信道仿真方法和信道仿真器的利记博彩app

文档序号:5928555阅读:1358来源:国知局
专利名称:信道仿真方法和信道仿真器的利记博彩app
技术领域
本发明涉及一种对多天线通信中的无线信道进行仿真的信道仿真方法,以及一种对多天线通信中的无线信道进行仿真以促进无线装置的开发的信道仿真器。
背景技术
以往,在移动电话、移动电话的基站以及无线局域网(LAN)的移动终端(MT)和接入点(AP)的开发中,需要一种用于将无线信道仿真为在评价被开发装置的性能时所需环境的设备,即信道仿真器。
通过将使用信道仿真器在被开发装置发射的信号中加入被仿真的衰落和接收机噪声而得到的传输特性与理论值或计算机仿真值相比较,就有可能判断被开发装置是否执行了预期的操作。此外,通过再现运行实验过程中的信道状态,能够分析被开发装置在实际传播环境中发生的故障。因此,通过信道仿真器的使用能够很容易地在室内对被开发装置的特性进行评价。
图1显示的是现有信道仿真器的配置的实施例。在信道仿真器10中,被开发装置的发射系统40输出的发射信号通过了根据来自控制设备30的设置参数配置的多径信道。此时,通过各个路径中的信号被加入仿真衰落的幅度变化和相位变化(在下文中被称为“信道变化”),并用各个路径的增益对信号进行加权。被信道仿真器10加入了信道变化的信号在被开发装置的接收系统50中被接收并解调,接着将解调后的信号输出到错误率测量器70。因此,通过观测由信道仿真器10加入各种信道变化而获得的错误率测量结果,就有可能评价被开发装置的发射系统40和接收系统50的性能。
下面将描述信道仿真器10的一个具体构成。信道仿真器10与被开发装置的发射系统40相连接,发射系统40包括数字基带处理单元(数字BB处理单元)41、模拟基带处理单元(模拟BB处理单元)42和射频电路43。信道仿真器10还与被开发装置的接收系统50连接。接收系统50包括射频电路53、模拟BB处理单元52和数字BB处理单元51。此外,在图1中,除射频电路43和11之间以及射频电路20和53之间的连线外,每一条连线都代表包括I信道(同相,即复数的实部)和Q信道(正交,即复数的虚部)的两条基带信号线。
在数据发生器60中生成的数字数据通过发射系统40的数字BB处理单元41、模拟BB处理单元42以及无线电路43被输入信道仿真器10。当被开发装置的发射系统40是CDMA(码分多址)的发射设备时,数字BB处理单元41是用于执行数字调制、扩频以及其它操作的单元,而当发射系统40是一个OFDM发射设备时,数字BB处理单元41是用于执行数字调制、傅立叶逆变换以及其它操作的单元。模拟BB处理单元42是一个数/模转换电路,射频电路43是一个用于执行上变频和信号放大等功能的单元。
信道仿真器10包括射频电路11和模拟BB处理单元12,射频电路11用于执行与射频电路43相反的处理,也就是下变频等处理,模拟BB处理单元12包括模/数转换电路。信道仿真器10还使用射频电路11和模拟BB处理单元12将来自发射系统40的信号转换成数字基带信号。
数字基带信号被输入到包括移位寄存器14和选择器15的多径信号发生单元13,并在其中形成多径信号。更具体地说,移位寄存器14按照一定的时间将每个输入到其中的数字基带信号移位,该时间是将路径的最大延迟时间除以模拟BB处理单元12的采样周期所获得的时间。
选择器15从移位寄存器14在各移位级输出的信号中选择与路径数量相应的信号。此时,指示由控制设备30指定的路径数目和各路径的延迟时间的多径指示信号S1被输入到多径发生单元13,并且移位寄存器14和选择器15依照该多径指示信号S1进行操作。通过这种方式,多径发生单元13中的选择器15输出在多径环境下与各路径相对应的信号。
与各路径相对应的信号被分别输出到瞬时变化(瑞利衰落)加入单元16中的各个复数乘法器A1到Ak。由频带受限的复高斯噪声发生单元(LGN)D1到Dk生成的复高斯噪声分别被提供到复数乘法器A1到Ak。此外,各频带受限的复高斯噪声发生单元(LGN)D1到Dk包括高斯白噪声发生单元和多普勒滤波器,并生成频带被限制在由控制设备30输入的最大多普勒频率S2范围内的高斯白噪声。通过这种方式,复数乘法器A1到Ak输出加入了瞬时变化的各路径的信号。
加入了瞬时变化的路径信号被输出到形成短期间变化加入单元17的多个复数乘法器B1到Bk。与从控制设备30中指定的各路径对应的复增益S3被提供到各个复数乘法器B1到Bk中。因此,短期变化加入单元17输出带有屏蔽和距离变化的各路径信号。通过这种方式,在信道仿真器10中为各个路径形成带有由控制设备30指定的瞬时变化、屏蔽和距离变化的信号。并且,各路径的信号在加法器C1,C2,…中被相加,从而形成了能够反映信道变化的多径信号。
多径信号被提供到加法器C3。并且在高斯白噪声生成单元(WGN)21中生成并在放大器22中被放大到由控制设备30所指定的噪声电平S4的高斯白噪声也被提供到加法器C3。利用这种方式,加法器C3在多径信号加入了接收器噪声。
模拟BB处理单元19和射频电路20分别具有与发射系统40中的模拟BB处理单元42和射频电路43相同的构成,并对加入了信道变化和接收机噪声的数字BB信号执行数/模转换。随后,对转换后的信号执行无线处理,例如上变频和放大。
信道仿真器10的输出信号被输入到被开发装置(接收系统)50中的射频电路53中。射频电路53具有自动增益控制(AGC)电路和自动频率控制(AFC)电路,用于补偿发射和接收之间的载波频率偏移以及输入电平变化。在模拟BB处理单元52中经过了模/数转换的信号被输出到数字BB处理单元51中。
当被开发装置(接收系统)50是CDMA(码分多址)接收设备时,数字BB处理单元51用于执行数字解调、解扩以及其它处理。当系统50是OFDM接收设备时,数字BB处理单元51用于执行数字解调、傅立叶变换以及其它处理。被数字BB处理单元51处理后的信号输入到错误率测量器70中,该错误率测量器70测量信号的传输路径错误率。
因此,在信道仿真器10中,将可能在发射信道中发生的多径和衰落变化仿真并加入从被开发装置的发射系统40得到的无线信号中,接着将所得的信号输入到被开发装置的接收系统50中,并测量在接收系统50中处理的信号的错误率特性,从而评价发射系统40和接收系统50的传输特性。
最近几年中,作为能够实现大容量数据传输的技术,由MIMO(多输入多输出)和自适应阵列天线为代表的多天线技术引起了关注。例如,在使用MIMO技术的多天线设备中,为发射和接收系统设置多个天线。发射系统的各个天线分别发射不同的数据,接收系统执行传播路径估计等来对相互混合的信号进行分离,并且恢复成多个数据。
在进行多天线设备的开发中,使用传统的信道仿真器的性能评价只能进行不充分的评价。换句话说,在发射端具有M个天线以及在接收端具有N个天线的多天线设备中,存在与M×N个信道数量相应的传输路径,但是传统的信道仿真器只允许在单个信道上进行测量。即使信道的数目增加,但还不足以评价性能取决于例如发射和接收天线的排列和各路径中的发射方向和到达方向等的空间信息的系统。
另外,在仅增加信道数目的信道仿真器中,为了使用在运行实验中收集的信道数据来再现多信道,需要收集与在被开发装置和运行实验使用的数据收集设备的发射和接收天线的个数以及排列有关的所有信道和所有路径的数据,所以需要极大的存储器来存储数据,并且在发射和接收天线的个数和排列每次发生变化时必须重复地执行运行实验。

发明内容
本发明的一个目的是提供一种信道仿真方法和信道仿真器,其能够简便和很好地仿真由多天线设备形成的M×N个信道的传输路径。
