专利名称:介质中混合物的光学远程检测方法
技术领域:
本发明涉及一种远程检测的技术领域,尤其适于检测大气中的浮质或污染物。
背景技术:
LIDAR(激光检测及测距)技术通常用于检测和测量给定气体的浓度。激光雷达还 可以用于检测大气中悬浮的液体或固体颗粒,或者进一步检测溶解在液体中的混合物。激 光雷达的组成如下向目标介质(medium of interest)中发送激光脉冲并且测量这些激光 脉冲相对于时间的反向散射(back-scatter)。事实上,激光器脉动地产生激光,使得检测能 够作为时间t以及因而作为激光器和测量点之间的距离ζ的函数(z = c. t/2,c为介质中 的光速)。用激光雷达远程检测混合物常常通过DIAL技术实现,在DIAL技术中,使用一对接 近的波长,分别调节在待检测混合物的吸收带上并且直接相邻(差分吸收)。这种技术仅仅 适用于在其他潜在的混合物不具有吸收带的范围内具有至少一条精细吸收线的混合物。实 际上,这种技术对在相同的波长上产生吸收的其他混合物的干涉很敏感。而且,取决于波长 范围,可能难以产生适于测量的可调单色光源。当待测量混合物的光谱不允许应用DIAL技术时,可以应用关联能谱法 (correlation spectroscopy)。关联能谱法的组成如下利用具有极大光谱宽度的光源,基 于交叉(crossing)包含待测量混合物的基准样本进行调制。但是这种技术缺乏灵活性,因 为,对于每次测量而言,必须获得合适的基准。此外,在基准样本中,旨在被待测量混合物吸 收的强度被预先削弱了。因此,为了得到充足的测量信号,必须具有强光源,强光源可能给 操作者和公众造成眼睛安全的问题。在这方面,本发明打算提供一种用于检测介质中的污染物的新方法和新设备,其 易于应用并且允许检测存在的大量污染物。该方法还必须具有高检测灵敏度并且适于确定所检测混合物的浓度。该方法还必须满足眼睛安全方面的要求。
发明内容
本发明涉及一种对介质中的混合物进行远程光学检测的方法,其中_检测测量通过如下步骤进行从光源向介质发射短光脉冲,其中所述光源被称 为检测光源,所述短光脉冲宽度至少为3nm、优选至少为lOnm,并且借助具有瞬时分辨率的 检测单元从介质中检测反向散射的光的一部分;-基准测量通过如下步骤进行从光源向介质发射短光脉冲,其中所述光源被称 为基准光源、与所述检测光源具有相同的特性,并且借助具有瞬时分辨率的检测单元检测 从介质中检测反向散射的光的一部分,发射的光或反向散射的光借助可寻址过滤装置被过 滤,可寻址过滤装置仿真待寻找的至少一种给定混合物处于工作波长的光的光学光谱;-比较检测测量与基准测量,以便据此推断在介质中存在待寻找的混合物的可能性;-动态地改变可寻址过滤装置,对可能存在于介质中的一系列不同的混合物进行 一系列基准测量与一系列对应的比较。本发明的目的还在于一种对介质中的混合物进行远程光学检测的设备,所述设备 包括_ 一系列用于检测测量的组件,包括光源,被称为检测光源,向介质发射短光脉 冲,所述短光脉冲覆盖波长带宽宽度至少为3nm的宽带,优选宽度至少为lOnm,以及具有瞬 时分辨率的检测单元,用于从介质反向散射的一部分光,传输检测测量;-一系列用于基准测量的组件,包括光源,被称为基准光源、与所述检测光源具 有相同的特性,向介质发射短光脉冲,可寻址过滤装置,过滤发射的光或反向散射的光,并 且仿真待寻找的至少一种给定混合物处于工作波长的光的光学光谱,以及具有瞬时分辨率 的单元,用于从介质中检测被反向散射的一部分光,传输基准测量;-用于比较检测测量与基准测量的装置,以便据此推断在介质中存在被寻找的混 合物的可能性;以及-用于改变可寻址过滤装置的自动装置,允许对可能存在于介质中的一系列不同 的混合物进行一系列基准测量。根据本发明的方法和设备尤其适用于对气体混合物的远程控制,诸如气体介质中 的大气污染物。还可以应用根据本发明的方法检测气体介质中的固体或气体颗粒或浮质, 或者溶解于液体介质中的更多的混合物。例如液体介质(诸如水)中的检测对于检测河床 中的污染物有益。根据下面参照随附的附图进行的描述,可以更好地理解本发明。
