磁场传感元件的利记博彩app

文档序号:5830082阅读:377来源:国知局
专利名称:磁场传感元件的利记博彩app
技术领域
本发明涉及磁场传感元件。具体而言,本发明涉及利用隧道磁阻现象 的磁场传感元件。
背景技术
今天,已经能够获得数不清种类的磁场传感器。它们的区别在于它们 所基于的技术,后者也常常取决于应用领域。
最常见的机电磁场传感器建立在感应原理的基础之上。它们利用感应 线圈,只能检测随时间变化的磁场。
例如,对于汽车工业应用,已经开发出能够检测和测量磁场的存在、 磁场强度和/或磁场变化的磁场传感器。这种传感器使用的主要技术建立在 众所周知的霍耳效应和磁阻效应的基础之上。这些技术通常涉及半导体技 术。传感元件和电子电路放置在共同的芯片上。主要是用于检测转动的其 它技术,采用的是直接接触的铁磁和反铁磁层的交换偏置效应。
对于信息技术(IT)领域的应用,例如读取头、存储技术、磁性随机 读取存储器(MRAM),总的趋势是更加小型化,例如以便提高存储密度。
最近,已经开发出了基于巨磁阻(GMR)效应的硬盘读取头,其中的 软、硬磁性层由金属非磁性层分隔开。
此外,因为能够应用于自旋电子器件,例如MRAM和磁传感器,所谓 的磁隧道结(MTJ, Magnetic Tunnel Junction)已经引起了人们浓厚的兴趣。 通常,MTJ由薄的绝缘势垒层分隔开的两个铁磁金属层组成。绝缘层如此 之薄,以至于在绝缘体两边的两个金属电极之间施加偏置电压时,电子能 够隧道穿过势垒。在这种MTJ中,隧道电流取决于两个铁磁层的相对磁化 方向,这个方向可以用所施加的磁场来改变。这一现象称为隧道磁阻 (TMR)。
例如,US 6,219,274中描述了基于TMR效应,以磁场传感器为特征的 硬盘读取头。
虽然能够在产业上应用基于纳米尺度效应的这些技术,但是它们需要 复杂的薄膜技术,这种技术涉及高成本设计和设备。另外,尽管它们能够 确定磁场的存在、范围和方向,但只是在传感元件所在的位置才能做到这 些。测量广泛空间区域的磁场需要采用这种类型的多个传感器,或者传感 器需要在几个测量位置之间进行机械移动。
US 5,463,516公开了工作于TMR原理的一种磁阻换能器,它包括在软、 硬磁性颗粒交替层之间形成的MTJ,这些磁性颗粒排列成绝缘或半导体基 体(例如Si02、 A1203、 C、 Si、 Ge等)。同样,这种换能器需要复杂、昂 贵的薄膜技术,它的功能受限于它的确定性构造,这种确定性构造将纳米 颗粒的物理特性与它们的制备条件和传感器构成紧密相关。
发明目的
本发明的目的是提供另一种磁场传感器,它也涉及纳米尺度的固态效 应,制造起来更加容易,成本更低。这一目的是通过权利要求1要求保护 的磁场传感元件来实现的。

发明内容
为了解决上述问题,本发明提供一种磁场传感元件。包括用绝缘(电 介质)聚合物层分隔开的一对电极。在绝缘层中,磁性纳米颗粒排列成网 络,在所述电极之间提供电流流动路径。磁性纳米颗粒网络包括至少一个 磁隧道结,至少一个磁隧道结包括具有不同矫顽磁性的两个相邻纳米颗粒。
因此,本磁场传感元件利用从两个相邻纳米颗粒在绝缘层内构建的 MTJ。当电压施加在电极之间时,电荷载体通过纳米颗粒网络从一个电极输 送到另一个。矫顽磁性差使得施加了外磁场时,结中两种纳米颗粒之间磁 化角不同,这就使得通过结的隧道磁阻(TMR)发生变化。因此,监视电 极之间的电流和/或电压就能够确定传感元件附近磁场的变化。
要注意,可以用本发明的磁场传感器来测量是否存在磁场。还用它来 测量磁场的幅度或者区分磁场转动的方向。本传感器基于利用廉价原材料 的低成本技术,可以用众所周知的低成本工艺制造,例如丝网、喷墨、胶 版、照相凹版、苯胺印刷或压印(下面将对此进行详细介绍)。
这里的磁性纳米颗粒这个术语指的是纳米尺寸范围的颗粒,包括(铁) 磁性材料。对颗粒的形状没有任何特别限制,尽管它们通常具有球体形状。
