分离分子分析物的方法和装置的利记博彩app

文档序号:6001583阅读:341来源:国知局
专利名称:分离分子分析物的方法和装置的利记博彩app
技术领域
在一些实施方式中,本发明涉及分子分析和分离,更具体地,但不排他地,涉及使用电聚焦(电集中,electrofocusing)进行分子分析和分离的方法。
背景技术
等电聚焦是一种通过利用分子的不同离子性质来分离分析物样品中分子的分析技术。等电聚焦通常在电解液中进行,可选地为凝胶形式,例如基于聚丙烯酰胺、淀粉和 /或琼脂糖,具有固定的质子浓度梯度,通常该质子浓度梯度在给定方向上从较高的PH向较低的PH变化。在一些实施方案中,溶液含有两性电解质,其在电场下生成pH分布(pH分布图,pH profile) 0在等电聚焦中,分离发生在占据了整个分离距离并被布置成使梯度中的PH从阳极向阴极增加的pH分布中。使用中,将分析物装载到电解液的某个位置。根据分子的不同官能团的酸度(PKa),每个不同分子的电荷响应于环境质子浓度而变化。将电势平行地施加于等电聚焦阳极和等电聚焦阴极之间的质子浓度梯度。具有净正电荷的分子穿过电解液阴极迁移,而具有净负电荷的分子穿过电解液阳极迁移。随着分子迁移,环境pH发生改变而降低分子上的净电荷直到该分子到达等电点 (Pl),在等电点处,由于环境PH,所以分子上的净电荷为零。pi为特定分子或表面不携带净电荷时的PH。在该点,由于具有零电荷,所以迁移的分子停止。以这样的方式,等电聚焦将具有某一 Pi的分子聚焦到电解液的相对较窄容积中。等电聚焦通过根据蛋白质的酸度而表征它们低于蛋白质的分析很有用。更重要地,它对于蛋白质混合物的分离很有用。于2009年3月5日公开并以引用方式并入本文中的国际专利申请公开 NO.W02009/027970,描述了在包括电解质的环境,如电解液、凝胶等中,在产生质子的局部浓度、质子浓度梯度和期望质子浓度外形中有用的方法和装置。这个申请还公开了用于等电聚焦的方法和装置。

发明内容
根据本发明的一些实施方式,提供了一种分离具有不同等电点(Pl)的多种分子分析物的混合物的方法。所述方法包括将含有多种分子分析物的混合物的溶液置于分离容积(分离体积或分离容器,s^aration volume)中,沿(横跨,across)该分离容积的轴生成具有多个PH区(pH带,pHzone)的pH分布,以及调节该pH分布中的分布以诱导该多种分子分析物中的第一种沿所述轴迁移而与该多种分子分析物中的第二种分开,该第一和第二种分子分析物具有不同的Pi。可选地,pH分布包括至少两个具有不同pH水平的pH梯级区(pH台阶区,pH step zone),在所述调节之前,该多种分子分析物被限制(俘获,trap)在具有基本均勻的pH的该至少两个PH梯级区之间,所述调节包括改变该至少两个pH梯级区之一中的pH。可选地,调节随时间逐渐地进行。可选地,pH分布由至少一个坡台区(匝道或过渡区,ramp或rampzone)限定(定义,define),多种分子分析物聚集在该至少一个坡台区中。可选地,生成包括沿所述轴对溶液施加电场,并在沿该轴的多个点处注入多个离子流以建立PH分布。可选地,所述方法包括向溶液中加入至少一种缓冲成分以稳定该pH分布。可选地,所述方法包括收集第一种分子分析物,而第二种分子分析物保留在分离容积中。可选地,所述方法包括调节所述分布以诱导第二种分子分析物沿所述轴迁移而与多种分子分析物中的第三种分开,该第二和第三种分子分析物具有不同的pi。可选地,调节包括调节所述分布以诱导所述第一和第二分子分析物沿所述轴在相反的方向上迁移。可选地,调节包括调节所述分布以改变沿所述轴的迁移的方向,以使第一分子分析物相继(依次,sequentially)在两个相反的方向上移动。可选地,多个pH区包括具有基本均勻的第一 pH的两个梯级区,所述两个梯级区由具有基本均勻的第二 pH的中间梯级区(middle step zone)分隔开,混合物被限制在该两个梯级区之一和中间梯级区之间,调节包括改变该中间梯级区中的pH。 可选地,多个pH区包括至少三个不同的pH区,所述调节逐步进行以诱导第一分子分析物迁移至在多个PH区的第一对(pH区)之间的第一坡台区,以及第二分子分析物迁移至在多个PH区的第二对(pH区)之间的第二坡台区。可选地,对所述溶液进行缓冲。可选地,所述方法包括提供混合物中的一种或多种分子分析物的等电点,并根据等电点来设置溶液,其中根据等电点确定溶液的缓冲浓度,以及根据该确定来设置溶液。可选地,调节包括聚焦(集中)第一和第二种分子分析物以沿所述轴彼此分开。更加可选地,进一步包括从沿所述轴的不同位置分别收集第一和第二种经聚焦 (集中)的分子分析物。可选地,所述生成包括根据一组代数方程来计算pH分布。可选地,调节包括根据一组代数方程来计算对pH分布的至少一种调节,并根据该至少一种调节进行所述调节。根据本发明的一些实施方式,提供了一种分离具有不同等电点(pi)的多种分子分析物的混合物的方法。所述方法包括将含有多种分子分析物的混合物的溶液置于分离容积中,将多种分子分析物限制在容纳(含有,contain)所述溶液的分离容积中的两个pH梯级区之间,每一个PH梯级区具有不同的基本均勻的pH,以及逐渐改变该两个pH梯级区之一的PH以诱导多个分离组中的多种分子分析物相继迁移,其中每个组具有不同的pi。可选地,所述限制包括对所述溶液施加电场并在沿其至少一个点处注入多个离子流以建立所述两个PH梯级区。根据本发明的一些实施方式,提供了一种基于分子分析物的等电点来分离分子分析物的方法。所述方法包括在具有多种分子分析物的溶液中生成具有多个PH区的pH分布,并在一段时间内逐渐改变该PH分布的分布,从而根据它们各自的等电点来诱导多种分子分析物的空间分离。