这个目的通过基于发射和接收天线的排列信息而生成所有信道的传输路径变化而实现。本发明着眼于各路径的延迟差和相位差对应于在各信道中的发射和接收天线的天线安装位置而产生的事实,仅通过在信道间改变各路径的延迟差和相位差就能使M×N个信道的传输路径变化模型简化。


图1是现有的信道仿真器的结构的框图;图2是表示1×1信道的传输路径的图;图3是说明路径的图;图4(A)是表示延迟分布的图;图4(B)是表示瞬时变化的图;图4(C)是表示短期间变化的图;图4(D)是表示长期间变化的图;图5是说明基本信号的图;图6是表示单个基本信号的模型的图;图7是表示由虚拟天线附近的球体漫反射的信号作为基本信号在视线角φ内被接收的情况的图;图8是表示具有大视线角φ的传播延迟的图;图9(A)是表示当散射球体的半径包含了接收天线时基本信号的到达方向的图;图9(B)是表示当散射球体的半径包含了接收天线时基本信号的到达方向的图;图10是说明在具有大量反射波的环境中的驻波的生成原理的图;图11是说明由于瑞利衰落而导致的包络振幅变化的功率密度谱的图;图12是说明由于瑞利衰落而导致的包络振幅变化的功率密度谱的图;图13是表示由多天线设备形成的M×N信道的传输路径的图;图14(A)是说明由发射和接收天线之间的距离、辐射角和到达角引起的路径距离差的图;图14(B)是说明由发射和接收天线之间的距离、辐射角和到达角引起的路径距离差的图;图15是表示信号从所有方向到达的环境的图;图16是表示当没有多径时向每个信道加入瞬时变化的模型的图;图17是表示当存在多径时向每个信道加入瞬时变化的模型的图;
图18是表示使用矩阵从M×N×P个相互独立的频带受限的复高斯噪声生成相互相关的频带受限的复高斯噪声的模型的图;图19是表示笸冈提出的用来生成有相关瞬时变化(两个信号)的结构的框图;图20(A)是说明从1×1信道的瞬时变化形成M×N个信道的有相关瞬时变化的原理图;图20(B)是说明从1×1信道的瞬时变化形成M×N个信道的有相关瞬时变化的原理图;图21是表示按照本发明的一个实施方式的信道仿真器和被开发装置之间的连接的框图;图22是表示实施方式的信道仿真器的结构的框图;图23是表示在实施方式中使用的每个参数的内容的图表;图24是表示参考信道路径控制单元的结构的框图;图25是表示信道处理单元的结构的框图;图26是表示有相关高斯噪声生成单元的框图;图27是表示参考信道路径控制单元的结构的框图;图28是表示信道处理单元的结构的框图;图29是表示有相关高斯噪声生成单元的结构的框图;图30是表示衰落加入单元的结构的框图;图31是表示发射模拟调节单元的结构的框图;图32是表示虚拟功率放大器(PA)的框图;以及图33是表示接收模拟调节单元的结构的框图。
具体实施例方式
为了准确地仿真具有M个发射天线和N个接收天线的多天线设备中的信道,必须将不同的传输路径变化加入到与M×N个信道数量相应的传输路径。但是,当通过为每个信道简单加入信道变化参数来仿真M×N个信道的信道变化时,需要大量的参数和计算,设备结构变得复杂。
本发明的发明人认为,如果在形成多天线设备中的M×N信道的信道模型时能简化信道模型,那么参数的数目和计算量会减小,因此,设备结构也将被相对简化,从而实现本发明。
本发明的要旨在于依据发射和接收天线的排列信息生成所有信道的信道变化。本发明着眼于各路径的延迟差和相位差对应于各信道中的发射和接收天线的天线安装位置而产生的事实,并且通过在信道间仅改变各路径的延迟差和相位差来简化M×N个信道的信道变化模型。另外,在本发明中,在假设各路径的信号中复用有相关瞬时变化的基础上生成信道变化模型,从而为各路径加入相关瞬时变化。
通过这种方式,使用从在RayTrace仿真、实际的运行实验等中获得的现有单信道传输路径测量数据中得到的近似多径信道,就有可能形成与多个信道相对应的计算量较少的信道变化模型。
另外,在本发明中,提出下面的五种方法作为生成在各信道之间或路径之间相关的瞬时变化(有相关复高斯噪声)的方法①特征值变换(空间-时间)②特征值变换(空间)③乔列斯基(Cholesky)因式分解(空间-时间)④乔列斯基因式分解(空间)⑤扩展的笹冈方法(空间-时间)在这五种方法中,第1到第4种设计了一种在使用变换矩阵A从相互独立的频带受到限制的复高斯噪声中计算加入到各信道的有相关瞬时变化时的获得变换矩阵A的方法。第5种的设计是通过扩展关于1×2信道提出的笹冈的有相关瞬时变化生成方法,从而能够在M×N信道上生成有相关瞬时变化。
下面参照附图详细说明本发明的实施方式。
(1)本实施方式中的原理在描述本实施方式的构成之前,首先描述本实施方式中的原理。本发明的发明人首先考虑了1×1信道的传输路径和M×N信道的传输路径之间的不同点和相似点。另外,为了尽可能简单地将1×1信道的信道模型扩展为M×N信道的信道模型,对怎样扩展短期间变化和瞬时变化进行了详细研究。这些研究将在下面依次进行描述。
(1-1)1×1信道的传输路径图2描述了在一个发射天线和一个接收天线之间的单方向的1×1信道的传输路径。在下文中,一对一发射和接收天线之间的传输路径被称为1信道。图3描述路径。虽然在图2中以直线表示信道,但是信号实际上在空间被反射和衍射,从而经过各种路径(图3中的①~④),并在接收器中被接收。然后,传播延迟随路径距离而变化,延迟分布(プロフアイル)被绘制,其中,横轴表示传播延迟时间,纵轴表示接收功率,如图4(A)所示。以不同延迟到达的信号经过不同的传播路径,这些传播路径被简称为路径。
各路径由传输系数(复数)来定义,该发射系数表示通过上述路径的信号的延迟的程度以及所受到的增益(实际上是衰减)和相移。对延迟分布的测量能够获得组成上述信道的路径的大约的个数,以及获得这些路径中的每一个具有多少的延迟和增益。各路径的相位随运行速度和信号相对于运行方向的到达角而变化。
图4(B)到4(D)表示路径的增益变化(注意,横轴表示距离而不是时间)。增益变化被分为取决于到发射天线的距离和发射和接收天线的方向性的长期间变化(距离变化)、由于地上的物体的遮蔽影响而引起的短期间变化(屏蔽)以及由于多波复用引起的瞬时变化。
传播距离和传播延迟是成比例的,因此,长期间变化与延迟分布具有几乎相同的形状。当终端在移动通信中移动时,各路径的传播距离(或传播延迟)发生变化,接收电平也发生变化,但是该变化的速率是其它变化中最慢的(非常慢)。长期间变化被模型化为以通过统计分析大量的运行实验数据而得到的的奥村曲线(秦方法)并已广泛使用。另外,最近几年中也使用通过增加使用频带和地面物体的参数而被改良的坂上方法。
短期间变化是各路径因为建筑物等被屏蔽或出现(在无线LAN中,有时会被行走的人所遮挡)而引起的增益变化。关于变化速度,没有理论公式,但通常假定为1Hz或更小。实际上,短期间变化应该根据其发生原因的地面上的物体以及移动速度来确定。例如,一般认为当终端以30公里/小时的速度在具有30米的建筑物宽度的建筑物街道中移动时,会以3.6秒为周期进行变化。在很多情况下这种频率的确为1Hz或更小。由于短期间变化而生成的增益变化符合对数正态分布且被模型化为在频带中的增益同时变化(在上面的情况中,该频带的范围是0到1/3.6[Hz])。
瞬时变化是几个基本信号被复用时发生的变化。在延迟分布中看似单个路径的路径上实际通过(振幅和相位不完全一致的)多个信号。因此在上述延迟分布中,看似单个路径上通过的被多径复用的信号被称作基本信号,其振幅和相位是变化的(可以看作是通过了提供增益和相位变化的路径的单个信号波)。瞬时变化由多普勒效应解释,且以大约几赫兹到1kHz的速度变化,这将在后面描述。