关于它们的尺寸,磁性颗粒可能在两个空间尺度上具有小于或等于200纳 米的几何尺寸。它们在第三个尺度上的尺寸不受限制(它可能达到几百纳 米),因此,它们可能是纳米球、纳米管、纳米棒或纳米线。
要明白,实际上绝缘层包括大量纳米颗粒,因此在整个绝缘层中包括 数量可观的MTJ。这是磁传感器一种完全不同的设计方法,因为本传感元 件的灵敏度和性能取决于网络中各种MTJ的统计分布以及它们的有关物理 特性;而在常规磁传感器中,存在精确、确定性的MTJ结构。
由于颗粒尺寸和几何形状存在大范围的变化,因此,颗粒浓度也可能 在大范围内变化。因此,绝缘聚合物层中颗粒浓度可能在1 60体积百分比 的范围之内。
MTJ的电介质隧道势垒可以采取几种形式。第一种可能是绝缘层(基 体)本身的特定厚度将结的两个纳米颗粒分隔开,充当隧道势垒。另一种 可能是提供具有内核/外壳结构的纳米颗粒,其中的内核由磁性材料组成, 外壳充当隧道势垒。在这种情况下,只有一种纳米颗粒拥有充当隧道势垒 的外壳。外壳可以由氧化物层或另一种电介质涂层(例如聚合物)组成。 外壳还可以由反铁磁性材料组成。
在一个优选实施例中,只使用两种磁性纳米颗粒 一种呈现固定的磁 化强度,另一种呈现自由的磁化强度。这意味着一种颗粒应当具有强(或 者固定的)磁化强度(因为硬磁特性),因此它不能被外场翻转;而另一种 纳米颗粒则具有"自由"磁化强度(因为软磁特性——至少相对于具有强 磁化强度的颗粒而言),施加外场时,允许它们转动(翻转)。电荷载体隧 道穿过软、硬磁性颗粒之间的势垒的概率取决于纳米颗粒磁化强度相互之 间的方向。施加外磁场会改变软颗粒的磁化强度;如果所有颗粒的磁化强 度都平行,这通常导致整个纳米颗粒排列的电阻最小;如果软、硬纳米颗 粒的磁化强度反平行,电阻就最大。测量因为施加的外部磁场而导致传感 器TMR发生的改变,就能够检测场是否存在,并测量其幅度或方向。
利用硬磁性材料,通常是具有大矫顽磁性场的铁磁性材料,能够获得
纳米颗粒的固定磁化强度。这种材料的实例有FePt、 FePd、 SmCo或CoPt。
考虑呈现自由磁化强度的软纳米颗粒,它们通常包括软磁性材料,也 就是固有矫顽磁性低的材料,例如软铁磁性材料,象Fe、 Ni、 Co或者它们 的合金。利用在工作温度(也就是这一温度应该高于这种纳米颗粒的间歇 温度)呈现超顺磁性的材料,也能获得呈现软磁特性的纳米颗粒。超过磁 性纳米颗粒的间歇温度时,颗粒丧失其永久性磁偶极矩,它的矫顽磁性场 消失。铁磁序丧失,表现出超顺磁性。因此,如果施加外磁场,颗粒的磁 矩跟随外场,外场在颗粒中感应出磁偶极矩。从这个意义上讲,超顺磁性 颗粒精确地拥有所希望的软磁特性。
根据材料和所希望的设计,可以采用具有单轴、单向或多轴各向异性 或者它们的组合的纳米材料。在另一个实施例中, 一些纳米颗粒可以是非 晶的,因此没有磁化易轴。
这些颗粒优选为单磁畴纳米颗粒,因此每个颗粒只有一个磁矢量。这 些颗粒的表现更加可预测,重新磁化原理更加容易控制,因此能够更好地 定制传感器的特性。
优选使用这样的材料,在室温下它的大多数载体在费米能级上的自旋 极化尽可能大。它们将具有单轴磁各向异性,从而呈现出磁易轴。
在另一个实施例中, 一种或所有种类的纳米颗粒拥有高磁阻和半金属 带结构,以便大多数载体在费米能级上实现高自旋极化。这种类型的纳米 颗粒的实例是结构为X2YZ或XYZ的Heusler合金,其中X和Y表示过渡 金属元素,Z表示第m族、第IV族或第V族元素。Heusler合金的金属实 例是Co2MnSi或Co2FeSi。具有高自旋极化的金属的另一实例是铁磁氧化 物,例如Fe304或Cr02。
在另一个实施例中,软纳米颗粒、硬纳米颗粒或者两者不是磁单畴颗粒。
要注意, 一些聚合物可能具有固有的磁特性。事实上,通过构造它们 的分子, 一些有机分子呈现出铁磁响应。这意味着具有这种分子的聚合物 本身就会呈现出铁磁表现(可以将它说成固有的磁特性)。于是,利用这种 聚合物构建MTJ只需要添加比这种磁性聚合物更软或更硬的磁性纳米颗
