专利名称:一种多功能土的固结及渗透试验装置的利记博彩app
技术领域:
本实用新型属于土工试验领域,尤其涉及一种多功能土的固结及渗透试验装置。
背景技术:
针对饱和土的常规固结试验、K0固结试验和渗透试验虽然简单,但已有使用成熟 的经验,其成果能满足一般的要求,仍作为主要的测试手段,被广泛使用。但常规渗透试验 不能反应不同固结状态对土样渗透性的影响。在不同固结压力及侧压力作用下变形稳定后 的土样,其渗透系数与孔隙比之间的变化关系不能得到反映;同时,在某级固结压力施加之 后,土样的渗透系数随时间的明显变化也不能得到反映。另一方面,土样常规固结试验不能 提供一定的侧压力水头,无法量测静止侧压力系数和孔隙水压力。由于渗透试验和固结试 验的脱节,在常规渗透、固结试验中无法模拟土固结过程中的应力和密度状态。针对非饱和土,国内外许多学者对非饱和土的渗透试验装置进行了大量的研究。 在非饱和土的渗透试验中,单一考虑水或单一考虑气来研究渗透性都是比较容易的,但在 非饱和土中水气运动时相互影响的。为揭示和反映非饱和土中流体的真实情况,最重要的 是研制出水气运动联合测试的设备。西安理工大学则研制了非饱和土水-气运动联合测定 仪,该仪器较好地实现了非饱和土的水-气运动联合测定,但轴向加压范围不大,最大轴向 加压为IOkPa,周围压力的施加上也有待改进。
发明内容本实用新型的目的在于克服现有技术中存在的上述缺点和不足,提供一种多功能 土的固结及渗透试验装置。本实用新型的目的是这样实现的一、多功能土的固结及渗透试验装置(简称试验装置)本装置包括动荷载系统、静荷载系统、传压盖板、压力室、数据采集系统、高压气瓶 和水箱;其连接关系是动荷载系统和静荷载系统分别与传压盖板连接;传压盖板、压力室和数据采集系统前后依次连接;高压气瓶分别与传压盖板和压力室连接;水箱分别与传压盖板和压力室连接。本试验装置的工作原理通过动荷载系统和静荷载系统分别施加动、静力荷载,通过数据采集系统实现数 据采集,进行饱和土的动、静力固结试验;通过涂抹黄油和加密封圈的方式实现传压盖板与压力室之间的密封并减小摩阻 力;通过静荷载系统施加荷载进行静力固结,在不同固结状态下,通过水箱施加水头进行饱和土的渗透固结联合测定;通过高压气瓶和水箱向压力室上、下部施加孔隙气压力和孔隙水压力,采用轴平 移技术控制吸力,通过静荷载系统施加轴向荷载,进行非饱和土的压缩、固结及渗透试验;整个过程实现了动静组合条件下试样动态响应的实时监控,以及饱和、非饱和土 样固结、渗透试验的联合测定。二、多功能土的固结及渗透试验装置的试验方法(简称试验方法)本试验方法按以下步骤进行①首先制备土样,将覆盖有滤纸的透水石放入压力室底部,然后装入制备好的土 样;②在土样上部放置覆盖有滤纸的透水石,然后安放好带有0型密封圈的传压盖 板,放入前在传压盖板侧壁涂抹一定量黄油;③连接好数据采集系统与动荷载系统、静荷载系统、传压盖板、压力室、高压气瓶 和水箱之间的连接线;④在完成步骤①②③的基础上,进行以下试验a、饱和土动力固结试验;b、饱和土渗透固结联合测定;C、控制基质吸力的压缩试验;d、排气不排水压缩试验;e、控制竖向净正应力为常数的收缩试验;f、稳态渗流试验;g、渗水系数、渗气系数测定;h、非饱和土浸水试验。