图1示意性地示出根据本发明的设备一种可选实施方式,其中过滤装置位于目标 介质的上游。图2和图3示意性地示出根据本发明的设备的两种不同的可选实施方式,其中过 滤装置位于目标介质的下游。图4示意性地示出根据本发明的设备的另一种可选实施方式,所述设备包括两个 不同的光源,一个用于检测测量,另一个用于基准测量。
具体实施例方式在本发明的范围内,使用覆盖大的波长带的脉冲,其将允许确定宽范围的混合物 的存在的可能性。优选地,所述脉冲宽度至少为3nm,最好优选至少为lOnm。优选地,这些 脉冲为白光脉冲。通常,白光源表示覆盖宽度至少为IOOum的波长谱的连续多色光信号。作为白光源的实例,文中提及的可由弧光灯、白炽灯或任何其他类似的设备制成。 根据一个可选实施例,检测光源和基准光源包括用于传输波长谱被加宽的光脉冲的激光 器。一般可以使用激光二极管。例如,在传输强脉冲(特别是功率在3GW以上)的单色激 光器的情况下,根据自导光丝(self-guidedfilament)的原理,在大气中会发生相位自调 制((J. Kasparian et al.,Science, 2003,301,61)。典型地,当空气中大于 3GW 的超短大功率脉冲改变它们路径上的空气折射率时,会产生这种光丝,这种折射率的变化反过来导 致自聚焦以及将光束导向(guiding)光丝。因此,能够从具有强脉冲的激光光源得到自动 拓宽的波长谱和白光脉冲。在这种情况下,光源不直接传输白光脉冲而是传输单色脉冲,这 些单色脉冲在传播期间变成多色,并且这种变化在到达目标介质之前进行的。白光源也可 以是强激光器,其中该强激光器的波长谱通过例如在一个光学池(cell)(诸如气体、水池 或任何其他非线性介质的池等)中的相位自调制或通过拉曼效应(Raman effect)而被展 宽。在这种情况下,光学池可以直接放置于激光的输出端。作为强激光器,文中提及的激光 器可由Nd:YAG型固体激光器制成。根据可选实施例,检测光源和基准光源传输的脉冲,持 续时间从20fs至IOps (优选从IOOfs至300fs),并且优选地功率从3GW至100TW(优选从 0. 5TW 至 5TW)。在脉冲持续时间、功率以及光谱范围方面,检测光源和基准光源具有相同的特性。 检测光源可以与基准光源不同。当然,也可以用单光源进行检测测量和基准测量,检测测 量在没有任何过滤的情况下进行。在这种情况下,可以有序地、快速地改变过滤装置,以便 交替进行检测测量和基准测量,从而除去由于光源水平和/或介质可能的波动而引起的错误。通常,优选对每次基准测量进行新的检测测量(例如通过如下文所述的交替或同 时进行检测和基准测量),以便对在时间上接近进行的两种测量之间进行比较。于是,设备 可以包括提供使检测测量和基准测量交替进行的控制装置。但是,不排除在一系列基准测量之后将不同的基准测量与同一检测测量进行比较 的情况,或者周期性地进行用于比较的新的检测测量的情况。可寻址过滤装置可以包括光学空间相位和/或幅度调制器,或者反射的或干涉的 微电子系统或者任何其他类似的设备。过滤装置仿真至少一种给定混合物的处于工作波长 的光的光学光谱。过滤装置周期性地自动改变,以便连续地对不同混合物的处于工作波长 的光学光谱进行仿真。