粒。为了在电极之间提供电流流动路径,聚合物将具有至少一点电导率。 聚合物中纳米颗粒和磁性分子(或实体)之间的隧道势垒可以通过在磁性 纳米颗粒上提供外部绝缘涂层来形成(内核/外壳结构,例如磁性金属/合金 的自然氧化物层)。跟本发明这一方面的磁传感元件相比,优选在聚合物中 的磁性纳米颗粒具有较高浓度(体积份额)。
因此,根据本发明的另一方面, 一种磁场传感元件包括一对电极;将 电极分隔开的聚合物层;聚合物层中的磁性纳米颗粒。聚合物层具有固有 的磁特性(磁性分子)和电导率。磁性纳米颗粒具有不同于聚合物的磁性 矫顽磁性,并且具有充当势垒层的涂层,由此在所述电极之间在所述电流 流动路径中形成磁隧道结。
根据本发明的另一方面,提出一种制造磁场传感元件的方法,这种方 法包括
-提供基板;
-提供液体混合物,包括绝缘聚合物和/或绝缘聚合物前体以及具有不 同矫顽磁性的纳米颗粒;
-在所述基板上形成一层所述液体混合物并让它固化,从而形成包含所 述纳米颗粒的一层绝缘聚合物;-形成第一和第二电极,它们由包含所述纳米颗粒的所述层绝缘聚合物 分隔开。
本发明比较容易实现,只需要相对简单、经济的技术。磁场敏感层(也 就是具有嵌入的纳米颗粒的聚合物层)的形成是通过让包含聚合物前体和 纳米颗粒的液体混合物进行固化/硬化来获得的。为了让传感器工作,在这 一层的两侧提供电极就足够了。根据要实现的传感元件的结构和设计,可 以在不同的时刻,同时或分别形成电极。绝缘聚合物层和电极之间界面处 的接触电阻优选尽可能低。因此,应当据此选择电极制造工艺印刷、溅 射、蒸发或气相沉积方法都是可用技术。众所周知,印刷技术是便宜的、 容易的制造技术。也是为了减小界面欧姆电阻,可以用金属或纳米复合材 料制作电极。
在一个优选实施例中,在仍然处于液态的混合物层附近产生外场,控 制所述纳米颗粒的排列和/或所述纳米颗粒的磁化取向。这种外场是直流电
场、磁场或电磁场之一,这样做能够排列纳米颗粒网络,形成链、胶状晶 体、对称图案或簇这种结构。最感兴趣的是直流磁场;但是,由于一些颗 粒也可能呈现出永久的或感应电偶极矩,因此也可以使用直流或时变电场。 因此,在这种场中纳米颗粒自己排列好,使得它们的磁矩基本上平行于场, 这样能够大大简化工艺的实施。
会发现绝缘聚合物中纳米颗粒网络的生产惊人地简单。场辅助自组织 能够最好地描述这一工艺。这种工艺的一个必要条件是纳米颗粒足够高的 移动性。在液体聚合物基体中,这一条件是用一种精致的方式提供的。移 动性总的来说足够高,还可以通过匹配液体基体的流变特性来加以控制。 场辅助自组织因为磁性纳米颗粒的永久性磁偶极场而发生。相邻颗粒的偶 极-偶极相互作用导致形成纳米颗粒链,这些链中的磁易轴也在链的方向上。 在一个实施例中,为了让链的取向垂直于电极,将外磁场叠加在局部偶极 场上。在纳米颗粒没有永久性偶极矩(例如超顺磁性颗粒)的情况下,这 种外场也是有用的,因此可以用外场感应出足够高的颗粒磁矩。由于整个 链的形成工艺依赖于初始边界条件,并且受到统计起伏的影响,因此纳米 颗粒链一般都是直的,但是它们倾向于形成链网,链的取向垂直于电极, 多少有些平行的链之间有多个链结和交叉链。在网络形成以后,让液体聚 合物基体固化,从而固定基体中纳米颗粒的几何排列。
因此,本方法能够通过施加外场来让纳米颗粒取向,例如,让链取向, 从一个电极到达另一个电极。因此,与常规技术形成对照,纳米颗粒的几 何形状和取向不必是平行平面结构。此外,外场允许在没有永久性偶极子 的颗粒中感应偶极矩(使用超顺磁性材料时是有用的),因此这些颗粒按照 需要表现。
混合物固化工艺依赖于聚合物材料的本质,它通常可能是液体形式的 绝缘聚合物或者需要聚合的聚合物前体溶液。实际上,包含纳米颗粒已经 固化的绝缘聚合物层可以用热固性或热塑性聚合物形成(它们通常是电绝 缘的,也就是电介质,并且是非磁性的)。聚酯、聚烯烃、碳氢化合物和硅 基聚合物是热固性聚合物的实例。苯酚聚合物是热塑性聚合物的实例。