本实用新型具有以下优点和积极效果①动荷载的频率、振幅和激振力可控,可预加设定的静载荷;②能够对同一试样分别进行固结试验、压缩试验、应力松弛试验、蠕变试验、渗透 试验和动力固结试验,并实现不同固结压力下的固结渗透联合测定;③能够对非饱和试样分别进行固结试验、压缩试验和渗透试验,在渗透试验过程 中还可施加10_200kPa轴向荷载;④能够准确量测和控制非饱和试样的孔隙水压力和气压力,并实现水、气体的施 加及渗入、渗出试样的流体体积的量测;⑤采用轴平移技术,能够方便快捷的控制和量测基质吸力;⑥实现所有试验数据的实时监测和自动采集,不需人工值守读数;⑦该装置测试原理直观、结构简单、精度高、稳定性好、易于操作、拆卸方便,对安 装测试人员没有很高的技术要求。本实用新型适用于饱和土动力固结、固结渗透联合测定、应力松弛和流变的试验, 还适用于非饱和土的固结、渗水和渗气的试验。
图1是本实用新型的结构方框图;[0043]图2是本实用新型的结构示意图。_为连接管线,---------为信号连接线。其中1-动荷载系统,1. 1-功率放大器, 1.2-激振器 1.3-压力传感器,1.4-立柱,1.5-激振梁;2-静荷载系统,2. 1-百分表,2.2-砝码, 2.3-传压支架,2. 4-螺栓, 2.5-杠杆式加载装置,2.6底座;3-传压盖板,3.1-第1透水石, 3.2-排气孔, 3.3-第1水压力孔道,3. 4-第1气压力孔道, 3.5-0型密封圈, 3.6-第1陶土板,3. 7-渗水孔,3.8-第2透水石, 3.9-第1防水透气膜,3. 10-第 1 玻璃管,3.11-三通阀;3. 12-第1体积压力控制器,3.13-第2体积压力控制器;4-压力室,4.1-上环,4.2-中环 4.3-隔膜室,4. 4-第2玻璃管,4.5-第1三通阀 4.6-第2三通阀,4. 7-排水孔,4.8-第2陶土板, 4.9-孔隙水压力孔道,4. 10-第 3 透水石,4.11-下环,4.12-第2防水透气膜,4. 13-第2气压力孔道,4.14-第2水压力孔道,4. 15-第3体积压力控制器,4.16-第4体积压力控制器,4. 17-第 3 三通阀;4.18-第3玻璃管;5-数据采集系统,5. 1-第1压力变送器,5.2-第2压力变送器,5. 3-第3压力变送器,5.4-第4压力变送器,5. 5-侧压力传感器,5.6-孔隙水压力传感器,5. 7-计算机, 移传感器;5.8-动态测试系统,5.9-位移传感器[0071]6-高压气瓶;7-水箱。
具体实施方式
以下结合附图和实施例详细说明一、试验装置1、总体如图1,本装置包括动荷载系统1、静荷载系统2、传压盖板3、压力室4、数据采集系 统5、高压气瓶6和水箱7 ;其连接关系是动荷载系统1和静荷载系统2分别与传压盖板3连接;传压盖板3、压力室4和数据采集系统5前后依次连接;高压气瓶6分别与传压盖板3和压力室4连接;水箱7分别与传压盖板3和压力室4连接。2、功能块1)动荷载系统1动荷载系统1包括功率放大器1. 1、激振器1. 2、压力传感器1. 3、立柱1. 4和激振 梁 1.5;其连接关系是激振梁1. 5横于立柱1. 4之间,在激振梁1. 5中部开孔并架设有激振器1. 2,在激 振器1. 2上嵌套有压力传感器1. 3,压力传感器1. 3与功率放大器1. 1相连。功率放大器1. 1和压力传感器1. 3分别通过信号传输线与计算机5. 7相连。动荷载系统1的工作原理是功率放大器1. 1将计算机5. 7的控制信号传入激振器1. 2,对传压盖板3施加向下 的冲击荷载,并通过压力传感器1. 3和动态测试系统5. 8采集和控制动荷载的施加频率和大小。动荷载系统1的功能是使动荷载施加的频率、振幅和激振力可控,进行动力固结试验。2)静荷载系统2静荷载系统2包括百分表2. 