专利名称:Ftir光谱仪的操作方法以及ftir光谱仪的利记博彩app
技术领域:
本发明涉及根据权利要求1和8前序部分的FTIR(傅里叶变换红外)光谱仪的操 作方法以及FTIR光谱仪本身。
背景技术:
FTIR光谱仪是以傅里叶变换的计算方法工作的红外光谱仪。这种光谱仪不是 基于特定吸收谱线工作,而是记录整个波长范围的谱并由此借助于数学的光谱仪函数 (Spektrometerfunktion)获得关于所观察的频谱或波长谱(Wellenlaengenspektrum)上 的吸收的信息。然后根据所获得的分布执行化学计量(chemometrisch)分析,并且将分布 分配给相应的气体成分。因此,用FTIR光谱仪可以同时测量多个气体成分。为了通过上述所有频率范围,用具有可移动的镜子的干涉仪结构工作,例如迈克 尔逊(Michelson)干涉仪结构。为了消除例如由传输特性的改变引起的设备相关的(geraetebedingt)漂移,必 须定期校准和验证。只有这样才能确保测量结果的可靠性。对于易于处理的气体成分、诸 如CO或CO2而言,这可能是简单的。但是,一般来说,FTIR光谱仪对于难以处理的气体也是 感兴趣的。这包括例如NH3、HCI、HF、H2O0但是,FTIR光谱仪的优点在于可以同时测量多个气体成分。因此,这种光谱仪尤 其也适于排放物测量(Emissonsmessimg)。通常每天进行光谱仪的检查。校准数据的检查(验证)目前通常以两个步骤进行以短的间隔(通常是每天) 用零位气体(Nullgas)(通常是净化后的外界空气)进行基准谱的定期记录。用该基准谱 来补偿系统的传输特性的变化。传输特性的变化例如可以由光学路径中的污染、辐射功率 的变化、探测器的变化或者由测量单元的沾污所导致。零点的补偿是取决于波长地进行的, 因此同时为零点的所有组成部分进行校正。以更长的间隔(通常是每星期至每年)用测试气体为所有组成部分进行基准点的 定期验证(检查)、并且在可能的情况下还进行校准。容易处理的气体、诸如CO、C02、NO可 以在没有附加辅助工具的情况下以试验气体瓶中的试验气体而被校准。对于难以在试验气 体瓶中处理的成分、诸如H2O或HCI,使用试验气体发生器代替试验气体瓶。但是,这样的处 理非常困难,并且在光谱仪的一些使用地点几乎不能执行。
0008]基准点的验证或校准可能只能在技术和时间成本高的情况下被执行,尤其是当诸 如H2O或HCI这样的气体必须被校准时。其原因例如是-安装附加的技术设备,诸如试验气体发生器-对于HCI和H2O而言长的调节时间_汽化器的错误浓度可能导致错误的校准。基准点的验证和/或校准因此只能由受过训练的专家进行。因此,基准点只以长的时间间隔被检查,即对于较长的测量间隔不存在基准点的 验证。这导致浓度的错误显示风险增大。
US 5,777,735公开了这样的一种方法和设备,其中如其他已知的方法那样,通过 以下方式针对各自待测量的气体成分对设备进行校准,即纯净形式的相应气体作为校准气 体从蓄气容器中馈送。对于大多数气体而言,这太昂贵。
发明内容
因此,本发明所要解决的技术问题是进一步改进这种类型的方法和光谱仪,使得 在任何使用地点,在任何时间都可以进行光谱仪的校准和验证。根据本发明,对于这种类型的方法而言,这个技术问题是通过权利要求1特征部 分中的特征来解决的。根据本发明的方法的其他优选实施方式在从属权利要求2至7中给出。对于这种类型的光谱仪而言,根据本发明,该技术问题是通过权利要求8特征部 分中的特征解决的。其他有利实施方式在其余从属权利要求中给出。本发明在方法方面的核心在于,在验证光谱仪时,作为对实际测量成分的附加或 替代,还可以选择覆盖光谱仪整个谱范围的容易处理的替代气体成分。