根据本发明的一些实施方式,提供了一种分离具有不同等电点(pi)的多种分子分析物的混合物的装置。所述装置包括一个大小和形状确定(尺寸化和成一定形状, sized and shaped)的容器,该容器沿轴容纳具有多种分子分析物的溶液;在溶液中沿所述轴施加电场的电源;用于在溶液中沿所述轴建立PH分布的多个离子源,其中通过注入多个离子流以对所述溶液的多个区域进行质子化和去质子化中的至少一种;以及控制器,其操作所述多个离子源以逐渐调节PH分布从而诱导每个分子分析物分别沿所述轴的迁移。可选地,所述装置进一步包括用于接收来自计算单元和用户(使用者)中的至少一个的多个指令的界面(接口,interface),所述控制器根据所述多个指令来操作所述多个离子源。可选地,所述容器具有至少一个小于1毫米的维度(尺寸,dimension)。可选地,所述溶液是非凝胶溶液。除非另有定义,本文中所使用的所有技术和/或科学术语的含义与由本发明所属领域的普通技术人员通常理解的含义相同。尽管与本文所述类似或等同的方法或材料可在本发明的实施方式的实施或测试中使用中,但是以下描述了示例性方法和/或材料。在冲突的情况下,参考本发明的说明书,包括定义。另外,这些材料、方法和实施例仅是举例说明性的,而不用于必要性的限制。


本文仅以举例的方式,参照附图描述了本发明的一些实施方式。具体参照附图的详细内容,强调了以举例的方式显示细节,并用于对本发明的实施方式进行举例说明性的讨论。在这方面,参考附图的描述使得对于本领域技术人员来说如何实施本发明的实施方式是显而易见的。在附图中图1为根据本发明的一些实施方式,基于分子分析物的等电点来分离它们的方法的流程图;图2A-2E为根据本发明的一些实施方式,在一段时间内的动态pH分布及其对容器内的溶液中的分子分析物的影响的示意性曲线图;图3A为根据本发明的一些实施方式,基于分子分析物的等电点在分离容积中分离它们的示例性分离装置的侧视图的示意图;图;3B为根据本发明的一些实施方式,如图3A所示的示例性分离装置的侧视图的示意图,其中沿其通道具有PH传感器的阵列;
图4A和4B为根据本发明的一些实施方式的pH分布的示意图,调节所述pH分布以诱导分子分析物向与图2A-2E所示的迁移相反的方向迁移;图4C-4E为根据本发明的一些实施方式的pH分布的示意图,调节所述pH分布以诱导分子分析物的双向移动;图4G-4K为根据本发明的一些实施方式,在一段时间内的动态多阶PH分布及其对容器内的溶液中的分子分析物的影响的示意性曲线图;图5A-5G为根据本发明的一些实施方式的曲线地示出了分子分析物如何相继向着位于PH分布的末端附近的pH坡台区移动的示意图;图6为根据本发明的一些实施方式的使具有不同pi的分子分析物分别以相对较高的速度沿PH分布移动的方法;图7A-7E为根据本发明的一些实施方式的曲线地示出如何使分子分析物以相对较高的速度沿动态PH分布移动的示意图;图8A-8E为根据本发明的一些实施方式的曲线地示出如何使分子分析物以相对较高的速度沿动态PH分布移动的另一示意图;图9A为根据本发明的一些实施方式,基于分子分析物的pi来分离它们的示例性装置的示意图。图9B-9D为根据本发明的一些实施方式,可以用于图9A的示例性装置的示例性离子源的示意图;图IOA和图IOE示出了根据本发明的一些实施方式的一个容器,例如图3所示的, 在质子和氢氧根注入的情况下,具有非缓冲溶液和相关的电流密度;图10B-D和图10F-H分别示出了根据本发明的一些实施方式的沿一个轴的动态pH 分布,例如图IOA和图IOE所示的;图IlA和图IlC示出了根据本发明的一些实施方式的一个容器,例如图3所示的容器,在质子和氢氧根注入的情况下,具有缓冲溶液,连同相关的电流密度;图IlB和图IlD示出了根据本发明的一些实施方式的沿一个轴的pH分布,例如图 IlA和图IlC所示的;图12为示出了根据本发明的一些实施方式的电流的变化与缓冲溶液和非缓冲溶液的PH之间的相关性的曲线图;和图13为示出了根据本发明的一些实施方式的电流的变化和具有三种缓冲剂的溶液的PH之间的相关性的曲线图,其中的两种缓冲剂具有两种质子化状态,而另一种具有三种质子化状态;以及图14为根据本发明的一些实施方式的对一种或多种分子分析物设置缓冲溶液的方法的流程图1400。
具体实施例方式在一些实施方式中,本发明涉及分子分析和分离,并且更具体地但不排他地,涉及利用电聚焦来进行分子分析和分离的方法。根据本发明的一些实施方式,提供了时间上分离具有不同等电点(pi)的分子分析物的混合物的方法和装置。所述方法基于在分离容积中生成具有不同PH区的pH分布, 其中该分离容积包括具有分子分析物(如蛋白质)的混合物的溶液。在PH分布之后,可选地形成梯度,其分布在一段时间内逐渐改变以根据它们各自的Pi诱导分子分析物的空间分离。可选地,改变该分布以便诱导具有不同Pl的分子分析物沿共同轴(如PH分布轴) 分离移动。具有不同Pl的分子分析物可同时或相继向着相反方向和/或相继向着相同方向移动。可选地,通过逐渐增加或降低一个或多个具有基本稳定的PH分布的pH的梯级区的PH而改变该分布。根据本发明的一些实施方式,公开了一种分离具有不同pi的多种分子分析物的混合物的装置。所述装置包括大小和形状确定的容器,用于包含沿轴具有多种分子分析物的溶液,例如平均直径为约1毫米或更小的通道,例如切割轮廓为100x3x0. 3mm的通道。所述装置进一步包括在溶液中沿轴施加电场的高压电源,例如沿通道的轴。所述装置进一步包括离子源,被设置成通过注入可降低或增高分离容积的某些区域的PH的离子流而在溶液中沿该轴建立PH分布,例如该离子源可以是如提交于2009年8月18日的美国临时专利申请No. 