1、砝码2. 2、传压支架2. 3、螺栓2. 4、杠杆式加载装置 2. 5和底座2. 6 ;其连接关系是在底座2. 6内部设置有杠杆式加载装置2. 5,在杠杆式加载装置2. 5的前端通过放 置砝码2. 2施加静荷载,杠杆式加载装置2. 5通过螺栓2. 4与传压支架2. 3相连接,传压支 架2. 3将静荷载传递于传压盖板3,在传压支架2. 3上架设有百分表2. 1。静荷载系统2的工作原理是通过杠杆式加载装置2. 5和传压支架2. 3将静荷载传递至传压盖板3。静荷载系统2的功能是通过砝码2. 2向压力室4内施加50-800kPa各级荷载,进行静力固结试验。[0100]3)传压盖板3传压盖板3包括第1透水石3. 1、排气孔3. 2、第1水压力孔道3. 3、第1气压力孔 道3. 4、0型密封圈3. 5、第1陶土板3. 6、渗水孔3. 7、第2透水石3. 8、第1防水透气膜3. 9、 第1玻璃管3. 10、三通阀3. 11、第1体积压力控制器3. 12和第2体积压力控制器3. 13 ;其连接关系是传压盖板3外侧为0型密封圈3. 5 ;在传压盖板3内部设置有第1水压力孔道3. 3、 渗水孔3. 7和第1气压力孔道3. 4 ;第1水压力孔道3. 3 一端通过第1陶土板3. 6与压力室4相连,另一端与第1体 积压力控制器3. 12相连,第1体积压力控制器3. 12和水箱7相连;渗水孔3. 7 一端通向压力室4,另一端通过第1透水石3. 1后分为两路,一路与排 气孔3. 2相连,另一路通过三通阀3. 11与第1玻璃管3. 10相连;第1气压力孔道3. 4 一端通过第1防水透气膜3. 9和第2透水石3. 8与压力室4 相连,另一端与第2体积压力控制器3. 13相连,第2体积压力控制器3. 13和高压气瓶6连接。传压盖板3的工作原理是第1水压力孔道3. 3 一端通过第1陶土板3. 6与压力室4相连,第1陶土板为高进 气陶土板,在不超过其进气值的条件下能阻止气体通过,从而实现水压力的施加和量测;第1气压力孔道3. 4 一端通过第1防水透气膜3. 9和第2透水石3. 8与压力室4 相连,第1防水透气膜3. 9为一只透气不透水的半透膜,从而可实现气压力的施加量测。传压盖板3的功能是实现试样上部水压力和气压力的施加,通过轴平移技术控制试样内部吸力。所述的轴平移技术是指通过增加试样内部的孔隙气压力,从而引起试样内部的孔 隙水压力也相应增加,且两者的变化量保持相等,即使试样内部基质吸力保持为定值的同 时,可将负孔隙水压力增为正值。4)压力室4压力室4包括上环4. 1、中环4. 2、隔膜室4. 3、第2玻璃管4.4、第1三通阀4. 5、 第2三通阀4. 6、排水孔4. 7、第2陶土板4. 8、孔隙水压力孔道4. 9、第3透水石4. 10、下环 4. 11、第2防水透气膜4. 12、第2气压力孔道4. 13、第2水压力孔道4. 14、第3体积压力控 制器4. 15、第4体积压力控制器4. 16、第3三通阀4. 17、第3玻璃管4. 18 ;其连接关系是上环4. 1、中环4. 2和下环4. 11通过紧固螺栓连接成压力室4 ;中环4. 2内设置有隔膜室4. 3,隔膜室4. 3外侧通过第1、2三通阀4. 5、4. 6分别与 第2玻璃管4. 4和侧压力传感器5. 5相连;下环4. 11中部设置有第2气压力孔道4. 13、孔隙水压力孔道4. 9和第2水压力孔 道4. 14,下环4. 11侧壁设置有排水孔4. 7 ;第2气压力孔道4. 13 一端通过第2防水透气膜 4. 