对于要测量诸如 HCI、HF、NH3这样的难以处理的其他的应用情形而言,有利的是用根据本发明的方法可以 避免以下情形,即为了有效验证或校准,上述气体作为试验气体必须以高纯度被提供。与此 相反,使用易于处理的气体作为替代用于验证,这些易于处理的气体大致在“困难”气体的 范围中产生吸收效应,几乎作为代表。从而,如果实际测量气体为了校准必须以高纯度的形 式以及准确的浓度提供的话,作为验证或校准气体的该替代气体与实际测量气体相比明显 地更易于处理。其中在以下被称为替代气体,替代气体明显不是如其应当代表的那些气体 那样是攻击性的(aggresiv)或那样难以处理。整个验证和校准由此变得更简单。在另一有利实施方式中,由多个替代气体构成的混合气体被用于验证,这多个替 代气体分别覆盖整个测量谱的子区间。以这种方式,用于校准的替代气体可以被引入混合 气体中,这用实际气体成分已经是化学上有危险的。通过这种方式,可以立即在一个步骤中 验证光谱仪的完整谱范围。在另一有利实施方式中,将这样的多个替代气体引入校准/验证混合气体中,使 得这些替代气体覆盖光谱仪的整个谱范围。在另一有利实施方式中,还监测使用零位气体的验证/校准步骤中的强度,并且 从而通过内插而存储整个谱作为基准。在另一有利实施方式中,替代气体各自、即从不同蓄气容器中,或者作为替代混合 气体从一个蓄气容器中通过单个阀门控制装置(Einzelventilansteuerung)在自动验证/ 校准步骤中自动地馈送给测量容器(Messkuevette),然后执行相应的验证或校准步骤。因 此,以简单有效的方式自动循环执行验证步骤。在另一有利实施方式中,所确定的验证或校准值被存储在自适应数据区中,其中 能够根据需要根据该数据区分析验证/校准历史,以便在必要时从中获得有关光谱仪的维 护状态的诊断。在最后一个有利实施方式中,替代气体各自或作为替代混合气体被封闭、即包围 在校准容器(Kalibrierkuevette)中并且为了执行验证/校准步骤,该校准容器自动转入(einschwenken)光路中、然后又从光路中转出。对于FTIR光谱仪,本发明的核心在于这样的气体用作为校准手段,即该气体就 其在光谱仪中的吸收效果而言仅仅是实际测量气体的代表,并且被存储在蓄气容器内,并 且在自动启动校准或验证过程时能自动串行地一个接一个地或者作为混合气体引入到光 谱仪的光路中。在根据本发明的光谱仪的一有利实施方式中,气体能借助于自动阀门控制装置被 引入到光谱仪的测量容器中。因此,校准过程可以被自动启动,并且气体被引入。在一替代实施方式中,气体能在一个或更多在气体填充后封闭的校准容器中自动 转入光谱仪的光路中、并且能在校准/验证之后又自动转出。因此,不再需要气体储存。
在附图中针对根据本发明的方法以及光谱仪的构造示出了本发明,并且以下详细 描述本发明。附图中图1示出了具有可旋转或可移动的校准容器的FTIR光谱仪的原理性结构。图2示出了校准的控制。图3示出了具有先导成分(Leitkomponent)(代表)的谱。图4示出了谱在区域中的划分。
具体实施例方式图1示出FTIR光谱仪的原理性结构,它例如设置在迈克尔逊干涉仪上。从辐射源 5开始,借助于第一光学系统4通过扩张(AufVeitimg)生成平行的光束,平行的光束落到作 为射束分裂设备的半透明镜3。光的具有固定波长和频率位置(单色和相关)现在落在固 定的镜1上并在那里被反射。其他子光束笔直地穿过镜3,并且被可移动的镜2反射回镜3 的方向,现在这两个子光束在镜3处互相干涉。该干涉在此通过沿着光轴移动镜2而可控 地被操纵。从那里开始,干涉光透射测量容器8,其中测量气体通过该测量容器被引导。