61/272,110中所定义的。离子源与控制器连接,该控制器操作多个离子源以逐渐调节PH分布从而诱导每一个分子分析物分别沿轴迁移,可选地相继迁移。可选地,控制器连接于计算单元和/或界面,如手动界面,其允许使用者提供用于生成PH分布的指令以及动态地改变其以诱导分子分析物迁移。在详细解释本发明的至少一个实施方式前,应理解,本发明在其应用上不必局限于在以下描述和/或附图所示和/或实施例中提供的部件和/或方法的构建和布置的细节。本发明能够是其它实施方式或以不同方式被实施或实现。现在参考图1,其为根据本发明的一些实施方式,基于分子分析物的等电点(pi) 来分离它们的方法50的流程图。如本文中所使用的,分子分析物是指分子,生物分子,如蛋白质,肽,基于肽的药物化合物,和基于生物分子的药物化合物,以及PH依赖性目标物如胶体或任何其他带电荷分子,其可以经历质子化/去质子化。分离沿分离容积进行,可选地在包括分子分析物的溶液,如电解液中进行。首先,如在51处所示的,在具有分子分析物的混合物的溶液中生成具有不同pH梯级区的PH分布。该pH分布沿某一轴形成,该轴在本文中可以称为pH分布轴。沿该pH分布轴施加一个电势以诱导离子流,例如,如下所述的。形成该PH分布以便于将混合物的分子限制(俘获,trap)在不同pH梯级区之间的pH坡台区中。例如,图2A示出了这样的pH 分布,其中以带圆圈的数字1、2和3标记的三种分子分析物处于高pH梯级区和低pH梯级区之间的坡台区。可选地,使用如下关于图3A和图;3B所述的装置生成pH分布。假定分子分析物如蛋白质在低PH值(其中质子浓度较高)下具有正电荷,并且在高pH值(其中质子浓度较低)下具有负电荷。可通过控制沿着含有上述溶液的容器的不同区域的PH水平而建立PH分布,例如在图3A和图;3B中的数字102所示的。通过调节pH梯级区中的质子浓度而实现控制。现在,如在52处所示的,调节pH分布的分布以基于分子分析物的等电点而诱导一种或多种分子分析物的迁移,例如沿着PH分布轴的迁移。pH分布的调节使分子分析物基于它们的Pl移动。每种分子分析物沿PH分布轴移动直到它到达其中其pH不携带净电荷的 PH区。在这个区域中,局部pH等于其pi使得分子分析物的移动速度被降至大致为零,并且分子分析物处于停止。如以下进一步描述的,这样的移动沿PH分布轴形成具有不同pi的分子分析物的多个分离组。可选地,在外电场存在下,该分离基于带电分子分析物的移动特性,例如其迁移速度。这些特性与其电荷成正比,并且因此随着沿该PH分布轴的区域中的 PH改变而变化。可选地,pH分布是时间上控制的。例如,随时间在监控时间间隔内逐渐调节PH分布。由于具有不同Pi的不同分子分析物具有不同的迁移速度,所以它们沿PH分布的迁移速度是不同的。同样地,分子分析物在某种分布中沿PH分布移动某一距离所花费的时间是其Pi的指示。同样地,不同分子分析物沿具有某种分布的PH分布到达某一目标区域位置的顺序是其相关Pi值的指示。此外,由于不同分子分析物的迁移速度不同,所以可以通过在分离容积中使其以不同速度沿PH分布轴移动而分离分子分析物的组。如本文所使用的,在一段时间期间被可控调节的pH分布称为动态pH分布。通过在分离容积中建立动态PH分布,分子分析物不但可在空间上分离,即分离至不同pH区,而且可在时间上分离,即在不同时间槽分别到达分离容积中的相同位置。例如,如上所述的PH 分布的改变允许在时间上将分子分析物到达分离容积中的某一区域分开。如以下进一步描述的,这允许放置探针单元以探测或放置诊断单元以诊断在其前面移动的分子分析物。当将pH分布设置为某种静态分布时,分子分析物沿着所述分布停在某一位置上。当逐渐动态地改变PH分布的分布时,由于在特定区域中的时间依赖性pH变化实现不同分子之间在时间上的分离,所以相继释放分子分析物。通过缓慢改变PH分布,可以使pi值接近的两种分子从某个PH坡台区(在分离前,蛋白质浓集在坡台区中)在释放时间上的分离任意大,产生特征在于任意小Pl差异的蛋白质的分离。这样的分离是在空间上实现的。现在参照图3A,其是根据本发明的一些实施方式,基于分子分析物的等电点(pi) 而在分离容积中分离它们的示例性分离装置100的侧视图的示意图。这种分离允许分别诊断和/或收集分子分析物。分离装置100建立了空间-时间PH分布,一种动态PH分布,在溶液中具有时间依赖性PH限制区。当通过改变pH梯级区之一的pH来调节pH分布时,一些分子分析物从限制区释放,而其它仍保持受限制。以这样的方式,可使不同的分子分析物彼此分离。分离装置100包括多个离子源101,其可选地被布置为靠近容器102的阵列,该容器102限定分离容积并容纳溶液,如电解液。容器102在本文可称为通道和/或聚焦通道。如以下进一步描述的,通过在容器102的多个不同区域向容器102中提供多个离子流, 其中每个离子流改变不同区域的pH水平,离子源101被设置成在溶液中建立pH分布。在其中建立PH分布的容器102的分离容积中,每个离子源101改变各自pH区域的pH。可选地,离子源101通过生成离子流并将其注入聚焦通道102中,沿着与容器102的纵轴99平行的PH分布轴、或与其平行的任意其它轴而控制不同区域处的pH水平。可选地,离子源 101为pH发生器,容器为聚焦通道,例如如在提交于2009年8月18日的美国临时专利申请 No. 61/272,110中描述的,将其以引用方式并入本文。如图3A所示的,容器102的左侧和右侧分别连接于可称为原料储罐的溶液容器 103、104。电解液容器之一 103连接于阴极105,而另一个104连接于阳极106,它们与高压电源108连接并设置成在容器102中沿分离容积施加高压(HV)。可选地,系统100进一步包括控制器110,其控制主电流源108和/或离子源101,可选地分别进行控制。控制器110 可通过指令一些或所有离子源101改变各个区域的pH而改变pH分布。应主意,虽然仅示出了三个离子源101,但分离装置100可具有任意数量的离子源 101,例如,4、8、12、16、20、100个或任意中间值或更大数值。