12和第3透水石4. 10通向压力室4的底部,另一端与第3体积压力控制器4. 15相连,第 3体积压力控制器4. 15和高压气瓶6连接;孔隙水压力孔道4. 9通过第3三通阀4. 17分别与第3玻璃管4. 18和孔隙水压力 传感器5. 6相连,第2水压力孔道4. 14 一端通过第2陶土板4. 8通向压力室4的底部,另一端与第4体积压力控制器4. 16相连,第4体积压力控制器4. 16和水箱7相连。压力室4的工作原理是在隔膜室4. 3内注满水,通过侧压力传感器5. 5可测得固结过程中试样的侧压力 变化情况,从而得到试样的静止侧压力系数;第2水压力孔道4. 14 一端通过第2陶土板4. 8 通向压力室4的底部,第2陶土板为高进气陶土板,在不超过其进气值的条件下能阻止气体 通过,从而实现水压力的施加和量测;第2气压力孔道4. 13—端通过第2防水透气膜4. 12 和第3透水石4. 10通向压力室4的底部,第2防水透气膜4. 12为一只透气不透水的半透 膜,从而可实现气压力的施加量测。压力室4的功能是放置试样,实现试样底部水压力和气压力的施加和量测,通过轴平移技术控制试 样内部吸力。5)数据采集系统5数据采集系统5包括第1压力变送器5. 1、第2压力变送器5. 2、第3压力变送器 5. 3、第4压力变送器5. 4、侧压力传感器5. 5、孔隙水压力传感器5. 6、计算机5. 7、动态测试 系统5. 8和位移传感器5. 9 ;其连接关系是第1压力变送器5. 1、第2压力变送器5. 2、第3压力变送器5. 3、第4压力变送器 5. 4、侧压力传感器5. 5、孔隙水压力传感器5. 6和位移传感器5. 9分别通过信号传输线与动 态测试系统5. 8和计算机5. 7连接。第1压力变送器5. 1设置于第2体积压力控制器3. 13与压力室4之间;第2压力变送器5. 2设置于第3体积压力控制器4. 15与压力室4之间;第3压力变送器5. 3设置于第1体积压力控制器3. 12与压力室4之间;第4压力变送器5. 4设置于第4体积压力控制器4. 16与压力室4之间。侧压力传感器5. 5位于隔膜室4. 3外侧,通过信号传输线与动态测试系统5. 8相 连接;孔隙水压力传感器5. 6位于压力室4底部的孔隙水压力孔道4. 9上,通过信号传 输线与动态测试系统5. 8相连接;位移传感器5. 9设置于百分表2. 1上,通过信号传输线与动态测试系统5. 8相连接。数据采集系统5的功能是通过第1压力变送器5. 1、第2压力变送器5. 2、第3压力变送器5. 3、第4压力变 送器5. 4量测压力室4内气压力和水压力的变化情况;分别通过孔隙水压力传感器5. 6、侧 压力传感器5. 5和位移传感器5. 9监测固结试验过程中试样的孔隙水压力、侧压力及位移 变化情况。6)高压气瓶6高压气瓶6是一种常用部件,提供高压气体。7)水箱 7水箱7是一种常用部件,提供高压水。二、试验方法[0142]本实施例以粘性土为例,使用本实用新型进行固结渗透试验的过程为①首先制备土样,将覆盖有滤纸的透水石放入压力室4的底部,通过第3玻璃管 4. 18向压力室4底部注入一定量的水,打开底座排水孔4. 7。然后放入制备好的土样,待排 水孔4. 7无气泡逸出时,安装好孔隙水压力传感器5. 6,关闭排水孔4. 7和第3三通阀4. 17。②在土样上部放置覆盖有滤纸的透水石,打开传压盖板3上的排气孔3. 2,并在其 侧壁涂抹一定黄油,安放好传压盖板3,通过第1玻璃管3. 10注入一定量水,待排气孔3. 