引起瞬时变化的基本信号的属性由到达角θ和视线角φ(到达角θ的变化宽度)来表征。在图5中关注的是图4(A)中的基本信号③。在图4(A)中各路径在空间中被划分的较远。所以,接收器接收到经历了完全不同变化的信号。因此,例如基本信号③可被看作是来自位于到达方向的延长线上的虚拟发射天线的信号(假设接收器向上方向以速度v移动),如图5所示。
图6表示单个基本信号的情况。在这种情况下,该基本信号不是被多径复用的信号,并且除了由于移动而造成的多普勒频移以外,在振幅和相位上没有任何变化地被接收。这种情况在移动通信中几乎不会发生,只是在有时候被用作传输路径模型。另外,基本信号③的多普勒频移量由fDcosθ表示,其中,fD=v×fC/c。
图7表示被虚拟天线附近的球形区域漫射的信号作为基本信号以视线角φ(到达角θ的变化宽度)被接收的情况。在这种情况下,基本信号在振幅和相位上变化,但是到达角θ可被稳定地测量,这是因为视线角φ较小且延迟差因此也较小的缘故。但是,随着视线角φ的增加(虚拟天线附近的散射球体的半径增加),上述基本信号包括具有相当大的延迟差的信号,如图8所示。因此,振幅和相位都大幅地变化,测量到达角θ变得困难。
当散射球体的半径进一步增加并且开始包含接收天线时,如图9(A)所示,基本信号似乎来自于各个方向,并且在这种情况下,基本信号应该被划分为在上述延迟分布中的多个路径的基本信号。但是,即便使上述基本信号在延迟分布中被划分,被划分的信号也包含许多具有相同的传播延迟但在空间上却通过完全不同路径的信号,所以,各个被划分的基本信号仍然看似来自所有方向。换句话说,获得了如图9(B)所示的图像(类似于与图7具有相反的传输方向的图)。当然,不可能测量每个基本信号的到达角(这种测量是没有意义的)。
在如图10所示的具有大量的反射波的环境下会发生驻波,并且空间中相对于接收电平而言的强点和弱点会重复出现。这就是瞬时变化的空间分布的原因。特别地,在具有几乎相同电平的独立信号以所有方向到达时发生的瞬时变化被称为瑞利衰落。众所周知,包络振幅变化成为瑞利分布,相位变化成为均匀分布。
图11和12表示由于瑞利衰落而造成的包络振幅变化的功率密度谱。在信号相对于前进方向v以方向①、②、③和④(如图11所示)到达的情况下,以方向①来到的信号似乎具有最高的频率,相反,以方向④到来的信号似乎具有最低的频率。这一最大频率偏移量被称为最大多普勒频率fD。最大多普勒频率fD可计算为包含在一秒内的前进距离中的驻波的数目,其中驻波以波长的周期重复,并通常在从大约几赫兹到1kHz变化(当载波频率为2GHz并且前进速度为100公里/小时的时候,fD是这些数字的乘积200Hz)。类似地,频率偏移fD·cosθ被加在以向着前进方向v以角度θ到达的信号②上,而具有90度的θ的信号③不会产生上述偏移。
另外,例如,在基本信号④仅以如图11所示的网格方向(到达角θ=180°,视线角φ=80°)到达的瞬时变化中,当包含五个或更多的信号时,该变化被看作瑞利衰落。其中,功率密度谱仅为如图12所示的网格部分。
按照前述内容,可以定义长期延迟分布、短期延迟分布和瞬时延迟分布。长期延迟分布上的各路径都经受长期间变化。其延迟和增益根据地面上的物体的状况、前进速度和方向以及到达角而被确定,并且缓慢变化。短期延迟分布中的各路径除了长期间变化之外还经受短期间变化(屏蔽)。通过这种方式,各路径的增益以独立于各路径的对数正态分布的方式以1Hz或更小的速率变化。
瞬时延迟分布中的各路径除了长期间变化和短期间变化以外,还经受瞬时变化。通过这种方式,各路径的增益和相位受到独立于各路径的瑞利衰落(增益具有瑞利分布,相位为均匀分布)。变化率由载波频率、前进速度、到达角和视线角确定,且从几赫兹到几百赫兹变化。
另外,延迟分布上的振幅表示来自各路径的基本信号的接收功率,其不具有增益也不具有相位(准确地说,其是各信道上的复脉冲响应的各个复振幅)。相反地,表示为“各路径的功率”是不适当的,但是这种表示方式会在不被误解的范围内按照惯例使用。
(1-2)扩展到M×N信道的传输路径(1-2-1)短期间变化的扩展图13描述了由具有M个发射天线和N个接收天线的多天线设备形成的M×N信道的传输路径。
本发明的发明人认为,M×N个信道是相互类似的。换句话说,假设短期间变化的间隔为大约十几米,则除非发射和接收天线的排列在几平方米的面积内展开,否则应该认为在接收天线中分别实际观测到的不仅长期延迟分布而且短期延迟分布都几乎是相互相等的。
然后,要考虑短期延迟分布中的各信道之间的差别仅在于各路径的传播延迟和载波相位。其中,各路径的传播延迟和载波相位是由于发射和接收天线的排列而引起的路径距离差生成的。
图14(A)显示了从两个发射天线到单个接收天线的路径之间的比较。当单元之间的距离dT足够小时,从上述天线邻近地区到接收天线的路径可被看作公共的,因此,路径距离差为dT·cosθT,对应于这个差值,该信道在路径延迟和相位(即载波相位,但可被称为路径相位)中有差别。
如图14(B)所示的接收天线具有相似的现象。但是,要注意辐射角θT和到达角θR是对各路径定义的。在辐射角和到达角以如图9所示的为所有方向的情况下,路径距离差利用角度来逆转,平均起来可被认为没有出现。这与具有未知的辐射角和到达角的路径是相同的。
在前述考虑的基础上,本发明的发明人已经得到结论如果能够得到在任意一个信道的短期延迟分布的各路径的辐射角和到达角,那么其它信道的短期延迟分布可根据发射和接收天线单元的排列来进行计算。
因此,在本发明中,使用在RayTrace仿真、实际的运行实验等中得到的现有一个信道传输路径测量数据(包括短期延迟分布),可根据这个信道的传输路径测量数据和发射和接收天线单元的排列来计算形成M×N个信道的短期延迟分布(所有路径的延迟、增益和相位变化),从而形成M×N个信道的信道变化模型。因此,有可能简单和准确地从参考信道上的各路径信息生成所有信道上的路径信息。
(1-2-2)瞬时变化的扩展接下来要考虑的是各信道上的瞬时变化。本发明的发明人研究了各信道和各路径的瞬时变化相互之间的相似性。
在瞬时变化的情况下,例如,在包含单个波的5GHz的频带,驻波平均为3厘米(半波长)。因此,和短期间变化不同,所有的天线上的瞬时变化不相等。但是,可以说在某个天线经历正变化的时刻,邻近的天线通常也经受正变化。相似的现象可在时间方向上发生。瞬时变化以1kHz或更小的速率变化,当在瞬间施加正变化时,在0.1ms后正变化仍持续的可能性很高。前者由空间相关函数、而后者由时间相关函数进行定量的表示,这些函数相对于信号来自所有方向的瑞利衰落可由下面的等式表示空间相关函数ρ(d)=xi*(t)·xj(t)‾=J0(2πd/λ)]]>……(1)时间相关函数ρ(τ)=xi*(t)·xi(t+τ)‾=J0(2πfDτ)]]>在等式(1)中,xi(t)和xj(t)分别表示第i个和第j个天线的接收信号(复基带信号),d是天线之间的距离,τ是路径的延迟时间,λ是波长,fD是最大多普勒频率。另外,*表示共轭复数,J0表示贝塞尔函数。
在对天线分集性能进行传统评价的情况下,通过将天线之间的距离设定成能够使天线被充分地间隔开(例如使空间相关值变小的半波长),那么可在假设接收信号可被看作互不相关的基础上实现评价。这是基于等式(1)的空间相关函数的想法,但是实际存在的时间相关被忽略。