在混合物包括绝缘聚合物的情况下,后者可以溶解于溶液,以液态形 式使用,或者可以是热塑性的液态聚合物。因此,固化和硬化步骤可以是
指溶液变干(蒸发)和/或冷却。
如果使用聚合物前体(通常是所需要的聚合物的单体),混合物的固化 意味着前体的聚合。聚合类型和动力取决于聚合物前提的本质。因此,根
据液体混合物的情况,可以用uv硬化、热空气硬化、红外硬化或化学工
艺来让聚合物层固化。丙烯酸或环氧低聚物是可光聚合聚合物的实例。
仍然需要注意纳米颗粒网的形成还可以用包括纳米颗粒的液体混合物 以及两种或多种聚合物的组合来实现。例如,在所谓的二嵌段共聚物的情 况下,液体混合物可以包括两种聚合物或者相应地混合在一起的两种低聚
物,当然同样有纳米颗粒。在临界温度下(或者在临界uv剂量下),出现
两种材料之间的相分离,典型地形成由交替区域组成的特征图案,其中有 一种或另一种聚合物。根据它们表面特性的不同,纳米颗粒可能对一种或 另一种聚合物具有亲和力。根据这种制备程序,纳米颗粒将主要装在高亲 和力聚合物中。因此,纳米颗粒密度能够反映由于聚合物的相分离而形成 的空间图案。这种图案对于通过绝缘聚合物产生导电路径是有帮助的,因 为在高亲和力聚合物中纳米颗粒密度很高,在低亲和力聚合物中很低。
本发明中的磁场传感器可以被用于测量磁场是否存在。更多的应用有 测量磁场幅度,或者区分磁场转动方向。
在检测磁场是否存在的情形中,可以注意到生产技术的优点在于它能 够在公共基板上制造数不清的传感单元,将所有传感元件连接到电路,根 据例如汽车标准产生信号输出。所有传感元件都由电子电路分别寻址。传 感元件和电路之间的连接,以及可选择地额外的有源或无源电子元件之间 的连接,可以在传感元件所在的同一基板上制造。
更加一般地,本领域技术人会认识到利用本技术能够用大规模、大面 积生产技术在一个基板上排列多重磁场传感元件来生产非常大的传感器。
本传感器技术的一种特殊应用是例如测量汽车前座的位置。制备传感 器单元,其中包括聚合物基板以及在其上制作的多个传感元件。将这个传
感器单元安装在座位固定装置的固定引导棒中一边,座位固定装置本身固 定在汽车底盘上。将小型永久磁铁安装在滑动棒内(引导棒对应的部分), 滑动棒固定在座椅上。前后移动座位会改变滑动棒与座位的滑动棒对应部 分之间的相对位置。如果永久磁铁与传感元件相对,这个特定元件中的磁
化强度切换,伴随着元件中磁阻改变。电路检测到磁阻的这个不同值,并 将这个值赋予磁化强度切换的传感元件。由于这个传感元件相对于底盘的 位置已知,因此座位相对于底盘的位置也立即己知。显然,这里描述的工 作原理需要在基板上有足够数量的传感元件,并且能够由电路对各个传感 元件进行寻址。本传感器技术能够很好地满足这两项需求。
还有许多非汽车应用。对于需要中等分辨率测量大量传感位置的应用, 本传感器技术特别有用。传感器和它们到电路的连接器可以全部在一个基 板上制造。聚合物箔基板特别适合于制造这种传感器。作为一个整体,传 感器单元可能有几米长,可以有几百个本发明的磁性传感元件。


下面通过实例,同时参考附图来描述本发明。在这些附图中
图1是本发明的磁场传感元件第一实施例中沿着基板平行平面的剖面
图2是本发明的磁场传感元件第二实施例中沿着基板表面垂直平面的 剖面图3、 4和5基于有3个纳米颗粒的示例性实施例说明本发明的磁场传 感元件的工作原理。
具体实施例方式
纳米技术是科学和产业上快速增长的领域。今天已经能够买到纳米尺 寸并且具有所需结构特性的颗粒。能够比较容易地改变这些颗粒的表面, 甚至让它们官能化,以便让颗粒在聚合物溶液中扩散,或者防止聚集。制 备和使用纳米颗粒的这种新兴技术为在纳米尺度上利用物理效应,构建象 传感器这种新产品提供了全新途径。