2 无气泡逸出时关闭排气孔3. 2,关闭三通阀3. 11,停止注水。③打开第1三通阀4. 5,当隔膜室4. 3内充满无气水后关闭第2三通阀4. 6,安装 好侧压力传感器5. 5,通过第2玻璃管4. 4向隔膜室4. 3施加2_5cm水头,使隔膜室4. 3与 试样密切接触。④在步骤①②③完成的基础上,进行以下试验a、动力固结试验通过立柱1. 4和激振梁1. 5之上的激振器1. 2施加冲击荷载,进行动力固结试验。 激振器1. 2中部设有压力传感器1. 3,试验过程中通过计算机5. 7和动态测试系统5. 8采集 试样在动荷载作用下的变形和孔压变化情况。动荷载施加频率和大小通过功率放大器1. 1 和计算机5. 7控制。b、饱和土固结渗透联合测定安装好传压支架2. 3,通过杠杆式加载装置2. 5向土样施加预压力,使压力室上、 下透水石与土样及上部透水石与传压板之间密切接触,预压力的大小应刚好克服掉传压盖 板3与侧壁之间的摩擦力。然后安装好百分表2. 1并调零。按照试验方案,通过添加砝码2. 2施加50_800kPa各级荷载,进行固结试验,按照 累禾只固结时间为 15s、30s、Imin、2min 15s、4min、6min 15s、9min、12minl5s、16min、20minl5s、 25min、30minl5s、36min、49min、64min、100min、200min、400min、23h、24h 的时间序列记录变 形量,当土样每小时变形量小于0. Olmm时认为土样变形达到稳定。试验过程中通过动态测 试系统5. 8和计算机5. 7采集侧压力和孔隙水压力变化情况。渗透试验则根据需要在特定固结压力、累积固结时间或固结变形下,固定杠杆式 加载装置2. 5,使土样保持该变形后的高度不变,打开三通阀3. 11和第3三通阀4. 17,通过 第1玻璃管3. 10或第3玻璃管4. 18施加l_2m水头,进行变水头渗透试验。从而可测得该 固结压力下不同时刻及变形稳定后的渗透系数。渗透试验完成后,关闭三通阀3. 11和第3 三通阀4. 17,停止渗水。继续固结试验,并按累积固结时间记录变形量。C、控制基质吸力的压缩试验安装好传压支架2. 3,通过杠杆式加载装置2. 5向土样施加预压力,然后安装好百 分表2. 1并调零。通过第2体积压力控制器3. 13、第1体积压力控制器3. 12和第3体积 压力控制器4. 15、第4体积压力控制器4. 16量测出土样上、下部的初始吸力,然后通过第2 体积压力控制器3. 13、第3体积压力控制器4. 15向试样施加一定的气压力,待百分表2. 1 和4个体积压力控制器读数稳定后,保持这一气压力使基质吸力保持为常数。再通过杠杆 式加载装置2. 5施加50-800kPa各级轴向荷载,按所需时间序列记录变形量,进行非饱和土 的压缩试验。d、排气不排水压缩试验[0156]安装好传压支架2. 3,通过杠杆式加载装置2. 5向土样施加预压力,然后安装好百 分表2. 1并调零。通过第2体积压力控制器3. 13、第1体积压力控制器3. 12和第3体积压 力控制器4. 15、第4体积压力控制器4. 16量测出土样上、下部的初始吸力。然后拆除第1 气压力孔道3. 4、第2气压力孔道4. 13与第2体积压力控制器3. 13、第3体积压力控制器 4. 15之间的连接线,让试样与大气连通,通过杠杆式加载装置2. 5施加50-800kPa各级轴向 荷载,按所需时间序列记录变形量和孔隙水压力变化情况,进行排气不排水压缩试验。