因此,为了获得更准确的结果,需要能够对时间相关和空间相关进行并行分析的理论。对于这一点,笹冈导出在如图15所示的环境下,空间-时间相关函数变成下面的等式(笹冈,“有相関擬似マルチパスフエ一ヅンゲ波の発生法”,鼋子情報通信学会输文誌,88/6,Vol.J71-B NO.6)(笹冈,“有相互关联的多径衰落波的新生成方法”,电子信息通信学会学报88/6,第J71-B卷,第6期)。这里,在图15中ψ表示天线相对于前进方向的排列角度。
空间-时间相关函数ρ(d,τ)=J0[(2πdr/λ)2+(2πfDτr)2]---(2)]]>其中dr=d·sinψ,τr=τ-(d/λfD)·cosψ另外,图15表示信号来自所有方向的环境。在信号仅来自某个方向的情况下,可使用仅具有瑞利衰落的U形功率密度谱(图12)的部分的瞬时变化。用正弦波来想的话就很明显,具有不同频率的波之间的相关在空间上和时间上为“0”,因此,等式(2)独立地成立而与频率分量(即到达方向)无关。
接下来考虑的是多径(准确地说,能够以延迟时间识别的多径)之间的相关性。例如,如图5所示,在通过各路径的基本信号为单个信号的情况下,因为基本信号是完整的波束(ビ一ム)并且不会发生瞬时变化,所以短期延迟分布变为瞬时延迟分布。换句话说,由于多径之间没有因为波束而发生相关,因为这是相应于视线角为“0”的情况,所以由于除非视线角一致否则瞬时变化谱就会不一致的缘故,因此相关为“0”。
与上述相反,在如图9所示的视线角很大的情况下,即,基本信号包括从所有方向到达的信号,可以认为在具有大的延迟差的路径中,很明显地路径之间的空间路径差变大所以路径之间的相关应该几乎为零,而在具有小延迟差的路径中,空间路径差异很小且相似的瞬时变化加入在路径中(即,存在相关)。在这种情况下,可以认为等式(2)也能被应用于多个路径。
在路径具有如图7所示的视线角处于特定范围内的几乎统一的基本信号的瞬时变化的情况下,可以认为获得如上所述两者之间的中间结果。换句话说,可以如此描述。
(a)在路径中的到达角和视线角的重叠较少的情况下,路径的空间路由明显不同,因此相关较小(其中,极端情况表示为图5中的“波束”)。
(b)在路径中的到达角和视线角的重叠较大且延迟时间的差异也较大的情况下,路径的空间路由不同因此具有较小的相关性(对应于图9的情况)。
(c)在不同天线中接收到的路径之间的相关性在很大程度上取决于天线之间的距离。
因此,对于路径之间的相关性,(a)可通过根据到达角和视线角对瞬时变化执行频带限制来实现,这是因为不同的路径的相关较小。(b)和(c)可通过应用等式(2)的空间-时间相关性函数来实现。
参照前述的内容,如图13所示的不具有多径的M×N信道的传输路径由如图16所示的MN个信道表示。这里,各信道的短期间变化的增益被假设为相等。因此,图16只表示各信道的瞬时变化。另外,为了在观察信道之间的相似程度时消除发射数据的影响,发射数据都被固定为“1”。然后,通过将各信道的信号乘以具有空间相关(基于天线间的距离)的瞬时变化(复高斯噪声)而将变化加入。
在p-多径的情况下,如图17所示那样被扩展。各路径的信号被乘以具有等式(2)的空间-时间相关(基于天线之间的距离和延迟差)的瞬时变化。换句话说,在如图17所示的结构中,使用考虑了视线角和到达角的频带受限的复高斯噪声来加入瞬时变化,从而使得各路径遵循空间-时间相关性函数(2)。
(1-3)生成有相关瞬时变化的方法这个问题是如何生成期望的相关的复高斯噪声。作为如上述地生成有相关瞬时变化的方法,在本实施方式中提出的是相关矩阵方法(特征值变换方法和乔列斯基因式分解方法)和扩展的笹冈方法。
图18显示了使用变换矩阵A(具有MNP行和MNP列)从M×N×P(P路径的数目)个相互独立的频带受限的复高斯噪声生成M×N×P个相互相关的频带受限的复高斯噪声(有相关高斯噪声)。这里的问题是使用什么样的变换矩阵A来赋予期望的路径相关。
假设路径的输出是Y=(y1,y2,…,yMNP)T,则路径相关矩阵如下面的等式中表示。另外,为了简化,数字下标以序号来表示。此外,在下面的等式中,上标的*表示共轭复数,H表示共轭复数转置,E()表示集合平均。
E(YYH)=E(y1y1*)E(y1y2*)......E(y1yMNP*)E(y2y1*)E(y2y2*)......E(y2yMNP*)..................E(yMNPy1*)E(yMNPy2*)......E(yMNPyMNP*)---(3)]]>(MNP)2个元素中的每一个都表示路径之间的相关,通过从路径距离差和传播延迟差(路径距离差和传播延迟差从发射和接收天线排列以及信号的辐射角和到达角中得到)计算等式(2)的空间-时间相关值而得到期望的路径相关矩阵∑YY。
换句话说,需要生成Y使得∑YY=E(YYH)成立,为了生成这个Y,问题变为如何确定图18中的变换矩阵A。本实施方式提出了基于特征值变换的方法和基于乔列斯基因式分解的方法。
(1-3-1)特征值变换方法在图18中,在复高斯噪声之间成立关系Y=AX。这里,如果变换矩阵A的逆矩阵存在,则下面的等式成立X=A-1Y…(4)等式(4)表示通过将具有如等式(3)中的相关的(MNP×1)信号向量Y乘以矩阵A-1而获得不相关的(MNP×1)信号向量X,这一关系式通常被称为特征值变换(或KL变换)。在特征值变换中,将在期望的路径相关矩阵∑YY中的MNP(MNP×1)个单位特征向量e1,e2,…,eMNP形成一行作为A-1使用,变换矩阵A以下面的等式表示
A-1=e1e2......eMNPA=(A-1)-1=(A-1)H=e1He2H......eMNPH---(5)]]>因此,通过利用特征值变换方法获得变换矩阵A,使用具有少量元素的矩阵从相互独立的瞬时变化获得有相关瞬时变化是可能的,这样,可通过少量的计算就能获得有相关瞬时变化。
此外,这里描述的是这样一种情况,即,通过使用变换矩阵A对M×N×(路径的数目)个相互独立的瞬时变化执行矩阵运算处理,形成在路径之间相关的M×N×(路径的数目)个有相关瞬时变化,从而形成在信道之间和在路径之间相互相关的有相关瞬时变化。但是,本发明的应用并不局限于上述情况。
例如,可通过使用变换矩阵A对例如对应于M×N个信道的相互独立的多个瞬时变化执行矩阵运算处理,从而形成在信道间具有相关的M×N个信道对应的有相关瞬时变化,由此形成与在所有信道之间相关的M×N个信道对应的有相关瞬时变化。前述的内容与下面的描述相同。
(1-3-2)乔列斯基因式分解方法期望的路径相关矩阵∑YY可进行下面的等式中的乔列斯基因式分解。
∑YY=LHL…(6)其中,L是(MNP×MNP)下三角矩阵。
在下面的等式中使用得到的下三角矩阵L获得图18中的变换矩阵A。
A=LH…(7)由于从图18中得到Y=AX=LHX,所以路径相关矩阵E(YHY)以下面的等式表示E(YYH)=E[(LHX)(LHX)H]=E(LHXXHL)=LHE(LXXH)L=LHL=∑YY…(8)这里,因为向量X的每个元素是独立的高斯变量,所以使用相关矩阵E(XXH)=I。
关于乔列斯基因式分解,能够大量减少计算量的近似算法已经在最近被公开(H.R.Karimi etc.”A Novel and Efficient Solution toBlock-Based Joint-Detection Using Approximate Cholesky Factorization”,PIMRC’98.p,1340-1345,1998(H.R.卡瑞米等“一种新颖和有效的使用近似乔列斯基因式分解的基于块的接合检测方法”,PIMRC’98.,第1340-1345页,1998)),使用这样的算法是有效的。