本发明利用特定种类的(铁)磁纳米颗粒,这些颗粒能够在包含聚合 物或聚合物前体的液体中扩散。这种方法的优势在于可以在低成本产业工 艺(例如印刷)中将这种扩散带入基板中。利用这种技术能够大规模制备 具有良好限定的几何扩展的传感器元件。具体地说很容易在柔性基板上, 例如在聚合物薄膜上, 一辊一辊地生产这些传感器元件,包括让传感器元
件工作必不可少的电子结构。
在绝缘聚合物层中生产纳米颗粒网络惊人地简单,并且遵从统计方法,
而不是今天的磁电子学(magnetoelectronics)中使用的确定性方法。通常, 能够买到的隧道磁阻(TMR)读取头由特定数量的(通常是四个)TMR结 组成,这些结是从气相制备的。TMR结的这种冗余是必不可少的,因为单 个TMR结可能无法正常工作,这主要是因为极薄隧道势垒中针孔引起铁磁 层之间有可能出现短路。本发明通过产生数不清的TMR结来解决这个制备 难题,与所描述的确定性制备技术相比,每个传感器元件中TMR结的数量 要多出几个数量级。因此,少量TMR结发生故障不会对传感器元件的正确 工作带来致命影响。传感器单元的TMR效应是大量TMR结依赖于自旋的 散开过程的统计结果。这使得本发明的传感器技术就生产工艺而言更加鲁 棒。在本工艺中,可以改变软、硬(铁)磁颗粒的数量份额,使得传感器 单元的TMR效应最强,因此网络电阻处于所需要的范围内。实际上,这意 味着颗粒网络将在网络的每个分支具有至少一个TMR结。但是,传感器单 元的TMR效应将由导电网络中有效的TMR结的统计分布来引起。网络的 每条导电路径中有效的TMR结的平均数量将大于1,以避免没有TMR结 的渗透路径。
在颗粒扩散过程中,在印刷工艺以及在最后的聚合物固化中,固有的 颗粒特性不会改变。这意味着颗粒的结晶结构或者它们的尺寸分布基本不 受传感器生产工艺的影响。因此,颗粒合成和传感器生产的工艺完全分开。 这一点特别有利,因为它能保证材料选择、颗粒特性设计和颗粒几何排列 的最大自由。本发明的传感器制造技术比US 5,463,516中描述的常规技术 更加优越,US 5,463,516说明了在材料选择、颗粒特性和颗粒的几何排列方 面现有技术的典型局限性,这种局限性的原因是颗粒和传感器的生产工艺 没有分开。
在图1中说明本发明中场传感元件10的第一个实施例。它包括电绝缘 聚合物层16 (也称为基体)分隔开的一对电极12和14。标号18表示聚合 物基体16中嵌入的(一个或多个)磁性纳米颗粒。这些纳米颗粒的尺寸在 几个纳米到几百纳米之间变化,但是最好是在三个空间尺度中的两个空间 尺度上不超过200纳米。在不同的实施例中它们的形状可能不同。为了方
便表示,将纳米颗粒18画成同样的样式,画成球形并且具有相同尺寸。具 体地说,图1和2中不考虑它们的不同磁特性,它们的磁化强度,也不考 虑它们可能不同的尺寸和几何形状。
在聚合物基体16中排列磁性纳米颗粒18,形成网络,在电极12、 14 之间提供电流流动路径。可以看出,纳米颗粒18排列成在一个或多个链中 与另一个紧密接触,或者排列成三维网络,其中由纳米颗粒组成的链可以 交叉连接。显然,电极12、 14必须有至少一条纳米颗粒18链连接,才能 在一个电极到另一个电极之间存在电流路径。同样很清楚,纳米颗粒必须 具有某个电导率,以便电流通过链流动。可以认为,为了正常工作,纳米 颗粒优选最小具有1 S/cm的电导率。
虽然图1中没有画出,但是要明白,纳米颗粒18网络包括至少一个磁 隧道结,两个相邻纳米颗粒18具有不同的矫顽磁性。这种MTJ对外磁场敏 感,外磁场会引起具有最小矫顽磁性的那种纳米颗粒的磁化发生改变。这 会改变MTJ的隧道磁阻,从而引起从一个电极到另一个电极流过的电流发 生改变。实际上,电极12、 14可以连接到电路,在这个电路中可以定义直 流电流或电压,能够测量没有定义的相应量。
在图1中,传感元件IO具有平面结构。电极12、 14和绝缘聚合物层 16 —个接一个直接在基板20的表面上形成。在电极12、 14之间施加电位 差时,产生一个电场,这个电场基本上垂直于基板的表面法向。纳米颗粒 18排列成链或交叉链,从一个电极到达另一个电极,从而只要在它们之间 施加电压,电荷载体就会在电极12、 14之间移动。