e、控制竖向净正应力为常数的收缩试验安装好传压支架2. 3,通过杠杆式加载装置2. 5向土样施加预压力,然后安装好百 分表2. 1并调零。通过第2体积压力控制器3. 13、第1体积压力控制器3. 12和第3体积压 力控制器4. 15、第4体积压力控制器4. 16量测出土样上、下部的初始吸力。通过杠杆式加 载装置2. 5给试样施加的一定轴向压应力,待百分表2. 1和4个体积压力控制器读数稳定 后,然后通过第2体积压力控制器3. 13、第3体积压力控制器4. 15逐级施加气压力,即逐 级增大基质吸力。试验过程中可通过第2体积压力控制器3. 13、第1体积压力控制器3. 12 和第3体积压力控制器4. 15、第4体积压力控制器4. 16测得基质吸力与含水率之间的关系 曲线,从而可得到不同竖向净正应力下的广义土-水特征曲线。f、稳态渗流试验安装好传压支架2. 3,通过杠杆式加载装置2. 5向土样施加预压力,安装好百分表 2. 1并调零。利用水箱7向第1玻璃管3. 10或第3玻璃管4. 18提供常水力梯度。试验由低 基质吸力开始,然后通过第2体积压力控制器3. 13、第3体积压力控制器4. 15逐级施加气 压力,逐级增加基质吸力。在常水力梯度的作用下,当水流入和流出试样的速率相等,且试 样上下部基质吸力随时间保持为常数时即达到稳定渗流条件,通过记录特定时刻下第1玻 璃管3. 10或第3玻璃管4. 18的液面变化,即可计算出一定时间内流过土断面的水量以及 土中的水力梯度,从而计算出该土样的渗透系数。试验过程中还可根据需要施加10_200kPa 轴向荷载。g、渗水系数、渗气系数测定安装好传压支架2. 3,通过杠杆式加载装置2. 5向土样施加预压力,安装好百分表 2. 1并调零。通过第2体积压力控制器3. 13、第1体积压力控制器3. 12和第3体积压力控 制器4. 15、第4体积压力控制器4. 16量测出土样上、下部的初始吸力。再通过第2体积压 力控制器3. 13、第3体积压力控制器4. 15向试样施加一个不大的气压力,将孔隙水压力增 至正值。然后通过第1体积压力控制器3. 12或第4体积压力控制器4. 16向试样施加一定 的水,当水分运移平衡时,即可利用一定时间内通过试样断面的水的体积计算出该吸力下 的渗水系数。测定渗气系数则利用第2体积压力控制器3. 13或第3体积压力控制器4. 15 向试样施加一定量的气体,当渗气达到稳定后,通过量测一定时间内渗过试样的气体体积, 即可计算出该吸力下的渗气系数。试验过程中还可根据需要施加10-200kPa轴向荷载。h、浸水试验安装好传压支架2. 3,通过杠杆式加载装置2. 5向土样施加预压力,安装好百分表 2. 1并调零。通过第2体积压力控制器3. 13、第1体积压力控制器3. 12和第3体积压力控 制器4. 15、第4体积压力控制器4. 16量测出土样上、下部的初始吸力。在自然浸水条件下 测定非饱和土的渗水系数,通过第2体积压力控制器3. 13、第3体积压力控制器4. 15向试样施加一个不大的气压力,将孔隙水压力增至正值。然后通过第1体积压力控制器3. 12或 第4体积压力控制器4. 16按需要的级数向试样施加一定量的水,根据渗气系数的稳定或试 样上、下部基质吸力相等来判定渗透稳定时间,通过第2体积压力控制器3. 13、第1体积压 力控制器3. 12和第3体积压力控制器4. 15、第4体积压力控制器4. 16量测每级加水后的 吸力变化以及渗气系数随时间的变化曲线,进行水气运动联合测定。
