生电弧故障,转到步骤4)。本发明中,披露了一种实现光伏系统中直流电弧故障的检测方法,该方法基于能量守恒原理,通过计算光伏系统中高次频率频谱能量,以及与正常光伏系统同时间内的发电能量之间比值关系,当高次频率频谱能量超过正常发电能量一定比例时,认为光伏系统中发生了可能引发火灾的直流电弧故障。其中上述步骤中低通/高通/带通数字滤波器的算法是已经成熟的工程应用算法,不在此描述。3、有益效果该方法突破了传统的,利用电压电流波形拟合检测电弧故障的思路,从电弧危害的能量本质上考虑检测算法,通过计算电弧故障能量占光伏正常发电能量的比例关系,当电弧故障能量占比过大时,即可确认光伏系统中发生了有危害的电弧故障。该方法原理简单,算法可靠,避免了直接从电压电流波形中检测电弧故障的种种不确定因素。


图I为本发明方法的流程图。
具体实施例方式下面结合附图1,对本发明方法进行详细描述。图I中步骤I描述的是通过数字滤波器,获得的电压直流分量Udc和电流直流分量Idc及高次频率分量的电压Uhy与电流IHY。图I中步骤2描述的实时计算直流分量功率SD。= UDC*IDC及其他频谱功率Shy =
Ti木τ uHY个丄HY0图I中步骤3描述的实时计算电弧功率比系数Km。= ShyZSdc,当Karc小于预先设定的定值Ktomal,则判断此时光伏系统处于正常状态,返回到步骤I);如果Km。大于预先设定的定值KNOTmal,则判断此时光伏系统处于电弧故障检测状态,转向步骤4),并保存此时的SD。
^DCNormal °图I中步骤4描述的当光伏系统处于电弧故障检测状态时,每5kHz设一个数字带通滤波器,左右带宽各为2. 5kHz,实时计算I-IMHz频率范围内的各频率段的电压值和电流值,并根据功率计算公式S = U*I,得到有功功率值Shyi^hy2, . . . Shy200,并计算得到每个频段功率值与正常状态下直流功率值比Khyi
—SHYi/SDCNormal, Khy2 — SHY2/SDCNormal, . . . Khy2OO — SHY20o/
^DCNormal°图I中步骤5描述的设定值KstHng = I+Nstring/100, Nstring为一串光伏阵列板中的光伏板总数量(一般为10至21个);并计算浮动门槛值Kakc = Kstring* (KhyJKhy2+. · · +Khy200)/200。图I中步骤6描述的是实时判断KHY1,KHY2,. . . Khy200是否大于浮动门槛值KAK。,当判断出有KHYi (i为I至200)大于Kaec时,对该频段的SHYi (i为I至200)进行时间累计,获得该频段在TAK。时间段内的超过浮动门槛值KAK。的能量值WAKi (i为I至200),其中TAK。为从步骤3判断出的非正常状态开始累计时间,最长到2000ms,超过2000ms如果还没有进入步骤I正常状态或判断出电弧故障(步骤9),则Tak按时间反向递减至0,2000ms前SHYi (i为I至200)累计的并计入Wakm (i为I至200)的功率值依次减去。图I中步骤7描述的根据Sratomal,虚拟计算得到在ΤΑΚ。时间内的累计的能量WDatomai
—SDCNormal*TARC;。图I中步骤8描述的实时判断KHY1,Khy2, . . . Khy200中大于KAK。的频段数,当等于或超过5个时,即累加所有WAKa (i为1200),得到WAKeSum = Σ WAKa,转向步骤9);如果大于Kakc的频段数不到5个时,则转向步骤4)。图I中步骤9描述的实时判断Wakkm是否大于WA_eE= Kkk*Nstring/100*ffDCNormal,其中Kkk为事前设定的判断电弧故障的可靠性系数,一般为O. 8,当Waksud大于W eE时,判断光伏系统发生了直流电弧故障,否则没有发生电弧故障,转到步骤4)。
权利要求
1.实时测量电压电流中多个频段的频率分量占比,判断光伏系统中直流电弧故障的方法,其特征在于包括下列步骤 1)实时采集电压值和电流值,并通过IHZ低通数字滤波得到电压直流分量Udc和电流直流分量ID。;通过IHz高通数字滤波得到其他频率分量的噪音电压Uhy与噪音电流Ihy ; 2)实时计算直流分量功率SD。=UDC*IDC及其他噪音频谱功率Shy = UHY*IHY ; 3)实时计算电弧功率比系数KaM= SHY/SDC,当Karc小于预先设定的定值KNOTmal,则判断此时光伏系统处于正常状态,返回到步骤I);如果K』大于预先设定的定值Ktomal,则判断此时光伏系统处于电弧故障检测状态,转向步骤4),并保存此时的SD。为Sramial ; 4)当光伏系统处于电弧故障检测状态时,每5kHz设ー个数字带通滤波器,左右带宽各为2. 5kHz,实时计算I-IMHz频率范围内的各频率段的电压值和电流值,井根据功率计算公式S = U*I,得到有功功率值Sm,Shy2, . . . Shy20O,并计算得到每个频段功率值与正常状态下 直流功率值比Khyi = '0HYl/0DCNormal Kfly2 — iHY2/ 5DCNormal,· · · ^ΗΥ200 — SHY20o/°DCNormal ; 5)设定值Kstring=1+Nstring/100, Nstring为ー串光伏阵列板中的光伏板总数量(一般为10 至 21 个);计算浮动门槛值 Kakc = Kstring* (KhyJKhy2+. . . +Khy200)/200 ; 6)实时判断KhyijKhy2,· · · Khy200是否大于浮动门槛值Kaec,当判断出有KHYi (i为I至200)大于IW吋,对该频段的Sm (i为I至200)进行时间累计。