图2示出本发明中传感元件10'的另一个实施例,其中电极12'和14' 以及绝缘层16'排列在基板20'表面上, 一个叠在另一个上面。在电极之间 施加电位差时,产生一个电场,这个电场基本上平行于基板20'的表面法向。
在图1和2所示的两个优选实施例中,纳米颗粒网络由一些链组成, 这些链基本上垂直于电极12、 14延伸。下面将进一步详细地描述制造这种 传感元件的优选方法。
如同己经说明的一样,传感器工作原理建立在具有不同磁特性的磁性 纳米颗粒的电路中电荷载体相互作用的基础之上。连接两个纳米颗粒的电 绝缘(电介质)隧道势垒的隧道磁阻(TMR),取决于纳米颗粒磁化强度互
相之间的相对方向。对于平行方向,TMR最小,对于反平行方向,TMR最 大,这是众所周知的。
为了在外磁场(要检测其是否存在的磁场)中获得特定数量纳米颗粒 的翻转磁化强度, 一些纳米颗粒将具有"自由"磁化强度。但是,在存在 外场的情况下,所有其它纳米颗粒的磁化强度不能反向,这一点要求采用 具有"固定"磁化强度的纳米颗粒。在本实施例中,具有自由磁化强度的 纳米颗粒是从具有软磁化特性的纳米颗粒制作的,而具有固定磁化强度的 纳米颗粒则是从具有硬磁化特性的材料制作的。软(硬)磁化特性是指相 对于要测量的外场,相应纳米颗粒的矫顽磁性场较小(较大)。总的来说, 纳米颗粒的磁化特性取决于固有的材料特性和纳米颗粒的尺寸、几何形状、 温度以及环境。如同本领域技术人员明白的一样,上面那些纳米颗粒被激 活的磁性类型,不论是软的还是硬的,都是铁磁性的。
为了简单和一致起见,软磁性纳米颗粒采用同样的软磁性材料,硬磁 性纳米颗粒采用同样的硬磁性材料。
在形成MTJ的两个纳米颗粒之间的界面上,MTJ当然需要绝缘(电介 质)隧道势垒。这种隧道势垒可以采取几种形式。它可以例如由分隔开两 个纳米颗粒的聚合物基体本身的一个很薄的部分组成。但是,由于纳米颗 粒将排列成紧密接触,它们之间的间隔很难控制,因此,MTJ的两个纳米 颗粒之间的势垒层优选采取一种纳米颗粒上提供的电介质势垒材料涂层 (壳)的形式。这样就能够在软、硬纳米颗粒之间具有势垒层,避免在相 同类型的纳米颗粒之间出现势垒层。还能减小同一类型相接纳米颗粒之间 的界面的电阻,它明显低于软、硬纳米颗粒之间的TMR。此外,当软纳米 颗粒夹在两个硬纳米颗粒之间时,或者当硬纳米颗粒夹在两个软纳米颗粒 之间时,就直接获得了TMR双结。
充当隧道势垒的电介质势垒材料可以包括反铁磁性材料,例如,形成 纳米颗粒的金属/合金的自然氧化物。
为了说明本传感元件的一般工作原理而不参考特定实施例,图3、 4和 5示出一个链的示例性排列,这个链由电绝缘基体(没有示出)中两个电极 112、 114之间的三个纳米颗粒118组成。软磁性纳米颗粒118,位于硬磁性 纳米颗粒1182之间,构成一条链。软IIS,、硬1182磁性纳米颗粒由足够薄
的电介质隧道势垒122分隔开,从而在电极112、 114之间施加电场以后, 很可能出现自旋极化电荷载体通过势垒122渗透。用虚线124表示的磁化
强度的易轴平行于链轴,如果外磁场Hext平行于或者反平行于链轴124,并
且场强小于硬纳米颗粒1182的矫顽磁性场,那么硬颗粒1182的磁化能量出 现稳定的最小值。
图3示出软、硬纳米颗粒的磁化强度矢量126和128与外磁场H^共 线的情形。图4说明图3所示外场Hew被关闭的情形。主要由于相接纳米 颗粒118之间的偶极子-偶极子相互作用,软纳米颗粒118,的磁化强度矢量 126与硬纳米颗粒1182的磁化强度矢量128平行。在室温下,这种状态在
热力学意义上是稳定的。图5说明如果与图3所示情形相比,外场Hext的
