专利名称:高分辨率的电阻率地层成像仪的利记博彩app
技术领域:
本发明总的涉及碳氢化合物的探测,包括穿透地层(earth formation)的钻孔的电勘测。更具体地,本发明涉及高度局部钻孔勘 测,其通过在沿钻孔移动的仪器上的电极和地层的电容性耦合对注入 钻孔壁中的勘测电流进行多频聚焦。
背景技术:
地层钻孔电测井是公知的,已经描述了用于此目的的各种装置和 各种技术。总体而言,有两类用于电测井装置的装置。在第一类中, 测量电极(电流源或宿(sink))与扩散返回电极(例如仪器主体) 结合使用。测量电流在将电流源连接至测量电极的电路中流动,通过 地层到达返回电极并回到仪器中的电流源。在感应测量仪器中,测量 仪器内的天线引发在地层中的电流流动。使用相同的天线或独立的接 收器天线检测所引发的电流的大小。本发明属于第一类。有若干操作模式在第一模式中,测量电极处的电流保持恒定, 测量电压;而在第二模式中,电极的电压固定,测量从电极流动的电 流。理想地,期望如果电流改变以保持在监测电极处测量的电压恒定, 则电流与被勘测的地层的电阻率成反比。相反,期望如果电流保存恒 定,则在监测电极处测量的电压与被勘测的地层的电阻率成正比。根 据欧姆定律的教导,如果电流和电压均改变,则地层的电阻率与电压 -电流的比率成正比。Birdwell (美国专利3365658 )教导了使用聚焦电极确定地层的 电阻率。从中央勘测电极发射勘测电流至附近地层中。该勘测电流利 用从位于该勘测电极附近和其任一侧上的聚焦电极附近发出的聚焦 电流,被聚焦为从钻孔向外的较窄的电流束。Ajam等(美国专利4122387)公开了一种装置,其中通过位于利用测井电缆降到钻孔中 的探头上的保护电极系统,可以在距离钻孔的沿地层的不同横向距离 处进行同时测井。单个振荡器控制流经位于期望的距离钻孔的不同横 向深度处的地层的两个地层电流的频率。测井电缆的外壳(armor) 用作保护电极系统之一的电流返回器,位于测井探头紧上方的电缆电 极组件中的电缆电极用于第二保护电极系统的电流返回器。还公开了 用于测量电缆电极组件和保护电极系统之间的参考电压的两个实施 例。已经提出了利用测量电极阵列勘测地层的技术。例如,参见 Baker的美国专利No.2930969、 Mann等的加拿大专利No.685727、 Gianzero的美国专利No.4468623 、 Dory等的美国专利No.5502686 。 Baker专利提出了多个电极,每个电极由通过软线电联接的按钮形成, 其中按钮和线嵌入可折叠管的表面中。Mann专利提出了安装于仪器 或衬垫上的小电极按钮的阵列,每个电极按钮依次引入用于地层的电 勘测的独立可测量的勘测电流。电极按钮放置在水平面中,其中在电 极之间具有周向间距,并描述了用于依次激励和测量来自电极的勘测 电5充的装置。Gianzero专利公开了仪器安装衬垫,每个衬垫具有多个小的测 量电极,从测量电极向钻孔的壁注入单独可测量的勘测电流。测量电 极以阵列排列,其中测量电极被沿至少周向(围绕钻孔轴)间隔地放 置,以在仪器沿钻孔移动时将勘测电流注入钻孔壁分段中,所述钻孔 壁分段彼此在预定程度上重叠。将测量电极做得较小以使得能够对钻 孔的周向邻接分段进行详细电勘测,从而获得钻孔壁附近的地层的地 层学指示以及断层及其方位。在一种技术中,围绕中央电极设置测量电极的空间闭环阵列,其中该阵列用于检测由中央电极注入的电能的 空间模式。在另一实施例中,设置测量电极的线性阵列,以将电流注 入钻孔的周向有效邻接分段上方的地层中。电流的不连续部分单独可 测量,从而当仪器沿钻孔移动时获得多个勘测信号,其代表来自阵列 的电流密度,并且从所述勘测信号可导出钻孔壁的周向邻接分段的详细电图案。