借 助于干涉仪,实现了击中测量容器、并因此击中测量气体的光束的有效频率位置的非常精 确的调节。因此,在检测器处可以采集完整的谱,并不仅是固定频率时的吸收率。为了最优 地照射检测器,扩张的光束通过第二光学系统6又被聚焦,即聚焦到检测器的尺度。测量容器包含气体入口 A和气体出口 B,并且被引入以测量气体来记录测量谱,然 后又将其引出。为了能够执行根据本发明的校准步骤,现在控制在此没有进一步显示的阀门控制 装置,并且校准气体被引导或吹冲通过容器8,以便在校准之后通过阀门换向引入要测量的 测量气体。在此示出另一替代方式,其中在校准或验证持续期间,校准气体借助于校准容器9 在检测器7之前或在光学系统6之前被转入光路中。然后,校准容器又从光路中转出。其中重要的要指出,校准容器不被填充以在光谱仪的这个被校准部分中被测量的 相关测量气体或测量气体成分,而是被填充以代表该相关测量气体或这些测量气体成分的 替代气体或替代混合气体。因此,在光谱仪的谱范围上,例如使用S02、CO2, N2O或甲烷作为替代气体,即作为代表,而不是非常棘手的气体成分HCI、HF、NH3等。将后者以纯净形式用 于校准是明显更昂贵的。相反,根据本发明使用取代的替代气体就显著地简化了校准/验 证,因为这些所述替代成分能明显更容易地处理。它们如此容易处理,以至于它们不是在气 体输送方法中进行校准,现在也能在密闭的校准容器中处理。这在过去用HCI或HF或甚至 用水蒸气H2O都是不可能的。在使用校准容器时,各个气体同样可以分别包围在一个校准容器中,并且能以一 种形式的斩光器交替地转入,或者如在气体输送方法中那样使用一个公共校准容器9中多 个替代气体的混合气体。代替转入运动,校准容器当然也能以直线运动转入。图2在原理上示出了根据本发明的FTIR的控制。其中,通过控制单元10进行光 源5(激光器)以及检测器7的操纵。时间控制单元11在可调节的时间、或者通过明确的 控制信号触发校准过程。为此,现在协调地控制镜2、光源5以及检测器7,并且为此协调地 控制校准容器9的转入或移动操纵,并且因此基准谱被记录并被存储在自适应存储单元12 中。此外,存储单元12还具有时间分配地记录数据作为历史数据,由此附加地可以识别可 能的老化效果的分析。就此而言,除了纯粹的校准之外,还进行光谱仪的持续自诊断。代替控制校准容器的转入或移动,也可以协调地控制在输送方法中用于馈送替代 气体的阀门控制装置,以便通过使用上述替代气体也以该方式执行校准。图3示出了,代替对于所有成分的试验气体任务,如何通过由多个替代气体构成 的试验混合气体进行验证(检查)。替代气体可以所有一起混合到试验气体瓶中,并且在一 个长的时间间隔上稳定。替代气体也可以是测量成分,例如302或0)2。但是,替代地或附加 地,也可以使用在不同波长范围中具有多个吸收的气体,例如稳定的卤化碳氢化合物或N2O 和C02。理想地,替代气体覆盖光谱仪的整个谱范围。例如,为此可以使用以下替代气体。-长波范围,例如用SO2-中间范围,例如用CO2-短波范围,通过甲烷和N2O图4示出了如何附加地监测基准谱的强度。因此,还监测不被替代气体覆盖的波 长范围。如果现在在验证光谱仪时不出现替代气体或基准谱各个范围的变化,不出现零点 的变化,则也不存在剩余测量成分(例如HCI或HF)的变化。与使用试验气体发生器的验证/校准相反,整个过程的结束可以被自动化。即,用 于基准谱的零位气体和替代气体的试验混合气体可以通过电磁阀如所述的那样计算机控 制地被停止。结果可以自动被分析,并且在必要时可以触发报警。在较低偏差的情况下也 可以触发报警。对验证结果历史的存储可以被用作用于连续质量监控的基础。此外,可以存储先 导成分和基准值的谱,如前所述。替代地,也可以完全不使用具有替代气体成分混合物的试验气体瓶,方法是替代 气体成分稳定地封闭在校准容器中。代替通过电磁阀的试验气体任务,校准容器于是如上 所述循环地转入光学路径中。