方向翻转过来,软纳米颗粒118,的切换后的磁化状态126。对于这一操作, 外场必须足够强,以便翻转软纳米颗粒U8,的磁化强度126,但是要低于 硬纳米颗粒1182的矫顽磁性场,以防止它们的磁化强度128翻转。如果图 5中的外场关闭,磁化状态就变成热力学不稳定的。它会回到图4所描述的 稳定状态。
本传感元件通过改变电路电阻,能够测量规定方向和特定间隔幅度的 外磁场是否存在。如果场强已知,就可以用传感器来测量平面内外场的方 向。由于,软纳米颗粒的磁滞曲线因为与硬纳米颗粒的磁化强度的相互作 用而被偏置,因此软纳米颗粒的切换,从而电流-电压曲线并不相对于零场 位置对称,于是能够区分场转动的方向。
下面将详细描述本传感元件的制造方法。
如同后面将提到,本传感元件可以用常规技术以较低的成本来制造。 总的来说,将软、硬纳米颗粒按照选定数量比添加到绝缘聚合物或聚 合物前体溶液中,获得液体混合物。将这种混合物施加到层形基板。然后 将这一层放入外磁场中,外磁场在纳米颗粒上施加力矩。由于能量最小化 原理,它们会转动,它们的易轴将与场平行对准,以免使用具有单轴各向 异性的单畴纳米颗粒。液体混合物中纳米颗粒的移动性足够高,因此它们 排列成链或者排列成三维网络,从而在适当地选择系统参数的情况下,自 由能量最小。同样己经观察到这种自组装机制能够导致纳米颗粒三维网络 的形成;在文献中还描述了具有可以比拟的几何结构的网络。网络形成完
成后,让聚合物硬化和/或固化,于是将网络结构固定成固体非导电基体。 当然,固化步骤取决于聚合物混合物的本质,如同己经说明过的一样。本 领域技术人员很容易确定适当的聚合物或聚合物前体以及它们的固化工 艺。
要注意,电极的形成取决于传感元件的结构和制造技术。为了提高性
能,绝缘聚合物层和电极之间界面处的接触(contact)优选尽可能低。因此 在选择电极制造工艺时,应当将这一点牢记在心;总的来说,印刷、溅射 或气相沉积都是可用的技术。印刷技术是便宜、容易的制造技术,可以用 于磁传感层和电极制造。对丝网、喷墨、胶版、照相凹版、苯胺印刷或压 印技术都特别有兴趣。同样为了降低界面欧姆电阻,可以用金属或纳米复 合材料制作电极。
图1和2示出的传感元件可以利用例如丝网印刷、喷墨印刷、胶版、 照相凹版、苯胺印刷或压印技术制造,通常用这些技术利用导电墨水来形 成电路。
在传感元件IO具有平面结构的图1所示情形中,可以用例如银墨水在 基板20上印刷两个电极12、 14。然后在两个电极12和14之间的基板上印 刷聚合物前体和纳米颗粒的液体混合物16。印刷混合物带的宽度被选择成 与电极12、 14略微重叠,从而保证基体16和电极之间适当接触。
为了制造图2所示的传感元件,首先在基板20'上印刷较低电极12', 然后将液体混合物印刷在它们上面。在绝缘层16硬化后,将第二电极14' 印刷在绝缘层16'的上表面上。
在给出的制造工艺中, 一开始将传感元件一次性地暴露在强场中,将 硬纳米颗粒磁化到饱和。这个场基本上平行于硬纳米颗粒的易轴,这些硬 纳米颗粒在制备工艺中在液体基体中取向。易轴平行于链轴。硬纳米颗粒 将在传感器寿命期间保持它们的磁化强度,而软纳米颗粒的磁化方向则随 外场改变(图3~5),只要与相邻硬TMR伙伴的相互作用被场幅度克服。
因此,利用印刷技术制造磁场传感元件的本方法具有明显的优点,因 为它们成本低,易于进行工业尺度生产。本方法的具体优点为
- 有可能通过磁场对液体聚合物中的纳米颗粒施加力矩,从而让它 们的磁化易轴取向;
有可能对液体聚合物中的纳米颗粒施加外场,来帮助它们排列成 链和网络;
能够获得各种传感器几何形状的灵活性; 在柔性基板上印刷大面积传感器; 理论上每个网络分支只需要一个MTJ;
能够改变软、硬纳米颗粒的比(例如US 5,463,516的技术则不能)。
权利要求
1.一种磁场传感元件,包括一对电极;将所述电极分隔开的绝缘聚合物层;在所述绝缘聚合物层中形成所述电极之间电流流动路径的磁性纳米颗粒网络,其中所述磁性纳米颗粒网络包括至少一个磁隧道结,所述至少一个磁隧道结涉及具有不同矫顽磁性的两个相邻纳米颗粒。