可选地,如图:3B所示以及在以引用方式并入本文的提交于2009年8月18日的临时专利申请No. 61/272,110中描述的,将pH传感器313的阵列沿通道放置,以连同控制器 110及质子/氢氧根源101 —起闭合反馈环。使用中,用溶液填充通道102,可选地如下所述地进行选择。然后,向控制器提供指令以形成期望的动态PH分布,适用于分离加入到该溶液中的某种混合物。可选地,控制器110连接于允许手动提供动态pH分布的用户(使用者)接口。在另一个实施方式中,连接于控制器110的计算单元(未显示)自动地计算动态PH分布,可选地使用以下方程,例如基于所探测的分子分析物的pi。接下来,接通HV电源108以在分离容积中维持如300V的电势差。然后控制器110根据使用者的输入/或计算单元来操作离子源110,并且,如果存在pH传感器313,则激活反馈环,以随时间维持期望的PH分布。当后者已建立时,将混合物通过装载器插入通道102中,该装载器可选地位于容器102的一侧。分子分析物随后根据通道102内的pH和电场进行迁移。随着后者移动并聚焦,使用者可根据期望的动态PH分布重新设置pH分布。然后控制器110根据实时接收的指令来操作离子源101。如本文所使用的,实时是指在没有超过几秒的计算延迟下调节 PH分布。最后,如以下进一步所述的,迁移的分子分析物通过收获单元分别收集或在沿通道的某一位置进行探测。与现有的等电聚焦装置相比,这种分离装置100具有许多有利的特征。例如,所述装置允许使用无凝胶和/或两性电解质的溶液,有利于更高的纯化产率和更短的纯化时间。此外,分离装置100可以被设计成使每个逃逸的分子直到其被纯化而仅移动约为1毫米(mm)的短距离,使得纯化时间相对较短。另外,在一些分离策略中,分子沿共同的轨迹移动,使得收获和/或诊断单元的设计和/或操作简单。这些单元可以被定位在指定的点,从那里可收回或探测到所有分子。最后,PH分布可以适合时间和/或空间方式, 从而为每种生物分子混合物形成最佳的纯化过程。这样的分离装置100可通过诱导分子分析物中的一些沿着在容器102的分离容积中形成的PH分布的迁移而用于分离分子分析物。例如,现在参照图2A-2E,其是根据本发明的一些实施方式的动态pH分布及其随时间推移对在容器102的溶液中的分子分析物的影响的示意性曲线图。设置两个离子源 101以建立如2A所示的PH分布。如上所述的,图2A示出了在pH分布的高pH梯级区和低 PH梯级区之间的pH坡台区处的三种不同的分子分析物。三个区域的空间尺寸可选择为10 微米至数厘米(cm),例如10cm,20cm, 50cm或任意中间值或更大的数值,而pH坡台区的典型尺寸为数十微米。通过阴极105和阳极106以数字201所示的方向施加电场。通过改变容器的不同区域中的PH来限定pH分布中的pH坡台区202,以使pH水平限定如下pH(I) > pll > pI2 > pI3 > pH(III)以及 pH(I) > pH(II) > pH(III)其中pH(I)-pH(III)分别表示高pH梯级区、pH坡台区和低pH梯级区的pH水平, PI1-PI3分别表示第一、第二和第三分子分析物的pi。在图2A中,在注入到梯级区I或梯级区III中之后,三种分子分析物(例如三种蛋白质)的混合物浓集于PH坡台区II,。如果插入高PH梯级区如区域I,假定分子分析物具有负电荷,并因此会以与电场方向相反的方向朝向低PH梯级区移动。如果将分子分析物注入低pH梯级区如区域III,假定它们具有正电荷,并因此会以电场的方向朝向较高PH梯级区移动。在任一种情况下,分子分析物在溶液中形成的电场中朝向标记为PH坡台区II的pH坡台区移动,在那里由于它们的pi在其PH水平处并因此它们未携带净电荷,所以受到限制。当低pH梯级区诱导分子分析物获得正电荷,而高PH稳定水平诱导它们获得负电荷时,分子分析物的分子被限制。现在,如图2B所示,调节pH分布以诱导分子分析物中的一种迁移。在所示的实例中,改变PH分布以使区域III中的pH增加至在pI3和pI2之间的中间值,即至其中pH⑴ > pll >pI2> pH(III) >pI3的一个点。在这种分布下,第三分子分析物带负电,以便其以与电场流动相反的方向,从PH坡台区朝向pH分布的低pH梯级区的右端移动,例如如图 2C所示。为清晰起见,用实线箭头标记图2A-2E中的移动方向,并用具有标记E的箭头标记电场。同时,第一和第二分子分析物仍保留在PH坡台区中。现在可例如在容器102的分离容积的右手侧收集和/或探测第三分子分析物。为了使第二分子分析物与第一分子分析物分离,将低PH梯级区的pH进一步升高至在pHl和pH2之间的中间值,即至pH(I) > pll >pH(III) >pI2>pI3的一个点,例如图2D所示。现在,使第二分子分析物带负电以使其朝向PH分布的右端移动,在那里它可以单独地从第一和第三分子分析物被收集和/或诊断。最后,如图2E所示,将高pH梯级区的pH值升高至高于pll的值,并且使第一分子分析物带负电以使其朝向PH分布的右端移动,在那里它可以单独地从第三和第二分子分析物被收集和/或诊断。显然,以这种方式,可单独地收集和/或诊断任意数量的分子分析物, 其中收集和/或诊断时间可与所收集和/或所诊断的分子分析物的Pl在时间上同步。