在测量电极阵列的另一形式中,它们以闭环(例如圆)排列,以使得能够直接测量异常电阻率的方位。Evans等的美国专利 6714014具有与本发明相同的受让人,在此通过参考并入其内容。该 专利教导了与油基泥浆和水基泥浆的电容耦合的使用。Dory专利公开了声音传感器结合安装了衬垫的电极的使用,声的间隙,导致间隙的原因在于如下事实在大直径钻孔中,衬垫必然 不能提供钻孔的完全覆盖。现有技术的装置为接触装置,对钻孔糙度的影响敏感从电极流 动的电流依赖于电极和钻孔壁之间的良好接触。如果钻孔壁不规则, 则接触和来自电极的电流不规则,导致钻孔的不准确成像。第二缺点 在于由使用电势与村垫相同的测量电极导致的相对浅的勘测深度, 以及导致的测量电流的发散。Tabarovsky等的美国专利6809521公开 了用于确定地层电阻率的多频方法。在Tabarovsky中作了如下假^殳~1《<<其中,(T为电阻率,£为介电常数,(O为工作频率,下标l指的是泥浆,下标2指的是地层。在油基泥浆的情况下两个不等式中的第一个容易满足,其中泥浆的电阻率极小。但是,如果泥浆具有有限的 电阻率,则难以满足条件。理想地,具有如下的确定地层电阻率的装置和方法其对钻孔糙度相对不灵敏,并可以在水基或者油基泥浆情 况下用于宽范围的地层电阻率。本发明满足上述需求。发明内容本发明的一个实施例是用于评估由钻孔穿透的地层的装置。该装 置包括耦合至电流源的至少一个测量电极。所述至少一个测量电极以 多个频率将测量电流传送到所述地层中。该装置还包括处理器,其至 少部分地基于所述多个频率中的每个频率下在所述至少一个测量电 极处的阻抗的实部和虚部估算所述地层的电阻率参数。所述处理器可 以利用所述测量电流估算阻抗的实部和虛部。所述处理器还可以确定所述至少一个测量电极和钻孔壁之间的电容和/或所述测量电极和钻 孔壁之间的电阻。所述处理器还可以确定所述电极距离所述钻孔壁的 间隙。当使用多个测量电极时,所述处理器可以确定所述钻孔的形状。 多个测量电极可以位于可从测井仪器的主体延伸的衬垫上。该装置可 以具有多个衬垫。所述电阻率参数可以为所述钻孔壁的电阻率图像。 该装置还可以包括测量所述钻孔中的流体的电阻率和/或介电常数的 装置。测量电极可以在电缆、钻管和/或滑线上在所述钻孔中传送。当所述地层中的位移电流大于所述地层中的传导电流的约10%时,该处 理器可以确定电阻率参数在这种情况下,所述处理器可以通过解一 组非线性方程估算所述电阻率参数。本发明的另一实施例是用于评估由钻孔穿透的地层的方法。使用 耦合至电流源的至少一个测量电极来以多个频率将测量电流传送到 所述地层中。至少部分地基于由在所述多个频率中的每个频率下的测 量电流所确定的阻抗的实部和虛部估算所述地层的电阻率参数。可选 地,可以确定所述至少一个测量电极和钻孔壁之间的电阻和/或电容。 所确定的电阻和/或电容可以用于确定所述电极距离所述钻孔壁的间 隙。当使用多个测量电极时,可以确定所述钻孔的形状。多个测量电 极可以位于可从测井仪器的主体延伸的衬垫上。可以进行指示所述钻 孔中的流体的电阻率和/或介电常数的测量。即使当所述地层中的位移 电流大于所述地层中的传导电流的约10%时,该方法也可以估算地层 的电阻率参数这可以通过解一组非线性方程来完成。本发明的另一实施例是用于评估由钻孔穿透的地层的装置使用 的计算机可读介质。该装置包括连接至电流源的至少一个测量电极, 所述至少一个测量电极以多个频率将测量电流传送到地层中。所述介 质包括使得处理器能够至少部分地基于在所述多个频率下确定的阻 抗的实部和虛部估算所述地层的电阻率参数的指令。所述指令还可以 使得所述处理器能够确定测量电极的间隙。所述介质可以为ROM、 EPROM、 EAROM、闪存、和/或光盘。