2. 如权利要求1所述的磁场传感元件,其中所述磁隧道结包括具有固定磁化强度的磁性纳米颗粒和具有自由磁化强度的磁性纳米颗粒。
3. 如以上权利要求中任一权利要求所述的磁场传感元件,其中所述传感元件具有源自所述网络中多重磁隧道结的统计分布的隧道磁阻。
4. 如权利要求l、 2或3所述的磁场传感元件,其中所述纳米颗粒网 络包括在所述电极之间桥接的一个或多个链或者交叉链接的链。
5. 如权利要求4所述的磁场传感元件,其中所述电极基本上是平行的, 纳米颗粒的所述链或交叉链接的链基本上垂直于所述电极延伸。
6. 如以上权利要求中任一权利要求所述的磁场传感元件,其中所述磁 性纳米颗粒主要包括软磁性纳米颗粒和硬磁性纳米颗粒。
7. 如以上权利要求中任一权利要求所述的磁场传感元件,其中所述纳 米颗粒是单畴磁性颗粒。
8. 如以上权利要求中任一权利要求所述的磁场传感元件,其中每个磁 隧道结包括隧道势垒,所述隧道势垒是由所述绝缘层的一部分形成的,或 者是由所述结中纳米颗粒之一的至少一部分上提供的外部层形成的。
9. 如以上权利要求中任一权利要求所述的磁场传感元件,其中软磁性 纳米颗粒具有充当势垒层的外部层。
10. 如权利要求1~9中任一权利要求所述的磁场传感元件,其中硬磁 性纳米颗粒具有充当势垒层的外部层。
11. 如权利要求8、 9或10所述的磁场传感元件,其中充当势垒层的 所述外部层包括反铁磁性材料。
12. 如权利要求1所述的磁场传感元件,其中所述绝缘聚合物层包括 一种或多种聚合物材料。
13. 如权利要求1所述的磁场传感元件,其中所述电极是用非磁性材 料制作的。
14. 如权利要求1所述的磁场传感元件,其中所述电极是用反铁磁性 材料制作的。
15. —种制造磁场传感元件的方法,所述方法包括 提供基板;提供液体混合物,包括绝缘聚合物和/或绝缘聚合物前体以及具有不同矫顽磁性的纳米颗粒;在所述基板上形成所述液体混合物的一层并让它固化; 形成第一和第二电极,它们由包含所述纳米颗粒的所述绝缘聚合物层分隔开。
16. 如权利要求15所述的方法,其中当所述混合物仍然处于液体状态 时,在所述层的附近产生外场,用于控制所述纳米颗粒的排列和/或取向。
17. 如权利要求15或16所述的方法,其中当所述混合物仍然处于液 体状态时,在所述层的附近产生外场,用于控制所述纳米颗粒的磁化取向。
18. 如权利要求15、 16或17所述的方法,其中所述外场是直流电场、 磁场或电磁场之一。
19. 如权利要求15所述的方法,其中所述电极和/或所述液体混合物层 是用印刷技术形成的。
20. 如权利要求19所述的方法,其中所述印刷技术是丝网、喷墨、胶 版、照相凹版、苯胺印刷或压印之一。
21. —种磁场传感元件,包括 一对电极;将所述电极分隔开的聚合物层;所述聚合物层中的磁性纳米颗粒;其中所述聚合物层具有固有的磁特性和电导率;以及其中所述磁性纳米颗粒具有不同于所述聚合物的磁性矫顽磁性,并且 具有充当势垒层的涂层,由此在所述电极之间的电流流动路径中形成磁隧 道结。
22. —种磁场传感器单元,包括多个如权利要求1~14或21中任意一 个所述的磁场传感元件,所述磁场传感元件排列在同一基板上。
全文摘要
一种磁场传感元件,包括一对电极(12);将所述电极分隔开的电介质聚合物层(16);在所述绝缘层中形成所述电极之间电流流动路径的磁性纳米颗粒(18)网络。所述磁性纳米颗粒网络包括至少一个磁隧道结,所述至少一个磁隧道结包括具有不同矫顽磁性的两个相邻纳米颗粒。
文档编号G01R33/06GK101375424SQ200780003398
公开日2009年2月25日 申请日期2007年1月25日 优先权日2006年1月27日
发明者T·维特科斯基 申请人:Iee国际电子工程股份公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1