从本发明的意义上来说,当发射的光发生过滤时,处于工作波长的光 的光学光谱对应于由一种或多种给定混合物在弱吸收的波长处或者优选地在强吸收的波 长处发射的光的光学光谱。被弱吸收的波长特别表示对于给定混合物,该波长在测量期间 可以在被光覆盖的整个路径上观察到的光强度的衰减最多为10%。被强吸收的波长特别表 示对于给定混合物,该波长在测量期间可以在被光覆盖的整个路径上观察到的光强度的 衰减最少为30%。可以进行基准和检测测量,以便检测线形或非线性现象。在线性现象的情况下,介 质中的发射波长和反向散射波长相一致。另一方面,在非线性现象的情况下,特别是在例如 用功率大于IGW的强脉冲观察的情况下,可以观察到反向散射波长相对于发射的波长的改 变。在测量线性现象的情况下,当反向散射波长再一次发生过滤时,处于工作波长的光学光 谱对应于被待寻找的一种或多种给定混合物在弱吸收的波长处或者优选地在强吸收的波 长处反向散射光的光谱。另一方面,在检测非线性现象的情况下,处于工作波长的反向散射 光的光谱对应于处于被待寻找的混合物反向散射的波长处的反向散射光的光谱(其不同 于在被所寻找的混合物弱或强吸收的波长处发射的光的光谱)。假如基准测量仅仅对应于 在被一种或多种给定混合物弱或强吸收的波长处被反向散射光信号,那么为了增加系统的 灵敏度,可以对介质增加与这些波长相对应的发射光的功率。由于反向散射光的功率有限,所以易于遵守眼睛安全标准。过滤装置自动地改变,以便连续地对一系列不同的混合物的处于工作波长处的光 谱进行仿真。该过滤装置例如可以包括位于过滤器座上的不同的过滤器。过滤器的机动位 移(Motorized displacement)装置保证选择想要的过滤器。在优选方式中,当然也可以将 混合物的不同光谱特性存储在光谱数据库中,该光谱数据库通过控制装置被连接到过滤装置。过滤装置也适于仿真向其发射脉冲的介质所拥有的给定条件,诸如温度、压力、速 度、风向等。在本发明的范围内,检测单元包括用于检测至少一部分反向散射光子的装置。收 集装置(诸如望远镜等),可以位于检测装置的前面。利用这些收集装置,可以显著地增 加检测装置从反向散射光检测到的信号。检测装置通常与用于获得并利用检测装置传输 的信号的获得和处理装置有关。例如,接收的光子被转换成光电子,通过应用比尔朗伯 (Beer-Lambert)定律,相应的电信号与辐射吸收和要分析的气体分子直接相关。假如发 射的光是脉冲的形式并且检测装置检测作为时间的函数的信号,则可以确定发现介质的距 离,其中所检测的光子是由所述介质反向散射的。然后,可以计算沿着光源的射轴直到被定 义为光源范围的界限为止的浓度分布。文中提及的作为适用于本发明的检测装置可以由光电倍增器、光电二极管或者任 何其他类似的设备制成。使用瞬时分辨率的检测装置允许随着时间记录被检测信号的演 化。优选地,检测装置的瞬时分辨率非常好,例如小于10ns。如前所述,检测装置整合了用 于空间上分辨信号的装置,其中所述空间上分辨信号的装置能够确定介质所处的距离,而 检测的光是由该介质反向散射的。借助检测装置的瞬时分辨率得到空间分辨率。这样检测 信号可与将它发射出来的介质的发射距离相关联。优选地,检测装置的空间分辨率小于1 米。多数情况下,信号的获得是在更小的时间段上进行的。在检测单元处,可以选择用于处理信号的装置,以便调制处理的信号。例如,在基 准测量期间得到的信号可以通过闭环算法被调节和/或最优化,从而适合之前迭代的测量 浓度。