通过使用乔列斯基因式分解得到变换矩阵A,在从相互独立的瞬时变化获得相关瞬时变化时,使用由乔列斯基因式分解得到的下三角矩阵是可能的,因此,利用少量的计算获得有相关瞬时变化成为可能。
(1-3-3)扩展的笹冈方法接下来提出的是除了从矩阵A获得有相关瞬时变化以外的将笹冈方法扩展到M×N信道的传输路径的方法(下文中称为扩展的笸冈方法)。
首先简要解释笹冈提出的方法。图19表示的是由笹冈提出的生成有相关瞬时变化(两个信号)的框图。另外,图19中假设的系统和参数与图15中的相同。关于图19,多普勒滤波器102和105分别将高斯白噪声生成单元101和104生成的双系统高斯白噪声的频谱形成为在基本信号包括以所有方向到达的信号(当基本信号的到达角和视线角为已知时,则与其对应的带宽变窄)时的瑞利衰落功率密度谱。
为了使得噪声相互关联,噪声分别通过两种滤波器103和106。在传统的生成方法中,滤波器103和106具有空间相关值ρ和 并且不能表示时间相关。为了还提供时间相关,笹冈替换了上述滤波器。滤波器特性H(f)和G(f)由两个接收天线单元之间的距离d、天线排列到移动方向的角度ψ、载波波长λ和最大多普勒频移fD所确定,并且因为增益为正弦-余弦的关系,所以输入到复数乘法器111的基本信号2的瞬时变化的功率密度谱与基本信号1具有相同的形状(多普勒滤波器的形状)。最后,对应于符号cosψ,延迟电路108或109的任何一方对一个上述基本信号赋予延迟。另外,延迟电路108的输出在cosψ≥0时有效,而延迟电路109的输出在cosψ<0时有效。
图19中的滤波器103和106具有复杂的特性(随条件变化),笸冈提出通过对频率不同的多频音进行加权加法运算来实现滤波器。
然后,通过进行如图19所示的频谱整形,得到滤波器103和106的滤波器特性H(f)和G(f)以获得符合空间-时间相关性函数(2)的有相关瞬时变化(关于在笸冈之前的相关瞬时变化,已经提出这些具有空间相关系数的滤波器,但是根据其说明,除非d/λ<<1,否则不能得到良好的近似)。
在图19中,多普勒滤波器的两个输出信号被假设为x1(t)和x2(t)。因为这是研究信道之间的相关,为了不依赖于发射信号,进一步假设两个基本信号的输入为“1”,且加入了瞬时变化的基本信号的输出为y1(t)和y2(t)(即,它们是有相关瞬时变化)。每个功率密度谱(自相关函数的频率的表示)和互功率密度谱(互相关函数的频率的表示)以下面的等式表示Sy1y1(f)=Sx1x1(f)=S(f)多普勒频谱Sy2y2(f)=|H(f)|2Sx1x1(f)+|G(f)|2Sx2x2(f)={|H(f)|2+|G(f)|2}S(f)Sy1y2(f)=H*(f)Sx1x1(f)=H*(f)Sx1x1(f)…(9)有相关的瞬时变化应该具有相同形状的功率密度谱,因此,必须符合下面的等式|H(f)|2+|G(f)|2=1 …(10)
另外,互功率密度谱Sy1y2(f)通过将等式(2)进行傅立叶变换而得到,下面的等式成立H(f)=cos(2πd·sinψλ1-(frfD)2)---(11)]]>然后,关于G(f),通过等式(10)和(11)得到下面的等式G(f)=sin(2πd·sinψλ1-(frfD)2)---(12)]]>在等式(12)中,在求平方根时出现正号或负号,因为任一符号都不影响瞬时变化的相关值,所以选择正号。
下面考虑的是将如图19所示的生成有相关瞬时变化的方法应用到M×N信道的传输路径。图20(A)和20(B)表示从1×1信道瞬时变化形成M×N信道的有相关瞬时变化的原理。
图20(A)描述了1×N信道和1×M信道,图20(B)描述了从1×M信道向M×1信道的转换。首先考虑的是从如图20(A)所示的用N个接收天线接收来自单个发射天线的信号的情况(在这种情况下,各个接收信号可能具有相关)。这里假设复脉冲响应在发射天线和接收天线1(在下文中,这种信道被称为1-1信道)之间的传输路径是已知的,并且各信道的短期间延迟分布已由此计算出。
关于瞬时变化,图19中的方法被应用到1-1信道的各路径以及1-2信道的各对应的路径。之后,一边改变天线之间的距离一边以相同的方式生成1-3信道,……,1-N信道的有相关瞬时变化。
在图20B的左边所示的是从右到左的1×M信道的传输路径。假设发射和接收天线在相同的位置,那么根据传输路径的可逆性,1-1信道具有与图20(A)的1-1信道相同的复脉冲响应。因此,可能在图20(B)的左边生成和图20(A)一样的所有有相关瞬时变化。然后,通过再次使用传输路径的可逆性来改变信号方向,得到图20(B)右边的所有信道的有相关瞬时变化(换句话说,即使发射天线不同,但在接收天线只为一个时信道具有相关)。
通过将图20(B)的左边部分应用到图20(A)的各个接收天线,可以生成M×N信道的传输路径的所有的有相关瞬时变化。但是,有必要注意以下几点1.在延迟分布上被划分开和识别出的路径中使用独立的高斯白噪声。这是因为不同的路径被看作是空间上有区别的路径。
2.虽然1-1信道在前面的内容中被用作参考信道,但是任何信道可作为参考信道。这是因为参考信道的改变会改变传播延迟和相位,但不会使相对值变化。另外,当天线单元被排列为圆形时,可以在实际不存在天线的中央位置设置参考传输路径。
3.各信道的瞬时变化通过对参考信道的相关被定义并被生成,例如在图20(A)中,1-2信道和1-3信道之间的相关没有确定。换句话说,由于该相关是两个数据向量之间的余弦函数值,该扩展方法是不适当的。
(1-4)总结如前面的内容所提出的那样,从发射和接收天线的安装信息中计算所有信道上的路径的延迟、相位和相关瞬时变化,并生成M×N个信道中的所有信道变化模型是可能的。以此,使用在Ray-Trace仿真、实际的运行实验等中得到的现有单信道传输路径测量数据作为M×N信道传输路径用测量数据也是可能的。
(2)本实施方式的构成(2-1)整体构成图21表示按照本实施方式的信道仿真器120与被开发装置40和50的连接,它们具有如图1所示的相同单元,并用与图1中相同的参考标号来指定。另外,在这里省略了已经使用图1解释过的部分。
信道仿真器120仿真具有多天线结构的被开发装置40和50的信道,并以此能够评价被开发装置40和50的信道特性。
信道仿真器120能够接收来自发射系统40的数字BB处理单元41的数字基带信号DB、来自模拟BB处理单元42的模拟基带信号AB、以及来自无线电路43的无线信号RF作为其输入。信道仿真器120的输出根据开关SW3和SW4的操作被选择性地输出到接收系统50的数字BB处理单元51、模拟BB处理单元52或射频电路53。
通过这种方式,即便是射频电路43和模拟BB处理单元42的开发还没有达到到可操作的阶段,也有可能将数字基带信号DB直接从数字BB处理单元41输入到信道仿真器120,从而有可能独立地评价数字BB处理单元41和51的信道特性。
因此,无需等到射频电路43和53(尤其是接收电路50的射频电路53)的完成,检测执行主要处理的数字基带处理单元41和51的操作是可能的,因此,能够提高开发的效率。
图22显示了信道仿真器120的结构。信道仿真器120将来自射频电路43的无线信号RFin、来自模拟BB处理单元42的模拟基带信号ABin或者来自数字BB处理单元41的数字基带信号DBin输入到接口单元122。更具体地说,与发射天线的数目M对应的无线信号RFin或模拟基带信号ABin被输入到模拟电路123,并在模拟电路123中被转换为数字基带信号并输出。开关SW10选择输入数字基带信号DBin或在模拟电路123中被转换的数字基带信号以输出到发射模拟调节单元124。另外,基带信号包括I信号和Q信号,从而形成2×M个信号,因此在图中由2M来表示。