参照附图可以最好地理解本发明,在附图中以相似的标号指示相似的元件,其中图1 (现有技术)为示出悬在钻孔中的测井仪器的实例;图2A (现有技术)为示出示例成像仪器的机械示意图;图2B(现有技术)为示出示例测井仪器的电极衬垫的详细视图;图3为代表钻孔中的电阻率仪器的等效电路;图4示出与单频率测量相比的、利用本发明的方法的对地层电阻率改进的灵敏度的建模结果;图5示出对于多层的地层利用本发明的方法的建模结果;图6示出代表本发明另一实施例的等效电路,其中位移电流显著;以及图7示出图6的电路的建模结果。
具体实施方式
图1示出从穿过安装于钻机18上的滑轮16的适当电缆14悬在 钻孔12中的示例成像仪器10,其中钻孔12穿透诸如13的地层。根 据工业标准,电缆14包括应力构件和7个导体,用于将命令传送到 仪器以及用于接收从仪器返回的数据和仪器的功率。仪器10由绞车 20上升和下降。表面23上的电子模块22向井下(downhole )传送所 需的工作命令,并进而接收返回数据,其可以记录在任何期望类型的 归档存储介质上用于同时或随后处理。数据可以模拟或数字形式传 送。可以设置诸如适当的计算机24的数据处理器,用于实时进行现 场数据分析,或者所记录的数据可以被传送到处理中心,或者对数据 的后处理同时进行上述两种处理。图2a为钻孔侧壁成像系统的示意外部视图。包含该成像系统的 仪器10包括电阻率阵列26;以及可选的泥浆单元30和周向声波电 视32。电子模块28和38可以位于系统中的适当位置,而不一定位于 所示的位置。上述部件可以传统公知的方式安装在心轴34上。上述组件的外径约为5英寸,约为15英尺长。在成像组件26和32上可 以安装定向模块36,其包括磁力计和加速计或惯性制导系统。仪器 10的上部分38包含遥测模块,用于以传统方式从各个部件向井上 (uphole)到表面电子部件22进行数据样本的采样、数字化和传送。 如果获取声音数据,则最好将其数字化,尽管在替代配置中,数据可 以保留模拟方式来传送至表面,随后在表面通过表面电子部件22将 其数字化。图2A还示出三个电阻率阵列26 (第四阵列在该视图中隐藏)。 参照图2A和图2B,每个阵列包括用于将电流注入地层的测量电极 41a、 41b、 ...41n;用于水平聚焦来自测量电极的电流的聚焦电极43a、 43b;以及用于垂直聚焦来自测量电极的电流的聚焦电极45a、 45b。 通常,"垂直"指的是沿钻孔的轴的方向,"水平"指的是垂直于垂直方 向的面。图3示出近似的示意电路图。它表明测量的有效阻抗Ze依赖于仪器内阻ZT、由于接收器和地层之间的间隙导致的阻抗Zc和地层电 阻率Rf。返回电极和地层之间的阻抗由于非常小可以忽略。这是一个 合理的假设,因为返回电极的面积较大。如果U是施加的电压,I是测量电流,则阻抗Ze为Z- =zr十z广=二 ( 1 ) 在导电性地层(电阻率小于lOil-m)和油基泥浆的情况下,地 层对有效阻抗的贡献小,Rf< ZT+ZG。这导致测量阻抗对地层电阻 率的灵敏度下降。依赖于泥浆特性和接收器间隙(standoff)的间隙 阻抗Z(i成为对有效阻抗的主要贡献者。本发明利用以多个频率的测量确定地层电阻率。对于以两个频率fi和f2的测量的情况,我们得到<formula>formula see original document page 10</formula>在方程(2)中,co-27tf为角频率。方程(2)可以写为如下方式:<formula>formula see original document page 11</formula>(3),其中Ap A2、 Bp和B2是阻抗Ze,和Ze2的实部和虛部。