权利要求一种多功能土的固结及渗透试验装置,其特征在于包括动荷载系统(1)、静荷载系统(2)、传压盖板(3)、压力室(4)、数据采集系统(5)、高压气瓶(6)和水箱(7);动荷载系统(1)和静荷载系统(2)分别与传压盖板(3)连接;传压盖板(3)、压力室(4)和数据采集系统(5)前后依次连接;高压气瓶(6)分别与传压盖板(3)和压力室(4)连接;水箱(7)分别与传压盖板(3)和压力室(4)连接。
2.按权利要求1所述的试验装置,其特征在于所述的动荷载系统(1)包括功率放大器(1. 1)、激振器(1. 2)、压力传感器(1. 3)、立柱 (1. 4)和激振梁(1. 5);激振梁(1. 5)横于立柱(1. 4)之间,在激振梁(1. 5)中部开孔并架设有激振器(1. 2), 在激振器(1. 2)上嵌套有压力传感器(1. 3),压力传感器(1. 3)与功率放大器(1. 1)相连; 功率放大器(1. 1)和压力传感器(1. 3)分别通过信号传输线与计算机(5. 7)相连。
3.按权利要求1所述的试验装置,其特征在于所述的静荷载系统(2)包括百分表(2. 1)、砝码(2. 2)、传压支架(2. 3)、螺栓(2. 4)、杠 杆式加载装置(2. 5)和底座(2. 6);在底座(2.6)内部设置有杠杆式加载装置(2. 5),在杠杆式加载装置(2.5)的前端通 过放置砝码(2. 2)施加静荷载,杠杆式加载装置(2. 5)通过螺栓(2. 4)与传压支架(2. 3) 相连接,传压支架(2. 3)将静荷载传递于传压盖板(3),在传压支架(2. 3)上架设有百分表 (2. 1)。
4.按权利要求1所述的试验装置,其特征在于所述的传压盖板(3)包括第1透水石(3. 1)、排气孔(3. 2)、第1水压力孔道(3. 3)、第1 气压力孔道(3. 4)、0型密封圈(3. 5)、第1陶土板(3. 6)、渗水孔(3. 7)、第2透水石(3. 8)、 第1防水透气膜(3. 9)、第1玻璃管(3. 10)、三通阀(3. 11)、第1体积压力控制器(3. 12) 和第2体积压力控制器(3. 13);传压盖板(3)外侧为(0)型密封圈(3. 5);在传压盖板(3)内部设置有第1水压力孔 道(3. 3)、渗水孔(3. 7)和第1气压力孔道(3. 4);第1水压力孔道(3. 3) 一端通过第1陶土板(3. 6)与压力室(4)相连,另一端与第1 体积压力控制器(3. 12)相连,第1体积压力控制器(3. 12)和水箱(7)相连;渗水孔(3. 7) 一端通向压力室(4),另一端通过第1透水石(3. 1)后分为两路,一路与 排气孔(3. 2)相连,另一路通过三通阀(3. 11)与第1玻璃管(3. 10)相连;第1气压力孔道(3.) 一端通过第1防水透气膜(3. 9)和第2透水石(3. 8)与压力室 (4)相连,另一端与第2体积压力控制器(3. 13)相连,第2体积压力控制器(3. 13)和高压 气瓶(6)连接。
5.按权利要求1所述的试验装置,其特征在于所述的压力室(4)包括上环(4. 1)、中环(4. 2)、隔膜室(4. 3)、第2玻璃管(4. 4)、第1 三通阀(4. 5)、第2三通阀(4. 6)、排水孔(4. 7)、第2陶土板(4. 8)、孔隙水压力孔道(4. 9)、 第3透水石(4. 10)、下环(4. 11)、第2防水透气膜(4. 12)、第2气压力孔道(4. 13)、第2水 压力孔道(4. 14)、第3体积压力控制器(4. 15)、第4体积压力控制器(4. 16)、第3三通阀(4. 