这样可以通过多参数最优化算法(诸如遗传算法等)对每个波长部分或光谱成分的 传输适配进行独立的调制,其中,在所述遗传算法中,通过反复试验而得到最优解(即最接 近要检测的样本的合成光谱),尝试给出结合的最好结果,以便产生最优解,(参见T. Back, H.Schwefel, An Overview of evolutionary algorithms for parameter optimization, Evolutionary computing 1,1 (1993)and R. S. Judson and H. Rabitz, Teachinglasers to control molecules, Physical Review Letters,68,1500(1992))。可以用单一检测单元或两个不同的检测单元进行检测和基准测量。有利地,进行测量和比较,以便确定所检测的当前混合物的浓度。为此,采用处 理装置和用于计算所检测混合物的浓度的装置来进行比较,例如应用类似于在LIDAR或 DIAL技术或关联能普法中使用的算法。例如,所使用的计算方法源自于在DIAL技术所 使用的方法(Differential Absorption Lidar,例如参见 R. Μ. Measures,Laser remote sensing-Fundamentals andapplications,1984,New York :Wiley Interscience)0如果认为样本或混合物在基准源的光谱上整合的吸收横截面是ο κ,而在测量源 的光谱上整合的吸收横截面是σΜ,那么在距离ζ处的该样本的浓度(由每单位体积的分子<formula>formula see original document page 8</formula>
其中,SM(z)和SK(z)分别代表在测量和基准检测器上测量的信号。在全部光和弱吸收的波长之间或在强吸收的波长和弱吸收的波长之间进行比较 的情况下,可以直接应用此公式。在全部光SM和弱吸收的波长&之间进行比较的情况下,横截面(^和oM实际上 相等。为了保证该方法的数学稳定性,将使用校正系数(aUXiliaryValUe)S' M=SM_SK,相 应地,吸收横截面是E= oM-oE^0o于是,所寻找的样本的浓度就是<formula>formula see original document page 8</formula>
在过滤装置同时对几种目标混合物的处于工作波长的光谱进行仿真的情况下,可 以通过闭环最优化或通过任何类似的算法实现混合比例的计算。根据第一可选实施方式,可寻址过滤装置被放置在用于基准测量的光源和介质之 间,以便在基准测量期间过滤发射的光。过滤装置例如包括光学空间相位和/或幅度调制 器,或者反射的或干涉的微电子系统。根据第二可选实施方式,可寻址过滤装置被放置在介质和用于基准测量的检测装 置之间,以便在基准测量期间过滤反向散射光。为了实现这种过滤,特别地,过滤装置包括 使待检测混合物强吸收的波长朝向一个检测单元而待检测混合物弱吸收的波长朝向另一 个检测单元的装置,然后,同时进行检测和基准测量。特别地,在图1中示出上述本发明的第一可选实施方式。设备I包括单光源1, 用于检测测量和基准测量。过滤装置2,被放置在光源1的输出端,位于用于基准测量的光 源和气体介质之间,以便在基准测量期间过滤发射的光。在基准测量期间,为了允许仅发射 给定的波长(与待检测的一种或多种混合物强吸收的波长相对应),这些过滤装置2过滤光 源1发射的光。在检测测量期间,过滤装置被禁用(disabled)。以短脉冲形式发射光3,向 目标气体介质4传播。反向散射光5的一部分被包括有瞬时分辨率的检测装置的检测单元 6检测。没有过滤的情况下进行的检测测量和有过滤的情况下进行的基准测量之间的强度 差异与所寻找的混合物的浓度直接成正比。根据可选操作,过滤装置允许向介质发射不是 强吸收的波长而是弱吸收的波长。这种将过滤装置安置在气体介质上游的可选实施例允许减小发射光的功率,然后 该发射光减少到用目标混合物可以观察到反向散射的波长。