从方程(1)和(2),我们得到如下结果<formula>formula see original document page 11</formula>这给出进一步的结果:<formula>formula see original document page 11</formula>(5).从方程(5)和来自方程(4)的第一方程,我们得到间隙电阻率r为(6).将方程(6)代入方程(5),得出测量电极和地层之间的电容为<formula>formula see original document page 11</formula> 而地层的电阻率Rf得出为(8).应该指出,以上导出的结果涉及复数阻抗的实部和虛部二者的确 定。这不同于在Tabarovsky中公开的双频率(以及多频聚焦)方法。 Tabarovsky中的确定阻抗在该专利中由方程(13 )给出,此处利用本 申请文件的符号再现如下<formula>formula see original document page 11</formula>该表达式相比本发明的结果简单得多,不使用测量阻抗的虛部。该简单结果源自于Tabarovsky中所做的假设<formula>formula see original document page 12</formula>
本发明的一个实施例假设地层的介电效应小(第二不等式)这 通常在低于10MHz的频率下满足。如上所述,本发明能够确定电极 和壁之间的间隙的电阻率,而在Tabarovsky中将其假设为无穷大。现在转向图4,示出利用上述本发明的建模结果。该实例对应于 仪器放置在填充有104n-m的电阻泥浆的8.5英寸(21.59cm )井中的 情况。通过具有从lQ-m到lOOQ-m变化的电阻率的圆柱层对地层进 行建模。将仪器的返回建模为长度为10 m的导电圆柱。通过具有相 对于地层的lmm间隙的1.6cm长的圆柱电极将电流注入地层中。发 射器以1 MHz和2 MHz的频率提供IV的输出电压。横坐标是地层 电阻,纵坐标是在仪器处的测量阻抗。曲线201示出在1MHz下的测 量电阻,曲线203示出在2MHz下的测量电阻,曲线205示出利用上 述的双频率方法的结果。可见,曲线205与单频率阻抗测量相比具有 改进的对地层电阻率的灵敏度。在成层地层模式的情况下,也观察到双频率阻抗的优点。图4 示出包含电阻性(lOll-m)和导电性(1Q-m)层的序列的地层的数学 建模的结果。层的厚度从左至右在0.5英寸(1.27cm)和4英寸 (10.16cm)之间变化。在lMHz的测量阻抗的曲线251对除了最厚 层之外的所有层几乎完全不敏感。在2MHz的测量阻抗的曲线253相 对于lMHz响应具有改进的响应。本发明的双频率方法得出远优于单 频率测量的结果255。如上所述,多频测量使得能够估算测量电极和地层之间的间隙的 电容和电阻。参见方程(6)和(7)。从估算的间隙电容和间隙电阻 可以容易地导出电极的间隙。电容C和电阻r唯一地依赖于间隙d, 我们可以将它写为如下<formula>formula see original document page 12</formula> C9)r=(pd)/s (10)其中S为电极的面积,p为泥浆的电阻,s为其介电常数。 从方程(9)和(10),我们导出间隙d的两个冗余表达式d=(ε0εS)/C(11) ,和d=(rs)/p(12)在方程(4)至(8)中给出的以上考虑的双频校正基于图3所示 的近似电路图。在该电路中,在地层中忽略介电效应,地层仅由Rf 代表。当地层中的位移电流比传导电流小得多时-也就是说,当参数pfωεfε0远小于1时(其中pf为地层的电阻率,εf为其介电常数),上述近似是可能的。上述条件在高阻抗地层和/或高工作频率中可能不满 足例如,如果pr=100Ω-m, εr = 20,频率为10MHz,则 prεrω ≈l。