17)、第 3 玻璃管(4. 18);上环(4. 1)、中环(4. 2)和下环(4. 11)通过紧固螺栓连接成压力室(4); 中环(4. 2)内设置有隔膜室(4. 3),隔膜室(4. 3)外侧通过第1、2三通阀(4.5,4. 6)分 别与第2玻璃管(4. 4)和侧压力传感器(5. 5)相连;下环(4. 11)中部设置有第2气压力孔道(4. 13)、孔隙水压力孔道(4. 9)和第2水压力 孔道(4. 14),下环(4. 11)侧壁设置有排水孔(4.7);第2气压力孔道(4. 13) 一端通过第2 防水透气(4. 12)和第3透水石(4. 10)通向压力室(4)的底部,另一端与第3体积压力控 制器(4. 15)相连,第3体积压力控制器(4. 15)和高压气瓶(6)连接;孔隙水压力孔道(4. 9)通过第3三通阀(4. 17)分别与第3玻璃管(4. 18)和孔隙水 压力传感器(5. 6)相连,第2水压力孔道(4. 14) 一端通过第2陶土板(4. 8)通向压力室 (4)的底部,另一端与第4体积压力控制器(4. 16)相连,第4体积压力控制器(4. 16)和水 箱(7)相连。
6.按权利要求1所述的试验装置,其特征在于所述的数据采集系统(5)包括第1压力变送器(5. 1)、第2压力变送器(5. 2)、第3压 力变送器(5. 3)、第4压力变送器(5. 4)、侧压力传感器(5. 5)、孔隙水压力传感器(5. 6)、计 算机(5. 7)、动态测试系统(5. 8)和位移传感器(5. 9);第1压力变送器(5. 1)、第2压力变送器(5. 2)、第3压力变送器(5. 3)、第4压力变送 器(5. 4)、侧压力传感器(5. 5)、孔隙水压力传感器(5. 6)和位移传感器(5. 9)分别通过信 号传输线与动态测试系统(5. 8)和计算机(5. 7)连接;第1压力变送器(5. 1)设置于第2体积压力控制器(3. 13)与压力室(4)之间; 第2压力变送器(5. 2)设置于第3体积压力控制器(4. 15)与压力室(4)之间; 第3压力变送器(5. 3)设置于第1体积压力控制器(3. 12)与压力室(4)之间; 第4压力变送器(5. 4)设置于第4体积压力控制器(4. 16)与压力室(4)之间; 侧压力传感器(5. 5)位于隔膜室(4. 3)外侧,通过信号传输线与动态测试系统(5.8) 相连接;孔隙水压力传感器(5.6)位于压力室(4)底部的孔隙水压力孔道(4.9)上,通过信号 传输线与动态测试系统(5. 8)相连接;位移传感器(5.9)设置于百分表(2. 1)上,通过信号传输线与动态测试系统(5.8)相 连接。
专利摘要本实用新型公开了一种多功能土的固结及渗透试验装置,属于土工试验领域。本装置包括动荷载系统、静荷载系统、传压盖板、压力室、数据采集系统、高压气瓶和水箱;动荷载系统和静荷载系统分别与传压盖板连接;传压盖板、压力室和数据采集系统前后依次连接;高压气瓶分别与传压盖板和压力室连接;水箱分别与传压盖板和压力室连接。本装置测试原理直观、结构简单、精度高、稳定性好、易于操作、拆卸方便,对安装测试人员没有很高的技术要求。本实用新型适用于饱和土动力固结、固结渗透联合测定、应力松弛和流变的试验,还适用于非饱和土的固结、渗水和渗气的试验。
文档编号G01N3/08GK201773056SQ201020502058
公开日2011年3月23日 申请日期2010年8月20日 优先权日2010年8月20日
发明者孟庆山, 秦月, 陈能远 申请人:中国科学院武汉岩土力学研究所