在这种情况下,更加易于遵守 眼睛安全的标准。例如在图2中示出之前提及的本发明的第二可选实施方式。设备II包括单光源 11,用于检测测量和基准测量。作为短脉冲、由光源11发射光12,向目标气体介质13传播。 被包括有瞬时分辨率的检测装置的检测单元15检测的反向散射光14的一部分,位于过滤 装置16的上游。在基准测量期间,这些过滤装置16通过气体介质13过滤被反向散射光, 使得仅仅给定波长直达检测单元15,其中所述给定波长对应于被待检测的一种或多种混合 物强(或弱)吸收的波长。在检测测量期间,过滤装置被禁用。没有过滤的情况下进行的检测测量和有过滤的情况下进行的基准测量之间的强度差异与所寻找的混合物的浓度直 接成正比。 在该可选实施方式中,过滤装置仅仅接收由介质反向散射光而不是由基准光源发 射的全部光。因此,减小了过滤器老化和退化的风险。图3示出另一个可选实施方式,其中可寻址过滤装置被放置在气体介质和用于基 准测量和检测测量的检测单元之间,以便过滤被反向散射光,直到同时进行基准测量和检 测测量为止。在图3中,设备III包括单光源111,用于检测测量和基准测量。作为短脉 冲、由光源111发射光112,向目标气体介质113传播。反向散射光114的一部分通过被安 置在气体介质113下游的过滤装置115被过滤,其中过滤装置115包括使被待检测的混合 物强吸收的波长朝向一个检测单元以及使被待检测的混合物弱吸收的波长朝向另一个检 测单元的装置。在图3中,过滤装置115包括诸如棱镜之类的光色散装置116以及依据其 波长向检测单元118、119 二者其中之一反射得到的色散光(其定位光束)的装置117。为 便于理解,已经刻意以大尺寸示出过滤装置115。实际上,检测装置与目标介质具有一定的 距离(达到几千米)。反射装置117可以是微机电设备(诸如安装在压电驱动器上的微面 镜(micro-mirror)网络),或者任何其他的反射设备,其每种元件都可以用控制信号单独 地、快速地确定方向。检测单元118接收被待测量的混合物弱吸收的波长并且允许进行检测(或基准) 测量。检测单元119接收被待测量的混合物强吸收的波长并且允许进行基准(或各自检测) 测量。根据在DIAL差分吸收技术中使用的计算技术,可以测量目标混合物的浓度。这样,就 可以同时进行基准和检测测量,能够消除在两次连续测量之间在介质中可能发生的起伏。在这种情况下,可以同时进行基准测量和检测测量。检测测量例如对应于采用接 收被待检测的气体混合物弱吸收的波长(称为λ。Η)的检测装置进行的测量,而基准测量 对应于采用接收被待检测的气体混合物强吸收的波长(称为λ。η)的检测装置进行的测量, 反之亦然,即检测测量也可以对应于采用接收被待检测的气体混合物强吸收的波长(称为 λ。η)的检测装置进行的测量,而基准测量对应于采用接收被待检测的气体混合物弱吸收的 波长(称为λ。Η)的检测装置进行的测量。对本领域普通技术人员而言,采用所述计算方 法(特别是与在DIAL差分吸收技术中使用的计算方法相对应的计算方法)能够得到待检 测的气体混合物的浓度是众所周知的。图4中所述的设备IV包括两个光源211、212,一个用于检测测量而另一个用于基 准测量。通过这些光源211、212的每个光源分别沿着相同路径交替地发射光213,光束的方 向借助包括变换光传播路径的装置的设备214来改变。这样的设备214例如可以是移动镜 (mobile mirror),其方向根据发光的光源被交替地改变。在设备214的输出端,光源211 发射光的路径与光源212发射光的路径相一致,使得无论光源如何,发射光213都沿着相同 路径向目标气体介质215传播。被包括有瞬时分辨率的检测装置的检测单元217检测的反 向散射光216的一部分,过滤装置218的位于检测单元217上游。在基准测量期间,这些过 滤装置218通过气体介质215过滤被反向散射光,使得仅仅给定波长直达检测单元217,其 中所述给定波长对应于被待检测的一种或多种混合物强(或弱)吸收的波长。在检测测量 期间,过滤装置被禁用。没有过滤的情况下进行的检测测量和有过滤的情况下进行的基准 测量之间的强度差异与所寻找的混合物的浓度直接成正比。