在本发明的另一实施例中,实现不进行假设prM0 l的双频校 正。实际上,在位移电流大于传导电流的约10%时可以使用该方法。 图6给出等效电路图,其与图3的等效电路的不同之处在于增加了 代表地层的介电特性的电容器Cf,以及去除了仪器的内阻Zr(假设 可忽略)。因此,取代方程(2),我们得到<formula>formula see original document page 13</formula> (13).上述四个方程的非线性系统以如下方式解。首先,我们使用符号 am=rC, af=RfCf (14). 我们接着在方程(13)中将C、 Cf替代为相应的am/r、 af/Rf, 然后消掉电阻r, Rf。产生如下的两个方程的系统<formula>formula see original document page 13</formula> (15),其相对于未知的amaf、 am + af为线性的,因此可以容易地解。 之后,a系数自身由它们的积与它们的和通过如下方程计算<formula>formula see original document page 14</formula>此处我们使用假设OlmXXf,即,泥浆比地层的电阻大得多。然后从如下方程计算地层电阻Rf:当考虑介电常数时的双频校正的应用结果在图7中示出。该模式 类似于图5,但是所有的地层电阻率高100倍;即,成层为lOOQ-m 和lOOOQ-m,介电常数相应地为20和10。可以看出,校正的曲线305 (图像)具有相比任何单频率曲线301、 303好得多的动态范围。泥浆电阻率的确定可以利用Fabris等在US6803039 (与本发明 的受让人相同,在此通过参考并入其内容)中描述的方法和装置进行。 介电常数可以利用Reittinger等在US5677631 (与本发明的受让人相 同,在此通过参考并入其内容)中描述的方法和装置确定。或者,可 以在表面测量泥浆电阻率和介电常数,并进行适当的温度校正。由于 每个测量电极给出针对地层电阻率进行校正的间隙的独立估算,因此 能够利用来自多个测量电极的测量结果确定间隙的方位变化,由此确 定钻孔的形状。本发明已经参照意图在电缆上传送的测井仪器作了进一步描述。 但是,本发明的方法也可以用于随钻测量(MWD)仪器,或者随钻 测井(LWD)仪器,它们中的任一个可以在钻孔索或盘管上传送。 Evans在US6600321 (与本发明的受让人相同,在此通过参考并入其 内容)中公开了 MWD应用的电阻率成像仪器的实例。在数据处理中,隐含的是使用在适当的机器可读介质上实施的计 算机程序,其使得处理器能够进行控制和处理。本申请中所用的术语 处理器意图包括诸如现场可编程门阵列(FPGA)的装置。机器可读 介质可以包括ROM、 EPROM、 EAROM、闪存和光盘。如上所述, 处理可以在井下或在表面处进行。尽管前述公开涉及本发明的优选实施例,但是各种修改对本领域技术人员是明显的。前述说明意图包含落入所附权利要求的范围和精 神内的所有变化。
权利要求
1.一种用于评估由钻孔穿透的地层的装置,该装置包括(a)耦合至电流源的至少一个测量电极,所述至少一个测量电极以多个频率将测量电流传送到所述地层中;以及(b)处理器,其至少部分地基于所述多个频率中的每个频率下在所述至少一个测量电极处的阻抗的实部和虚部估算所述地层的电阻率参数。
2. 权利要求l的装置,其中所述处理器利用所述测量电流估算 阻抗的实部和虚部。
3. 权利要求l的装置,其中所述处理器还确定以下参数中的至 少一个(i)所述至少一个测量电极和钻孔壁之间的电容;(ii)所 述测量电极和钻孔壁之间的电阻。