获得该频段在ΤΑΚ。时间段内的超过浮动门槛值Kak的能量值WAKa (i为I至200),其中Tak为从步骤3判断出的非正常状态开始累计时间,最长到2000ms,超过2000ms如果还没有进入步骤I正常状态或判断出电弧故障(步骤9),则Taec按时间反向递减至O, 2000ms前SHYi (i为I至200)累计的并计入WAECi (i为I至200)的功率值依次减去; 7)根据Sramial,虚拟计算得到在Taec时间内的累计的能量Wramial= SDCNormal*TAEC ; 8)实时判断Kh^Khy2,.. . Khy200中大于KAK。的频段数,当等于或超过5个时,即累加所有WAECi (i为I至200),得到WAKeSum = Σ WAKi,转向步骤9):如果大于Kak的频段数不到5个时,则转向步骤4); 9)实时判断Wakcsub是否大于W =,其中Kkk为事前设定的判断电弧故障的可靠性系数,一般为O. 8,当WAIffiSuffl大于WAK_eE吋,判断光伏系统发生了直流电弧故障,否则没有发生电弧故障,转到步骤4)。
2.根据权利要求I所述的基于实时測量电压电流中多个频段的频率分量占比,判断光伏系统中直流电弧故障的方法,其特征在于可以根据光伏系统正常情况下的IHz低通数字滤波器得到光伏系统发出的电压直流分量Udc和电流直流分量Idc ;可以根据光伏系统正常情况下的IHz高通数字滤波器得到光伏系统发出的电压噪音分量Uhy和电流噪音分量し。
3.根据权利要求I所述的基于实时測量电压电流中多个频段的频率分量占比,判断光伏系统中直流电弧故障的方法,其特征在于实时计算出直流分量功率SD。= UDC*IDC及其他噪音频谱功率Shy = Uhy^Ihy,并利用得到的电弧功率比系数Ka,。= ShyZSdc,与事先设置的定值Ktomal比较,判断是否需要进入电弧故障检测状态。
4.根据权利要求I所述的基于实时測量电压电流中多个频段的频率分量占比,判断光伏系统中直流电弧故障的方法,其特征在于当处于电弧故障检测状态时,每5kHz设ー个数字带通滤波器,左右带宽各为2. 5kHz,实时计算I-IMHz频率范围内的各频率段的电压值和电流值,并根据功率计算公式S = U*I,得到有功功率值Shyi,Shy2, . . . Shy200,并计算得到每个频段功率值与正常状态下直流功率值比 KflYl — SHY1/ j5DCNormal5 Kfly2 — ^>hY2/ 5DCNormal' Khy200 —°HY200/ 0DCNormal °
5.根据权利要求I所述的基于实时測量电压电流中多个频段的频率分量占比,判断光伏系统中直流电弧故障的方法,其特征在于电弧故障浮动门槛值Kak。= Kstring* (Khy^Khy2+.. +Khy2qq)/200,其中Kstring = 1+Nstring/100, Nstring为ー串光伏阵列板中的光伏板总数量(一般为10至21个)。
6.根据权利要求I所述的基于实时測量电压电流中多个频段的频率分量占比,判断光伏系统中直流电弧故障的方法,其特征在于实时判断各频段的特性是否符合电弧故障频谱特性,即KHY1、KHY2.....Khy200是否大于门槛值Kak。,并在一段时间内Tak,最长2000毫秒,符合 电弧故障频谱特性的频段内有功功率Sm (i为I至200)累计的能量分别累计计算到WAKi (i为I至200)。
7.根据权利要求I所述的基于实时測量电压电流中多个频段的频率分量占比,判断光伏系统中直流电弧故障的方法,其特征在于实时判断KHY1,Khy2, . . . Khy200中大于Kak的频段数,只有频段数量等于或超过5个频段时,才可累计所有WAKa,得到Wakkm = E ffAECi0
8.根据权利要求I所述的基于实时測量电压电流中多个频段的频率分量占比,判断光伏系统中直流电弧故障的方法,其特征在于根据WAKSuffl,实时判断该值是否大于Wakotwe = ,其中Kkk为事前设定的判断电弧故障的可靠性系数,一般为0. 8,当Waecsuiii大于Wakjtoe时,判断光伏系统发生了直流电弧故障。
全文摘要
本发明涉及基于实时测量多频段频率分量占比判断直流电弧故障的方法。随着光伏发电的大规模应用,特别是光伏电池板在建筑物屋顶和外墙的广泛应用,多地多处发生了由于光伏发电系统所导致的火灾。通过分析发现,这类火灾基本是由光伏发电系统的直流电弧故障引起的,因此检测和隔离引发设备损坏及火灾隐患的直流电弧故障就成为必须解决的问题,但由于光伏系统直流电弧故障的特殊性,常规的基于故障波形的电弧故障检测原理并不适用于光伏系统直流电弧故障。本发明的核心思想是基于故障电弧引发火灾危害的本质是由于电弧中蕴含能量过大,通过检测电压电流波形中的多个频率段的频谱分量能量占总频谱的能源比这一方法,可不受系统中其他噪音影响,快速可靠的检测出可能引发火灾的直流电弧故障,确保光伏系统的安全。
文档编号G01R31/00GK102854426SQ20121037947
公开日2013年1月2日 申请日期2012年10月9日 优先权日2012年10月9日
发明者邵俊松 申请人:邵俊松
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1