换句话说,在发射模拟调节单元124之后的电路中,处理的内容是M个数字基带信号。更具体地,对应于数字基带信号的数目设置M个发射模拟调节单元124,并且对M个数字基带信号补偿由于被开发装置(发射系统)40的M个模拟BB处理单元42、射频电路43和模拟电路123的性能偏差而发生的传输特性的变化。将在后面描述发射模拟调节单元124的具体结构。
开关125作为信号复制装置为M个数字基带信号中的每一个生成N个副本,从而形成M×N个数字基带信号,并将这些信号输出到M×N个的各个信道处理单元126-1到126-MN。各信道处理单元126-1到126-MN的每一个被输入在参考信道路径控制单元127中形成的参考信道的信道模型信息和接收和发射天线排列信息等,各信道处理单元126-1到126-MN并构建各自的本身信道的信道模型,然后以复数乘法为数字基带信号加入与构建的信道模型相对应的本身信道的短期复脉冲响应和相关瞬时变化。将在后面描述信道处理单元126-1~126-MN的具体构成。
选择组合单元128重复地从信道处理单元126-1到126-MN的输出中选择M个数字基带信号进行组合,并以此形成与接收天线的数目N对应的数字基带信号。
接收模拟调节单元129对应于数字基带信号的数目N而提供,并且为N个数字基带信号补偿由于被开发装置(接收系统)50的N个模拟BB处理单元52、射频电路53和模拟电路131的性能偏差而发生的传输特性变化。将在后面描述接收模拟调节单元129的具体构成。
从接收模拟调节单元129输出的数字基带信号被输入到输出接口单元130。在对数字BB处理单元41和51的信道特性进行评价时,数字基带信号DBout通过开关SW4输入到接收系统50的数字BB处理单元51。同时,在对数字BB处理单元41和51以及模拟BB处理单元42和52的信道特性的评价时,在模拟电路131中得到的模拟基带信号ABout通过开关SW3输入到接收系统50的模拟BB处理单元52。另外,在对数字BB处理单元41和51、模拟BB处理单元42和52以及射频电路43和53的信道特性进行评价时,在模拟电路131中得到的无线信号RFout被输入到接收系统50的射频电路53。
(2-2)参考信道路径控制单元和信道处理单元的构成下面描述的是参考信道路径控制单元127和信道处理单元126-1~126-MN的构成例。这里,将描述使用扩展的笹冈方法的情况和使用特征值变换方法的情况的两种构成例。假设在下面的描述中使用如图23所示的参数P10到P20以及P30。
(2-2-1)使用扩展的笹冈方法的情况图24表示参考信道路径控制单元127的构成。参考信道路径控制单元127包括参考信道模型形成单元140和瞬时变化初始值生成单元141。
参考信道模型形成单元140具有手动地设置复脉冲响应信息(即,使用控制设备121设置)的标准模型生成单元142、使用随机数周期地更新和设置复脉冲响应的统计模型生成单元143以及实际运行模型生成单元144,实际运行模型生成单元144读取从Ray-Trace仿真、实际运行实验等中得到的复脉冲响应信息以顺序地更新和设置,并由选择单元145选择在模型生成单元142到144的任一个中生成的单信道的信道模型并输出。
通过这种方式,参考信道模型形成单元140对于参考信道形成以几十米的间隔变化的复脉冲响应信息(由路径的数目以及各路径的延迟和复增益构成)。另外,模型生成单元142到144的每一个都为公知的技术,在这里省略了对它们的描述。
瞬时变化初始值生成单元141使用随机数将参考信道的各路径的瞬时变化初始值生成为随机值。另外,控制设备121向参考信道模型生成单元140输入参数P10(指示选择运行模型的模型类型指令、前进速度和方向、发射和接收天线的排列和方向性以及相位变化的开/关指令)。另外,控制设备121将参数P11(路径的数目和各路径的延迟和复增益)输入到标准模型生成单元142。此外,控制设备121将参数P12(Ray-Trace/实际运行的实验数据)输入到实际运行模型生成单元144。
作为参考信道模型,选择单元145输出参数P14(载波频率、前进速度和方向、发射和接收天线的排列和方向性以及相位变化的开/关指令)以及参数P15(路径划分(在压缩时)的数目、参考信道的路径数目以及参考信道的各路径延迟、短期间变化复增益、到达角和视线角)。
图25描述了信道处理单元126-1~126-MN中的每一个的构成。每一个信道处理单元126-1~126-MN的结构是相同的,下面描述的是信道处理单元126-1的构成。在信道处理单元126-1中,参数P14和P15被输入到本身信道短期复脉冲响应生成单元150。
本身信道短期复脉冲响应生成单元150根据发射和接收天线的排列计算出参考信道和本身信道之间的路径距离差,并基于该距离差计算本身信道的各路径的短期间变化的复增益,将其作为参数P18输出到数据插值单元151,而将本身信道的路径数目、各路径的延迟、到达角和视线角作为参数P20输出到相关高斯噪声生成单元152。
换句话说,本身信道短期复脉冲响应生成单元150假设了被包括在短期复脉冲响应中的各路径的长期间变化和短期间变化的增益在安装发射和接收天线的区域是相等的,以此,还进一步假设本身信道和参考信道具有相同数目的路径,以及各路径的延迟和相位的偏差程度在于从参考信道和本身信道的发射和接收点、本身信道的发射和接收天线之间的位置关系以及各路径的辐射方向和到达方向获得的路径距离差,由此生成本身信道的复脉冲响应。
更具体地说,将在后面描述的路径形成单元190(图30)中生成延迟,本身信道短期复脉冲响应生成单元150生成具有对应于相位的变化而被控制的1分量和Q分量的电平的复增益。
数据插值单元151对复脉冲响应执行数据插值,并进行上变频后,将结果输出到衰落加入单元154中的短期间变化加入单元155。利用这种方式,信道处理单元126-1设置有数据插值单元151。因此,即便是在数据插值单元151之前的处理操作慢到一定程度时,信道处理单元126-1还是能够增加与基带信号的采样频率fS对应的细微变化。在数据插值单元153和有相关高斯噪声生成单元152之间存在同样的结构关系。
有相关高斯噪声生成单元152接收参数P14、P15和P20,并生成本身信道各路径的有相关高斯噪声。换句话说,在本实施方式的信道仿真器120中,分别在信道处理单元126-1到126-MN中的相关高斯噪声生成单元152形成信道间相关或信道和路径间相关的M×N个信道的相关瞬时变化。
有相关高斯噪声生成单元152生成的有相关瞬时变化P16(包括各路径的数目和各路径的延迟以及各路径的瞬时变化的复增益的信息)在数据插值单元153中被插值,并且输出到有相关瞬时变化加入单元156。另外,路径的数目和各路径的延迟的信息被用作形成具有与下面将要描述的天线排列对应的延迟的多径的信息。
图26表示相关高斯噪声生成单元152的构成。有相关高斯噪声生成单元152生成具有与参考信道各路径的到达角和视线角相对应的频带的高斯噪声作为多频音,该多频音具有参考信道各路径的瞬时变化初始值的初始相位,并以多普勒滤波器和将天线排列信息作为参数的有相关滤波器特性对多频音执行加权,由此形成与参考信道的瞬时变化相关的有相关瞬时变化。换句话说,应用了上面描述的笹冈方法。
更具体地说,多频音生成单元161生成将在瞬时变化初始值生成单元160中生成的本身信道各路径的瞬时变化初始值作为初始相位的多频音。该多频音被多普勒滤波器162限制于多普勒频率fD内的预定频带中,并且输出到具有等式(12)的滤波器特性的滤波器165A。