4. 权利要求3的装置,其中所述处理器还确定所述电极距离所 述钻孔壁的间隙。
5. 权利要求3的装置,其中所述至少一个测量电极包括多个测 量电极,并且其中所述处理器确定所述钻孔的形状。
6. 权利要求l的装置,其中所述至少一个测量电极包括位于从 在钻孔中传送的测井仪器的主体可延伸的衬垫上的多个测量电极。
7. 权利要求6的装置,还包括具有多个测量电极的附加衬垫, 所述附加衬垫从所述测井仪器的主体可延伸。
8. 权利要求l的装置,其中所述电阻率参数包括所述钻孔的电 阻率图像。
9. 权利要求l的装置,还包括进行下述测量的装置,该测量指 示所述钻孔中的流体的、选自以下的性质(i)电阻率,和(ii)介 电常数。
10. 权利要求l的装置,其中所述至少一个测量电极由选自以下 的装置在所述钻孔中传送(i)电缆,(ii)钻管,和(iii)滑线。
11. 权利要求l的装置,其中所述地层中的位移电流大于所述地层中的传导电流的约10%。
12. 权利要求ll的装置,其中所述处理器通过解一组非线性方 程来估算所述电阻率参数。
13. —种用于评估由钻孔穿透的地层的方法,该方法包括如下步(a )使用耦合至电流源的至少一个测量电极来以多个频率将测 量电流传送到所述地层中,所述至少一个测量电极具有电势;以及(c)至少部分地基于由在所述多个频率中的每个频率下的测量 电流所确定的阻抗的实部和虛部估算所述地层的电阻率参数。
14. 权利要求13的方法,还包括确定以下参数中的至少一个 (i)所迷至少一个测量电极和钻孔壁之间的电容;(ii)所述测量电极和钻孔壁之间的电阻。
15. 权利要求14的方法,还包括确定所述电极距离所述钻孔壁 的间隙。
16. 权利要求14的方法,其中所述至少一个测量电极包括多个 测量电极,该方法还包括确定所述钻孔的形状。
17. 权利要求13的方法,还包括将多个测量电极放置在从在钻 孔中传送的测井仪器的主体可延伸的衬垫上。
18. 权利要求13的方法,其中所述电阻率参数包括所述钻孔的 电阻率图像。
19. 权利要求13的方法,还包括获取指示所述钻孔中的流体的 性质的至少一个附加测量值,该性质选择由以下参数构成的组(i) 电阻率,和(ii)介电常数。
20. 权利要求13的方法,其中所述地层中的位移电流大于所述 地层中的传导电流的约10%。
21. 权利要求21的方法,其中估算所述电阻率参数还包括解一 组非线性方程。
22. —种计算机可读介质,在用于评估由钻孔穿透的地层的装置 中使用,该装置包括(a)连接至电流源的至少一个测量电极,所述至少一个测量电 极以多个频率将测量电流传送到所述地层中; 所述介质包括使能如下处理的指令(c)处理器至少部分地基于在所述多个频率下确定的阻抗的实 部和虛部,估算所述地层的电阻率参数。
23. 权利要求22的计算机可读介质,还包括如下指令使得所 述处理器能够从在所述多个频率下的阻抗的实部和虚部确定所述至 少一个测量电极的间隙。
24. 权利要求22的计算机可读介质,其中所述介质包括以下装 置中的至少一个(i)ROM, (ii)EPROM, (iii)EAROM, (iv) 闪存,和(v)光盘。
全文摘要
以多个频率在具有导电地层中的不导电泥浆的钻孔中,通过电阻率成像仪器进行相位敏感测量。根据相位敏感测量,可以与单频率测量可能的灵敏度相比较高的灵敏度确定地层电阻率。从已知的泥浆电阻率和/或介电常数可以确定仪器间隙。当地层电容的影响不能忽略时,也可以确定地层电阻。
文档编号G01V3/00GK101268385SQ200680034958
公开日2008年9月17日 申请日期2006年8月14日 优先权日2005年8月23日
发明者A·N·贝斯帕罗夫, G·B·伊茨科维齐 申请人:贝克休斯公司