根据本发明的一些实施方式,分离装置100随时间单一地例如线性地逐渐改变pH 分布,例如升高区域中的一个,例如高PH梯级区中的pH。以这样的方式,将分子分析物相继释放,在形成分离的迁移带中,这可称为组,如图2E所示。可通过任意慢地升高某一区域如低PH区域的pH,使这些带之间的空间分离任意大,从而在带之间的pi分离中产生任意高的分辨率。可选地,可通过传统馏分收集器和/或通过其它蛋白质收获技术,在与PH分布的右端相对应的区域右端上,将三个带作为独立的组收集。另外地或可替换地,可通过传统分子探针和/或通过其它分子探测技术,在与PH分布的右端相对应的区域右端上分别诊断三个带。应注意,可通过降低一个或多个区域的pH来调节pH分布,可选地逐渐进行调节, 以诱导分子分析物向相反方向迁移,例如如图4A和4B所示。例如,通过降低区域I的pH 来调节PH分布以诱导分子分析物,例如第一和第二上述分子分析物的迁移。在所示的实例中,改变PH分布以使区域I中的pH降低至在pll和pI2之间的中间值,随后降低至在pI2 和pI3之间的中间值,即先降低至其中pll >pH(I) >pI2 >pI3 >pH(III)的一个点,然后降低至其中Pll > pI2 > pH(I) > pI3 > pH(III)的一个点。可选地,如图4C所示,改变pH分布以诱导分子分析物向两个相反的方向迁移。例如,通过同时和/或逐步降低区域I中的PH和升高区域III的pH,调节图IA所示的上述pH 分布以诱导分子分析物向相反方向迁移,例如上述分子分析物中第一和第三分子分析物。应注意,分子分析物可以在没有浓集在某个区域中的情况下被分离。例如,如图4D 所示,当PH梯级区中的pH与其内分子分析物的pi不相同时,在该pH梯级区中可发生分离。 由于分子分析物I为电正性,而分子分析物II和III为电负性,并因此向不同方向迁移,所以在分子分析物I与分子分析物II和III之间形成分离。相同的策略可应用于例如将第一分子分析物释放至左侧,将第三分子分析物释放至右侧,并在如图4E所示的不同pH坡台区中将它们捕获,同时将第二分子分析物保留在中间PH坡台区。
现在参照图4G-4K,其是根据本发明的一些实施方式的动态多级pH分布以及它们随时间推移对容器的溶液中的分子分析物的影响的示意性曲线图。在所示的实施方式中, 在基于PH相继布置的不同pH梯级区之间形成多个pH坡台区。这允许从和/或在沿pH分布轴的不同位置收获和/或诊断具有不同Pl的分子分析物。这样的多级PH分布允许形成良好限定的蛋白质带,其适合通过传统蛋白质带收获方法进行收获。图4G与图2A相同,其满足PH(I) > pll > pI2 > pI3 > pH(III)。在图4H中,将标记为区域III的低pH梯级区升高至在PI3和pI2之间的中间值,即至其中pH(I) >pll > pI2 > pH(III) > pI3的一个点。如图4H所示,标示为IV的另外的pH坡台区及标示为V的另一个pH梯级区在区域III的右侧形成,以使pI3> pH(V)。如图41所示,在这样的pH模式下,pH(I) >pll > pI2 > pH(III) > pI3 > pH(V),并且第三分子分析物带负电,以向右端移动并被限制在pH 坡台区IV中。第一和第二分子分析物仍保持限制在pH坡台区II中。在图2J中,在进一步将PH梯级区III的pH升高至其中pH⑴>pll > pH(III) > pI2 > pI3的一个点,并且形成分别标记为VI和VII的第三pH坡台区和第三pH梯级区后,使得pH(I) > pll > PH(III) >pI2> pH(VII) >pI3>pH(V)。第二分子分析物从限制区释放并向着右端移动,直到在PH坡台区VI中被捕获。现在,三种分子分析物中的每一种分别在不同的pH坡台区中被捕获,如图4K所示,并可以直接被诊断和/或收获,和/或可选地分别在不同时间被释放,以在右侧边缘处被收集。在这样的实施方式中,根据某种模式,通过简单地将离子注入通道中而进行分离。 这允许分子分析物如蛋白质在沿通道的多个位置聚焦,分别在PH坡台区中。在单独地收集和/或诊断分子分析物之前进行聚焦。以这样的方式,可提高产率,并且不同蛋白质可反复聚焦于不同的预设位置,以使收获单元可在固定位置进行收获。应注意,当降低一个或多个区域的pH时,可以类似地进行诱导分子分析物向pH分布的左端的迁移。例如,图5A-5G示出了分子分析物如不同的蛋白质如何相继向着位于pH 分布的左端附近的坡台区移动。通过降低PH梯级区V中的pH,可进行这些图中所示的逐步迁移。现在参照图6,其是根据本发明的一些实施方式,使具有不同pi的分子分析物以相对较高的速度沿PH分布分别迁移的方法700。如上所述,分子分析物沿pH分布轴迁移直到它们到达其中它们不携带净电荷的区域。每种分子分析物的迁移速度与其电荷成正比, 该电荷是溶液中集合区域(hosting zone)的pH的派生物。首先,如在701处所示,形成具有在两个高/低PH梯级区之间的中间梯级区的pH分布。该pH分布可包括由较低的中间 PH梯级区分开的两个高pH梯级区,或具有由较高的中间pH梯级区分开的两个低pH梯级区的PH分布。简言之,具有这样的分布的pH分布在本文中分别称为高-低-高pH分布和低-高-低PH分布。图7A和图8A分别示出了这样的用于三种示例性分子分析物的分布。现在,如在702处所示,根据pH分布的模式,从pH分布轴的一侧,例如容器102的一侧,例如左侧,提供分子分析物。进行注入以将分子分析物限制在PH坡台区。如果分布为高-低-高,那么可从任意部位将分子分析物注入通道中,除了在高电势侧的高梯级区, 例如,在图7中的右侧。