权利要求
一种对介质(4,13,113,215)中的混合物进行远程光学检测的方法,其中检测测量通过如下步骤进行从被称为检测光源的光源(1,11,111,211)向介质(4,13,113,215)发射短光脉冲,其中所述短光脉冲覆盖宽带的波长,并具有至少为3nm的宽度,优选宽度至少为10nm,并且借助具有瞬时分辨率的单元(6,15,118,217)来检测被所述介质反向散射的一部分光;基准测量通过如下步骤进行从与所述检测光源具有相同特性的被称为基准光源的光源(1,11,111,212)向介质(4,13,113,215)发射短光脉冲,并且借助具有瞬时分辨率的检测单元(6,15,119,217)来检测被所述介质反向散射的一部分光,发射的光或反向散射的光通过可寻址过滤装置(2,16,115,218)被过滤,所述可寻址过滤装置(2,16,115,218)仿真待寻找的至少一种给定混合物的处于工作波长的光的光学光谱;比较检测测量与基准测量,以便据此推断在介质中存在被寻找的所述混合物的可能性;动态地改变可寻址过滤装置(2,16,115,218),针对可能存在于介质中的一系列不同的混合物进行一系列基准测量与一系列对应的比较。
2.根据权利要求1所述的方法,其特征在于所述检测光源和所述基准光源包括发射 脉冲的激光器,所述激光器的波长谱被展宽。
3.根据权利要求1或2所述的方法,其特征在于所述检测光源和所述基准光源传输 的脉冲的持续时间从20fs至10ps、优选从IOOfs至300fs,功率从3GW至100TW、优选从 0. 5TW 至 5TW。
4.根据权利要求1至3任一项所述的方法,其特征在于向介质发射的所述脉冲是白 光脉冲。
5.根据权利要求1至4任一项所述的方法,其特征在于进行测量和比较,从而确定检 测到的存在的混合物的浓度。
6.根据权利要求1至5任一项所述的方法,其特征在于所述检测测量和基准测量用 单光源(1,11,111)进行,所述检测测量在没有任何过滤的情况下进行。
7.根据权利要求1至6任一项所述的方法,其特征在于对每次基准测量进行不同的 检测测量。
8.根据权利要求1至7任一项所述的方法,其特征在于所述可寻址过滤装置(2)被 放置在用于基准测量的光源和所述介质之间,以便在基准测量期间过滤发射的光。
9.根据权利要求1至8任一项所述的方法,其特征在于所述过滤装置包括光学空间 相位和/或幅度调制器,或者反射的或干涉的微电子系统。
10.根据权利要求1至7任一项所述的方法,其特征在于所述可寻址过滤装置(16, 115,218)被放置在所述介质(13,113,215)和用于基准测量的所述检测装置(15,119,217) 之间,以便在基准测量期间过滤反向散射的光。
11.根据权利要求10所述的方法,其特征在于所述过滤装置(115)包括使被待检测 的混合物强吸收的波长朝向一个检测单元(119)而使被待检测的混合物弱吸收的波长朝 向另一个检测单元(118)的装置(117),然后,同时进行所述检测和所述基准测量。