同时,多频音生成单元163生成具有与在瞬时变化初始值生成单元141(图24)中生成的参考信道各路径的瞬时变化的初始值相对应的初始相位的多频音。多频音由多普勒滤波器164限制于多普勒频率fD内的预定频带,并输出到具有等式(11)的滤波器特性的滤波器165B。
在这里,多普勒滤波器162和164具有输入到其中的载波频率和前进速度和方向,多普勒滤波器162和164的特性根据这些输入被确定。另外,相关滤波器单元165具有输入到其中的载波频率、前进速度和方向、发射和接收天线的排列和方向性、各路径的到达角和视线角,各个滤波器165A和165B的特性根据这些输入被确定。
来自相关滤波器单元165的输出在加法器166中被相加,并且输入到相位变化开/关单元167。与来自控制设备121的相位变化开/关指令相对应地,相位变化开/关单元167控制有相关高斯噪声的相位变化的开/关。更具体地说,当被指示控制相位变化为开时,单元167不作任何处理就输出来自加法器166的有相关高斯噪声。
同时,当被指示控制相位变化为关时,单元167获得I信道和Q信道的有相关高斯噪声的变化值包络振幅 并使所得到的变化值包络振幅作为I信道和Q信道信号输出。换句话说,形成具有相同电平的I信道和Q信道的相关高斯噪声作为瞬时变化值,以便在随后的有相关瞬时变化加入单元156仅增加电平变化而不增加相位变化。其原因将在后面描述。
相位变化开/关单元167的输出作为本身信道的瞬时变化通过延迟单元168输出到有相关瞬时变化加入单元156。
因此,通过由为各信道设置的有相关高斯噪声生成单元152获得与参考信道的瞬时变化相关的有相关瞬时变化,并以此能够从参考信道的各路径的信息形成与该参考信道相关的M×N个信道的有相关瞬时变化。因此,与独立地设置M×N个信道的瞬时变化的情况相比,能够准确和容易地仿真M×N个信道的瞬时变化。
此外,这里描述了使用多频音获得与参考信道相关的有相关瞬时变化的情况。另外,多频音生成单元161和163仅生成高斯白噪声,将多普勒滤波器162和164设置为仅让考虑路径到达方向的频带通过的滤波器特性,并从而可以得到M×N个信道的有相关瞬时变化。
换句话说,不限于生成多频音来形成与参考信道的瞬时变化相关的有相关瞬时变化,可以通过以下的步骤形成M×N个信道的有相关瞬时变化,即,通过生成参考信道和其它的一个信道的频带受限高斯噪声,以有相关滤波器特性(至少具有作为参数的天线排列信息)对两个频带受限高斯噪声执行加权加法运算,从而形成与参考信道的瞬时变化相关的有相关瞬时变化,并执行与M×N信道的数量对应的前述处理。
(2-2-2)使用特征值变换方法的情况参考图27、28和29,下面描述的是在使用特征值变换方法的情况下的参考信道路径控制单元、信道处理单元和相关高斯噪声生成单元的构成。
图27描述了在使用特征值变换方法的情况下的参考信道路径控制单元170(其对应于图22中的参考信道路径控制单元127)的构成,其具有与图24相同的单元并以相同的附图标号表示。作为变换矩阵计算装置的单位特征向量计算单元171在从参考信道模型形成单元140输出的参数P14和P15中接收发射和接收天线的排列和方向性信息,以及参考信道各路径的到达角和视线角的信息。
单位特征向量计算单元171首先从发射和接收天线的位置关系、参考信道的信号辐射方向和到达方向以及瑞利衰落的理论相关值获得相关矩阵(仅在获取信道之间的相关时使用等式(1)的空间相关函数,而在获取信道和路径之间的相关时使用等式(2)的空间-时间相关函数)。在获得信道之间的相关矩阵时,上述矩阵具有M×N行和M×N列,而在获得信道和路径之间的相关矩阵时,上述矩阵具有M×N×(路径的数目)行和M×N×(路径的数目)列。
如第(1-3-1)中所描述的那样,单位特征向量计算单元171在等式(3)、(4)和(5)的基础上计算单位特征向量(实际上,其是单位特征向量的共轭复数转置)。然后,将该特征向量作为变换矩阵输出到有相关高斯噪声生成单元173以从不相关的信号向量中计算相互相关的信号向量。实际上,单位特征向量计算单元171生成各信道的各路径瞬时变化初始值以及单位特征向量,并且将这些值作为参数P30输出到如图28所示的信道处理单元172中的有相关高斯噪声生成单元173。
除了有相关高斯噪声生成单元173具有不同的构成以外,图28中的信道处理单元172与图25中的构成相同,这里将只描述有相关高斯噪声生成单元173的构成。图29表示有相关高斯噪声生成单元173的构成。
有相关高斯噪声生成单元173在多普勒滤波器180中生成各信道和各路径之间相互独立的M×N×(路径的数目)个瞬时变化。更具体地,信道1-1的各路径的瞬时变化的初始值被输入到频带受限的高斯白噪声生成单元(LWGN)181-1。信道1-2的各路径的瞬时变化的初始值被输入到频带受限的高斯白噪声生成单元181-2,随后重复相似的处理。最后,信道M-N的各路径的瞬时变化的初始值被输入到频带受限的高斯白噪声生成单元181-MN,从而使频带受限的高斯白噪声生成单元181-1到181-MN生成相互独立的频带受限的高斯白噪声。相互独立的频带受限的高斯白噪声被多普勒滤波器181-1到181-MN分别限制于多普勒频率fD内的频带,然后输出到加权加法单元183。
作为矩阵运算装置的加权加法单元183使用本身信道的特征向量对在多普勒滤波器180中得到的各信道之间以及各路径之间相互独立的M×N×(路径的数目)个瞬时变化执行矩阵运算处理,从而获得在路径之间相互相关的有相关瞬时变化。另外,有相关瞬时变化也具有信道之间的相关。
从加权加法单元183输出的有相关瞬时变化通过相位开/关单元184输出到有相关瞬时变化加入单元156(图28)作为本身信道各路径的瞬时变化。
因此,生成了各信道之间以及各路径之间相互独立的M×N×(路径的数目)个瞬时变化。从输入数据或实验数据、以及天线的位置关系获得的各路径的传播路径距离差以及瑞利衰落的理论空间-时间相关值获得相关矩阵(M×N×(路径的数目))×(M×N×(路径的数目))。在相关矩阵的基础上获得变换矩阵,以从相互无关的信号向量计算相互相关的信号向量。使用所述变换矩阵对M×N×(路径的数目)个瞬时变化进行矩阵运算处理,从而获得在路径之间相互相关的M×N×(路径的数目)个有相关瞬时变化。因此,可以获得在各信道和各路径之间相互相关的有相关瞬时变化,从而有可能准确和容易地对具有多径的M×N个信道执行信道仿真。
类似地,生成在各信道之间相互独立的M×N×(路径的数目)个瞬时变化。从输入数据或实验数据、从天线的位置关系获得的各路径的传播路径距离差以及瑞利衰落的理论空间相关值获得相关矩阵(M×N×M×N)。在该相关矩阵的基础上获得变换矩阵,以从相互不相关的信号向量中计算出相互相关的信号向量。使用变换矩阵对所述多个瞬时变化进行与路径的数目对应的次数的矩阵运算处理,从而获得在信道之间相互相关的M×N个信道的有相关瞬时变化。通过这种方式,不仅仅是参考信道和每个信道之间的相关,还能够形成在所有信道之间具有相关的M×N个信道的有相关瞬时变化。因此,能够形成与在实际M×N个信道发射中发生的瞬时变化近似的瞬时变化。
另外,尽管在这里描述了使用特征值变换的方法来形成有相关瞬时变化的情况,但是可以用相似的构成,采用上述乔列斯基因式分解的方法来形成有相关瞬时变化。
简单说明的话,不是在图27中的单位特征向量计算单元171计算特征向量,而是如(1-3-2)中描述的那样,在等式(6)和(7)的基础上,对路径相关矩阵执行乔列斯基因式分解以获得下三角矩阵,并计算该矩阵的共轭复数转置矩阵。然后将结果输出到信道处理单元172中的相关高斯噪声生成单元173。