否则,分子分析物可能不聚焦(集中)。在这种情况下,分子分析物聚焦(集中)于位于较低电势侧的坡台区,例如图7中所示的左侧。可替换地,如果分布为低-高-低,那么可从任意部位将分析物注入通道中,除了低电势侧的低梯级区,例如图8中所示的左侧。在这种情况下,分子分析物聚焦于位于较高电势侧的坡台区,例如图8中所示的右侧。分子分析物迁移,直到被限制在高梯级区和低梯级区之间的PH坡台区,例如图7A和8A所示的。如上所述,当迁移至一侧的尝试通过将分子分析物推回限制区域的负电荷慢慢地形成并且迁移至另一侧的尝试通过类似地将分子分析物推回限制区域的正电荷慢慢地形成时,受限制的分子分析物被限制。最初,如图7A所示,限定分布以使pH(I) =pH(V) > pll > pI2 > pI3 > pH(III), 并且三种示例性分子分析物如蛋白质被捕获在PH坡台区II。使梯级区III尽可能短,优选在约10微米至1000微米的范围内,以将蛋白质在其中它们的电荷相对较小的区域III中的移动时间最小化。现在,如在703处所示,对pH分布的中间梯级区进行调节以诱导一种或多种受限制的分子分析物的迁移。例如,图7B示出了通过升高中间稳定区的pH至其中pH(I)= PH(V) > pll > pI2 > pH(III) > pI3的一个点,而调节pH分布以诱导标记为pI3的第三分子分析物的迁移。与之前的一样,这种增加使第三分子分析物从PH坡台区II释放,同时其他分子分析物仍保持受限制。轻微带负电的第三分子分析物移动至右端直到到达PH坡台区IV。在该点,并因此第三分子分析物的pH的负电荷显著增加。因此,如图7C所示,第三分子分析物的迁移速度显著加快,例如快10倍、100倍或1000倍,缩短了相对于根据图1 中所示的方法进行的分离的分离时间。为简略,使用双箭头标记更高的速度。如在704处所示,可在多个阶段调节分布从而以相继的方式释放分子分析物。例如,以相继的方式增加和/或降低中间PH梯级区的pH,例如如图7A-7E和图8A-8E所示。在图8A-8E中,以pi 降低的顺序进行分离。三种示例性分子分析物的起始PH分布为pH(III) >pll>pl2> P13SPi^1) =pH(V),并且限制在pH坡台区IV中的三种分子分析物在图8A中示出。使用中,作为时间的函数将PH梯级区III的pH慢慢降低至其中pll >pH(III) > pI2 > pI3 > PH(I) =pH(V)的一个点。在这种情况下,第一分子分析物带正电并开始向左侧移动。在到达PH坡台区II时,pH下降,并且第一分子分析物的正电荷及其迁移速度显著增加,例如如图8C所示。第二和第三分子分析物相继重复同样的过程,如图8D和8E所示。现在参照图9A,其是根据本发明的一些实施方式,基于分子分析物的pi分离它们的示例性装置900的示意图,用于收集和/或诊断具有一种或多种分子分析物的混合物。图 9A进一步示出了在示例性装置900的容器102中生成的pH分布的示意性曲线。示例性装置900与图3A所示的一样,然而,离子源101基于离子注入,如以下进一步描述的。具有适当电解液的容器102限定密闭的分离容积,在其中生成pH分布并对其进行调节,例如如上所述。电场横穿该分离容积,例如如上所述。离子源101被设置成以可控方式将质子和/或氢氧根离子注入沿着在分离容积中形成的PH分布轴的特定区域。该容器包括用于引入分子分析物(如蛋白质)的混合物和收获分离过程的产物的装置。在所示的实施方式中,装置的容器102将分离限定在由两个储罐供料的细长通道中。通道102的长度可在数十微米(如果由微机械加工制造)至数毫米、厘米或数十厘米 (如果由常规方法制造)变化。通道的平均直径和厚度可在1微米和数厘米之间变化,例如宽度在1微米和/或1毫米之间。质子和氢氧根离子源101沿通道分布,并设置成将离子注入通道中的区域。例如,分别使用三个氢氧根源和两个质子源来形成图4和图5所示的 PH分布。这样的离子源的实例示于图9B-9D,其是根据本发明的一些实施方式,在示例性装置900中可以同时或可交还地使用的不同示例性离子源的示意图。图9B示出了质子/氢氧根源911,其包括通过开口 913和透析膜914连接至分离通道102的小室912。透析膜防止或降低蛋白质从分离通道102至小室912的泄漏,同时允许在这些容积之间的离子交换。 质子/氢氧根源911通过在室912中混合酸和碱溶液,而在分离容积的邻近区域中设置pH。 例如,如果离子源为质子源,则过量的酸溶液与碱溶液混合而得到总体PH < 7的区域。如果离子源为氢氧根源,则进行相反的操作并在区域中形成PH > 7。可选地,将酸和碱溶液置于独立的容器中,并以期望的量供给相应的质子/氢氧根源室。图9C示出了基于电解的离子源921,其通过使用双极膜922和电压来裂解水而产生质子,其中所述电压沿在分离通道102和浸没在质子源室924中的钼电极923之间的膜施加。可选地,基于电解的离子源921是如以引用方式并入本文的提交于2009年8月18日的临时专利申请No. 61/272,110中所定义的。选择双极膜922的极性以使质子在膜922的通道侧上生成,而氢氧根离子在室侧上生成。选择施加于膜922的偏压以使负端(negative terminal)提供给膜的通道侧,而正端提供给钼电极。在这些条件下,水在膜中裂解。将所生成的质子注入通道中,并且氢氧根离子从膜注入到室中,在那里它们与在钼电极923上生成的质子重新结合而产生水。显然,并且如在临时专利申请No. 61/272,110中所述的,可类似地构建氢氧根离子源。为此目的,将双极膜与电压源的极性一起反转。