12.—种对介质(4,13,113,215)中的混合物进行远程光学检测的设备,所述设备包括一系列用于检测测量的组件,包括被称为检测光源的光源(1,11,111,211),向所述 介质发射短光脉冲,所述短光脉冲的宽度至少为3nm,优选宽度至少为lOnm,以及具有瞬时 分辨率的用于检测被所述介质反向散射的一部分光的单元(6,15,118,217),传输检测测 量;一系列用于基准测量的组件,包括与所述检测光源具有相同的特性的被称为基准光 源的光源(1,11,111,212),向所述介质发射短光脉冲,可寻址过滤装置(2,16,115,218), 过滤发射的光或反向散射的光,并且仿真待寻找的至少一种给定混合物的处于工作波长的 光的光学光谱,以及具有瞬时分辨率的用于检测被所述介质反向散射的一部分光的单元 (6,15,119,217),传输基准测量;用于比较检测测量与基准测量的装置,以便据此推断在介质中存在被寻找的混合物的 可能性;以及用于改变可寻址过滤装置的自动装置,允许针对可能存在于介质中的一系列不同的混 合物进行一系列基准测量。
13.根据权利要求12所述的设备,其特征在于所述检测光源和所述基准光源包括激光器。
14.根据权利要求12或13所述的设备,其特征在于所述检测光源和所述基准光源发 射的脉冲的持续时间从20fs至10ps、优选从IOOfs至300fs,功率从3GW至100TW、优选从 0. 5TW 至 5TW。
15.根据权利要求12至14任一项所述的设备,其特征在于所述检测单元和比较装置 包括用于计算检测到的存在的混合物的浓度的装置。
16.根据权利要求12至15任一项所述的设备,其特征在于所述检测光源(211)与所 述基准光源(212)不同。
17.根据权利要求12至16任一项所述的设备,其特征在于所述检测光源和所述基准 光源是单一并且相同的光源(1,11,111),所述检测测量在没有任何过滤的情况下进行。
18.根据权利要求12至17任一项所述的设备,其特征在于所述设备包括用于使检测 测量和基准测量交替进行的控制装置。
19.根据权利要求12至18任一项所述的设备,其特征在于所述可寻址过滤装置被放 置在用于基准测量的光源和所述介质之间,以便在基准测量期间过滤发射的所述光。
20.根据权利要求12至19任一项所述的设备,其特征在于所述过滤装置包括光学空 间相位和/或幅度调制器,或者反射的或干涉的微电子系统。
21.根据权利要求12至18任一项所述的设备,其特征在于所述可寻址过滤装置(16, 115,218)被放置在所述介质(13,113,215)和用于基准测量的所述检测装置(15,119,217) 之间,以便在基准测量期间过滤反向散射的所述光。
22.根据权利要求21所述的设备,其特征在于所述过滤装置(115)包括使被待检测 的混合物强吸收的波长朝向一个检测单元(119)而使被待检测的混合物弱吸收的波长朝 向另一个检测单元(118)的装置(117),然后,同时进行所述检测和所述基准测量。
全文摘要
本发明涉及一种对介质中的混合物进行远程光学检测的方法,以及一种适于实现该方法的设备,在该方法中检测测量通过如下步骤实现向介质发射宽度至少为3nm的短脉冲,并且借助具有瞬时分辨率的检测单元检测被所述介质反向散射的一部分光;基准测量,其中发射的光或反向散射的光依靠可寻址过滤装置被过滤,可寻址过滤装置仿真待寻找的至少一种给定混合物处于工作波长的光的光学光谱;检测测量与基准测量的比较,以便据此推断在介质中存在被寻找的混合物的可能性,动态地改变可寻址过滤装置,对容易存在于介质中的一系列多种混合物进行一系列基准测量与一系列对应的比较。
文档编号G01J3/457GK101815931SQ200880101117
公开日2010年8月25日 申请日期2008年5月26日 优先权日2007年5月29日
发明者热罗姆·卡斯帕里安, 让-皮埃尔·沃尔夫 申请人:克洛德·贝纳尔-里昂第一大学;国家科学研究中心