附图标记列表1.固定的镜子2.可移动的镜子3.半透明的镜子/射束射束分裂设备4.扩张的光学系统5.辐射源6.聚焦的光学系统7.检测器8.测量容器9.校准容器10.控制装置11.时间控制装置12.自适应数据存储器A测量气体入口B测量气体出口
权利要求
FTIR(傅立叶变换红外)光谱仪的操作方法,其中通过用至少两个临时提供的气体既记录使用零位气体的基准谱、也记录使用校准气体的吸收谱,以循环重复的间隔进行所述光谱仪的验证/校准,其特征在于,在验证光谱仪时,使用所谓的替代气体作为气体成分,其中所述替代气体就测量技术特性而言只模拟实际的测量气体成分。
2.根据权利要求1所述的方法,其特征在于,由多个替代气体构成的混合气体被用于 验证,其中所述替代气体分别覆盖整个测量谱的子区域。
3.根据权利要求2所述的方法,其特征在于,在引入校准/验证混合气体中引入这样的 多个替代气体,使得这些替代气体覆盖光谱仪的整个谱范围。
4.根据前述权利要求中任一项所述的方法,其特征在于,还监测使用零位气体的验证 /校准步骤中基准谱的强度,并从而通过内插,整个谱被存储作为基准。
5.根据前述权利要求中任一项所述的方法,其特征在于,所述替代气体各自、即从不同 蓄气容器中,或者作为混合气体从一个蓄气容器中通过单个阀门控制装置在自动验证/校 准步骤中自动地馈送给测量容器,然后执行相应的验证或校准步骤。
6.根据权利要求5所述的方法,其特征在于,所确定的验证或校准值被存储在自适应 数据区中,其中能够根据需要根据该数据区分析验证/校准历史,以便在必要时从中获得 有关光谱仪的维护状态的诊断。
7.根据前述权利要求中任一项所述的方法,其特征在于,所述替代气体各自或作为替 代混合气体被封闭、即包围在校准容器中,并且为了执行验证/校准步骤,该校准容器自动 转入光路中、然后又从光路中转出。
8.具有验证和/或校准装置的FTIR光谱仪,用于循环地验证和/或校准FTIR光谱仪 的测量谱,其特征在于,这样的气体用作为校准手段,即该气体就其在光谱仪中的吸收效果 而言仅仅是实际测量气体的代表,并且被存储在蓄气容器内,并且在自动启动校准或验证 过程时能自动串行地一个接一个地或者作为混合气体引入到光谱仪的光路中。
9.根据权利要求8所述的FTIR光谱仪,其特征在于,所述气体能借助于自动阀门控制 装置被引入到光谱仪的测量容器中。
10.根据权利要求8所述的FTIR光谱仪,其特征在于,所述气体能在一个或更多在气 体填充后封闭的校准容器中自动转入光谱仪的光路中、并且能在校准/验证之后又自动转 出ο
全文摘要
本发明涉及根据权利要求1前序部分的FTIR(傅立叶变换红外)光谱仪的操作方法,其中通过用至少两个临时提供的气体既记录使用零位气体的基准谱、也记录使用校准气体的吸收谱,以循环重复的间隔进行光谱仪的验证/校准;以及根据权利要求8前序部分的光谱仪。为了实现在任何使用地点在任何时候都可以进行光谱仪的校准或验证,根据本发明,在验证光谱仪时,使用所谓的替代气体作为气体成分,其中替代气体就测量技术特性而言只模拟实际的测量气体成分。
文档编号G01N21/35GK101918814SQ200880117008
公开日2010年12月15日 申请日期2008年11月21日 优先权日2007年11月22日
发明者B·安德列斯, B·希尔舍, C·拉特克, C·贝克尔, N·威尔 申请人:Abb股份公司