在这种构造中, 在膜922中由水裂解生成的氢氧根离子注入分离通道,而质子注入氢氧根源室拟4中,在那里它们与在钼电极上生成的氢氧根离子重新结合而产生水。图9D示出了另一个离子源931,其中通过在浸没在源室936中的两个钼电极932、 933之间施加电压而电解水。可对通道935附近的钼电极933进行穿孔以改善离子传输至通道。在其中阴极电极更靠近分离通道的情况下,将氢氧根离子注入该通道中。为了将质子注入通道,可将偏压极性反转以使现在的阳极邻近该通道。现在参照对形成和调节pH分布以诱导分子分析物沿pH分布轴迁移的方法的描述。通过将质子和/或氢氧根离子注入承载电场的通道中来实施该方法,其用来生成PH分布,如容器102。本文的描述也教导了合适电解质及注入流的选择以实现在空间上的期望 PH分布,并可选地及时对其进行改变。完整计算的简单近似作为算法在本文中公开,用于模拟通过以上关于图9A所述的装置的分离过程的涉及的装置操作。沿通道(如102)中的分离容积的PH分布,可以通过以下对于所有涉及的离子的迁移方程加以描述方程1 SCi / a + 孓(-D1 · VC1 + ZiFpiC1E) = R1在合适的边界和起始条件下与以下泊松-波尔兹曼方程(Poisson-Boltzmarm equation)联合方程2^4 = 14χ1014·ΣΖΑ
i以米、千克和/或秒(MKS)为单位,Ci表示物质i的离子的摩尔浓度,Di表示i的扩散系数,Pi表示i的电迁移率,Zi表示i的质子电荷单元中的电荷,F表示法拉第常数, Ri表示物质i的反应期间(reaction terms),而云表示聚焦通道如容器102中的电场。应注意,虽然本文中的实例与蛋白质相关,但可以使用任意分子分析物。可选地,后一方程考虑到在溶液中发生的化学反应,从而形成一组多个非线性微
14分方程,这允许计算出数值解。可选地,以下允许对生成用于上述分离过程的动态pH分布的pH分布发生器进行编程。利用化学反应(如质子-氢氧根重组)相对较快的事实和外电场中的离子迁移比某些离子扩散占优势的事实(除了紧邻质子/氢氧根注入附近),可制定出在稳态下捕获本质物理现象的分析易处理模型。该模型阐明上述装置在分离过程期间的工作方式,并提供用于选择生成期望的PH分布的参数的工具。因此该简化的模型公开了用于对装置规划分子分析物分离测定,如蛋白质测定的模拟装置的算法。为简明起见,限定两种类型的pH变化操作,一种聚焦PH坡台区和一种散焦 (defocusing) pH坡台区。聚焦pH坡台区的特征为在pH坡台区的低电势侧具有较高的pH 值,以及在PH坡台区的高电势侧具有较低的pH值,例如如图2A所示的。散焦pH坡台区则相反,即特征为在PH坡台区的低电势侧具有较低的pH值,而在pH坡台区的高电势侧具有较高的PH值,例如图7A中所示的pH坡台区IV。聚焦pH坡台区捕获pi在pH坡台区的高 PH值和低pH值之间的所有蛋白质。散焦pH坡台区在延长时间后仍不会捕获蛋白质。根据本发明的一些实施方式,在不携带缓冲分子的盐水溶液中形成PH分布。图 IOA和图IOE示出了分别将质子和氢氧根离子注入分离通道1000,如上述装置100,900的分离通道。由左右储罐供料的分离通道1000的特征为具有两个pH值,本文分别标记为pHA 和pHB,其中pHA>pHB。示出了通道中相关的离子(粒子)流密度连同到通道1000中的注入流1001,以及电场1002的方向。图10B-10D和10F-10H示出了在不同注入条件下沿pH 分布轴的示例性PH分布。在图IOA和IOE中将pH分布轴标记为A-A虚线。在图10B-10D 中,PHa= 11,pHB = 5。图IOB示出了无注入流时的pH分布,其中Jh = 0。由左侧储罐供给的氢氧根流比由右侧储罐供给的质子流占优势,并且质子-氢氧根重组可稳定分离通道和右侧储罐之间的界面。整个通道中的PH与左侧储罐中的pH相同。图IOC示出了在一些质子注入通道后的pH分布。pH梯级区III中的注入点右侧的PH降低,如图IOC中实线所示,从而形成聚焦pH坡台区。对于增加的质子注入,聚焦pH 坡台区变陡直到它达到其最大值,例如在图IOC中由虚点线所标记的。当将注入升高超过离子流的这个极限值时,会导致PH坡台区的翻转,将其从聚焦pH坡台区转变为散焦pH坡台区。结果如图IOD所示。要提及的是,在聚焦pH坡台区中,区域I的pH保持不变而区域 III的PH随电流而改变。在散焦pH坡台区中则相反,即区域III的pH保持不变而其区域 I中的相应值随施加的电流而改变。例如,当生成如图2A所示的动态pH分布时,所得到的图IOC中的虚点线聚焦pH 坡台区使Pl在PH 11和pH 7之间的所有蛋白质聚焦。当降低质子注入流减少而产生由图 IOC中的实线所示的pH坡台区时,pi在pH 7和pH 9之间的所有蛋白质被释放。相对于图7A,图IOD中所示的散焦pH坡台区可加快pi < 3的蛋白质向右迁移。 过量质子注入下产生的散焦PH坡台区可用于实现图7A-7E所示的动态pH分布,其中需要聚焦和散焦PH坡台区。图IOF示出了对于其中pHA = 9、pHB = 3及Jqh = 0情况的pH分布。由于通过右侧储罐供给的质子流比通过左侧储罐供给的氢氧根流占优势,所以通道102中的pH等于 PHb0在图IOG中,与图IOC所示的类似,氢氧根离子的少量注入产生由实线所示的聚焦pH 坡台区,而虚点线举例说明了当施加极限电流时达到的最大聚焦PH坡台区。超过这个电流会引起PH坡台区翻转,如图IOH中所示。对于等电点在pH 3和pH 7之间的蛋白质,在这种构造中可以实现图4A-4E中所示的顺序。 可使用如下方程来计算图10A-10D的区域I和III中的稳态pH值方程
权利要求
1. 一种分离具有不同等电点(pi)的多种分子分析物的混合物的方法,包括将包含多种分子分析物的混合物的溶液置于分离容积中;沿所述分离容积的轴生成具有多个PH区的pH分布;以及调节所述PH分布的分布以诱导所述多种分子分析物中的第一种沿所述轴迁移而与所述多种分子分析物中的第二种分开,所述第一和第二种分子分析物具有不同的Pi。
2.根据权利要求1所述的方法,其中,所述PH分布包括至少两个具有不同pH水平的 PH梯级区,在所述调节之前,所述多种分子分析物被限制在具有基本均勻的pH的所述至少两个PH梯级区之间,所述调节包括改变所述至少两个pH梯级区的一个中的pH。
3.根据权利要求1所述的方法,其中,所述调节随时间逐渐地进行。
4.根据权利要求1所述的方法,其中,所述pH分布由至少一个坡台区限定,所述多种分子分析物聚集在所述至少一个坡台区中。
5.根据权利要求1所述的方法,其中,所述生成包括沿所述轴对所述溶液施加电场,并在沿所述轴的多个点处注入多个离子流以建立所述PH分布。
6.根据权利要求1所述的方法,进一步包括将至少一种缓冲成分加入到所述溶液中以使所述PH分布稳定。
7.根据权利要求1所述的方法,进一步包括收集所述第一种分子分析物,而所述第二种分子分析物保留在所述分离容积中。
8.根据权利要求1所述的方法,进一步包括调节所述分布以诱导所述第二种分子分析物沿所述轴迁移而与所述多种分子分析物中的第三种分开,所述第二和第三种分子分析物具有不同的Pl。
9.根据权利要求1所述的方法,其中,所述调节包括调节所述分布以诱导所述第一和第二种分子分析物沿所述轴在相反的方向上迁移。
10.根据权利要求1所述的方法,其中,所述调节包括调节所述分布以改变沿所述轴的所述迁移的方向,以使所述第一种分子分析物相继在两个相反的方向上移动。
11.根据权利要求1所述的方法,其中,所述多个PH区包括具有基本均勻的第一pH的两个梯级区,所述两个梯级区由具有基本均勻的第二 PH的中间梯级区分隔开,所述混合物被限制在所述两个梯级区中的一个和所述中间梯级区之间,所述调节包括改变所述中间梯级区中的pH。
12.根据权利要求1所述的方法,其中,所述多个pH区包括至少三个不同的pH区,所述调节逐渐地进行以诱导所述第一种分子分析物迁移至在所述多个PH区的第一对之间的第一坡台区,以及所述第二种分子分析物迁移至在所述多个PH区的第二对之间的第二坡台区。
13.根据权利要求1所述的方法,其中,对所述溶液进行缓冲。
14.根据权利要求13所述的方法,进一步包括提供所述混合物中的一种或多种分子分析物的等电点,并根据等电点设置所述溶液, 其中根据所述等电点确定所述溶液的缓冲浓度;和根据所述确定来设置所述溶液。
15.根据权利要求1所述的方法,其中,所述调节包括聚焦所述第一和第二种分子分析物以沿所述轴彼此分开。
16.根据权利要求15所述的方法,进一步包括在沿所述轴的不同位置分别收集所述第一和第二种经聚焦的分子分析物。
17.根据权利要求1所述的方法,其中,所述生成包括根据一组代数方程来计算所述PH 分布。
18.根据权利要求1所述的方法,其中,所述调节包括根据一组代数方程来计算对于所述PH分布的至少一种调节,并根据所述至少一种调节进行所述调节。
19.一种分离具有不同等电点(pi)的多种分子分析物的混合物的方法, 其包括将包含多种分子分析物的混合物的溶液置于分离容积中;将所述多种分子分析物限制在容纳所述溶液的分离容积中的两个PH梯级区之间,每个所述PH梯级区具有不同的基本均勻的pH ;以及逐渐改变所述两个PH梯级区的一个中的pH,以诱导在多个分离组中的所述多种分子分析物的相继迁移,其中每个所述分离组具有不同的pi。
20.根据权利要求19所述的方法,其中,所述限制包括对所述溶液施加电场并在沿至少一个点处注入多个离子流,以建立所述两个PH梯级区。
21.一种基于分子分析物的等电点来分离所述分子分析物的方法,包括 在具有多种分子分析物的溶液中生成具有多个PH区的pH分布;在一段时间内逐渐地改变所述PH分布的分布,以根据所述多种分子分析物各自的等电点诱导所述多种分子分析物的空间分离。
22.—种分离具有不同等电点(pi)的多种分子分析物的混合物的装置, 包括大小和形状确定的容器,其沿轴容纳具有多种分子分析物的溶液; 在所述溶液中沿轴施加电场的电源;用于在所述溶液中沿所述轴建立PH分布的多个离子源,其中通过注入多个离子流以对所述溶液的多个区进行质子化和去质子化中的至少一种;以及控制器,其操作所述多个离子源以逐渐地调节所述PH分布,从而诱导每一种所述分子分析物单独地沿所述轴迁移。
23.根据权利要求22所述的装置,进一步包括用于接收来自计算单元和用户中的至少一个的多个指令的界面,所述控制器根据所述多个指令来操作所述多个离子源。
24.根据权利要求22所述的装置,其中,所述容器具有至少一个小于1毫米的维度。
25.根据权利要求22所述的装置,其中,所述溶液是非凝胶溶液。
全文摘要
一种分离具有不同等电点(pI)的多种分子分析物的混合物的方法。所述方法包括将含有多种分子分析物的混合物的溶液置于分离容积中,沿该分离容积的轴生成具有多个pH区的pH分布,以及调节该pH分布的分布以诱导第一分子分析物沿所述轴迁移而与第二分子分析物分开。该第一和第二分子分析物具有不同的pI。
文档编号G01N27/447GK102472724SQ201080036972
公开日2012年5月23日 申请日期2010年8月18日 优先权日2009年8月18日
发明者乌里·西万, 埃拉德·布罗德 申请人:工业研究与发展基金会有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1