在有相关高斯噪声生成单元173中,通过乔列斯基因式分解获得的变换矩阵被输入到作为矩阵运算装置的加权加法单元183,使用该变换矩阵来进行加权加法,并以此获得有相关瞬时变化。通过这种方式,加权加法单元183使用在其中具有一半元素是零的变换矩阵来执行运算,从而能够以较小的计算量获得相关的瞬时变化。
(2-3)衰落加入单元的构成图30表示在信道处理单元126-1到126-MN的每一个中设置的衰落加入单元的构成。衰落加入单元154在由移位寄存器191和选择器192组成的路径形成单元190中接收从开关125(图22)输出的数字基带信号,并使用路径形成单元190形成各路径的信号。更具体地说,移位寄存器191按照将路径的最大延迟时间除以模拟BB处理单元42(图21)的采样周期而获得的时间对输入的数字基带信号进行移位。
选择器192在从移位寄存器191的移位级输出的各自信号中选择与路径数目相对应的信号并输出。此时,路径形成单元190接收来自控制设备121的指示路径的数目以及表示在各信道的信号中与发射和接收天线的排列相对应的延迟时间的参数P11并作为其输入。移位寄存器191和选择器192基于该参数P11运行。利用这种方式,路径形成单元190中的选择器192将被加入与发射和接收天线的排列相对应的本身信道的路径延迟的各路径信号输出。
与各路径对应的信号被分别输出到有相关瞬时变化加入单元156中的各个复数乘法器A1到Ak。另外,由数据插值单元153输出的有相关高斯噪声P17被提供给复数乘法器A1到Ak的每一个。通过这种方式,复数乘法器A1到Ak中每一个输出加入了有相关瞬时变化的各路径信号。
加入了有相关瞬时变化的各路径信号被分别输出到形成短期间变化加入单元155的多个复数乘法器B1到Bk。从数据插值单元151输出的各路径的短期间变化复增益P19被提供给复数乘法器B1到Bk中的每一个。因此,短期间变化加入单元155输出与复脉冲响应进行卷积后的各路径信号。所有的各路径信号在加法器C1,C2,……中相加,从而形成在反映信道变化的多径信号。
多径信号被提供给加法器C3。将在高斯白噪声生成单元(WGN)21中生成并在放大器22中被放大到由控制设备30指定的噪声电平S4的高斯白噪声提供到加法器C3。因此,加法器C3向多径信号中加入接收器噪声。
衰落加入单元154进一步具有自动增益控制单元193。在自动增益控制单元193中,AGC控制单元195接收来自控制设备121的目标电平,并以此将目标电平和放大器194的输出信号之间的差异值设置为放大器194的放大值。因此,自动增益控制单元193执行简化的数字增益控制处理,并能使多径信号成为具有目标电平的恒定信号。
之所以需要在多径信号上执行增益控制的原因是因为由加法器C1进行加法而生成的多径信号是通过对独立地加入有电平变化的各个路径信号相加而获得的,因此能够假设在数字基带信号本身发生电平变化。由于上述原因,增益控制单元193执行简化的数字增益控制处理,以使得多径信号的电平保持恒定,从而即便是在射频电路53(图21)没有完成且AGC处理不能实施时能够防止在被开发装置的接收系统50中的AD转换中丢失比特。因此,可以基于数字BB处理单元41的数字基带信号很好地评价多径信道上的信道特性。
另外,在本实施方式的信道仿真器120中,数字基带信号从发射系统的数字BB处理单元41被输入,在该信号中加入传输路径变化后,所得到的信号被输出到接收系统50的数字BB处理单元51。在对数字BB处理单元41和51的传播特性进行评价时,相位变化开/关单元167(图26)和184(图29)被控制为关,具有相同电平的I信道和Q信道的有相关瞬时变化被输入到有相关瞬时变化加入单元156。这没有在图中进行表示,但是与提供给短期间变化加入单元153的短期间变化相同。
通过这种方式,即使没有在射频电路53中的AFC,也可以单独地对数字BB处理单元41和51的性能进行评价。另外,在射频电路43和53连接的情况下,因为射频电路53具有的AGC和AFC功能起作用,所以复数乘法器A1到Ak和B1到Bk的每一个可对短期间变化的复增益进行相乘,使得包络振幅在I信道和Q信道之间不同以对数字基带信号提供相位变化号。
(2-4)发射模拟调节单元和接收模拟调节单元的构成下面描述的是发射模拟调节单元124和接收模拟调节单元129的构成。发射模拟调节单元124和接收模拟调节单元129是用来仿真由于与M×N个信道中的每一个信道相对应的模拟电路的性能偏差而导致的各信道的信号偏差。
换句话说,注意到这样的事实作为仿真对象的被开发装置40和50在发射端具有M个模拟电路而在接收端具有N个模拟电路,M×N个模拟电路之间的偏差也会影响信道中的信号,发射模拟调节单元124和接收模拟调节单元129仿真该信道之间的波动,以适当加入到数字基带信号中。因此,有可能在M×N信道发射中更接近于真实变化地仿真传播变化。
因此,在信道仿真器120中,即使发射系统40的射频电路43和接收系统50的射频电路53还没有完成,也可以将假设发生在射频电路43和53中的信号恶化加入到数字基带信号中,以评价数字BB处理单元41和51的特性。
因此,就能够评价包括数字BB处理单元41和51与射频电路43和53之间的适配性在内的数字BB处理单元41和51的信道特性。此外,可以预先测量数字BB处理单元41和51的性能在后续开发出的射频电路43和53中能够承受的信号恶化的程度。
发射模拟调节单元124和接收模拟调节单元129的构成将在下面进行详细描述。如图31所示,在发射模拟调节单元124中,来自开关125(图22)的基带信号被输入到非平衡增益生成单元210。非平衡增益生成单元210独立地对数字基带信号的I信道信号和Q信道信号进行放大,从而产生增益差。DC偏移加入单元211使I信道信号和Q信道信号的每一个增加或减小恒定值,从而加入DC偏移。
频偏-相偏加入单元212向I信道信号和Q信道信号加入在射频电路43和模拟电路123(图22)中假定发生的频率偏移和相位偏移。实际上,频偏-相偏加入单元212是由复数乘法器构成,该复数乘法器将各信道信号分别与对应于瞬时相位θ1或θ2的变化量cosθ1或sinθ2相乘。
换言之,I信道信号与变化量cosθ1相乘,而Q信道信号与变化量sinθ2相乘。这里,当瞬时相位θ1和θ2为恒定时,表示仅加入相位偏移,而当瞬时相位θ1和θ2随时间变化时,表示既加入相位偏移又加入频率偏移。
在获得瞬时相位θ1和θ2的过程中,发射模拟调节单元124在相位增量计算单元215中从频率偏移设定值S20E中计算出每个采样的相位旋转量并输出到mod 2π计算电路217和219。此时,为了在I信道信号和Q信道信号之间加入正交性的恶化情况,加法器218在Q信道信号的相位旋转量中加入正交性恶化量S20F。
上一采样的相位被输入到加法器216。上一采样的相位通过由Z-1计算电路222进行基于初始相位(即相位偏移量)S20D和上一采样的相位的计算来算出。加法器216将在相位增量计算电路215中计算出的对应于一个采样的相位旋转量加入到上一采样的相位中,从而得到当前采样的相位旋转量。
因此,通过加法器216、mod 2π计算电路217和Z-1计算电路222的重复循环操作,对于每个采样都会计算出具有相位偏移和频率偏移的I信道的瞬时相位θ1,并且通过在I信道的瞬时相位θ1中加入正交性恶化量来计算Q信道的瞬时相位θ2。
随后,频偏-相偏加入单元212分别在数字基带信号的I信道和Q信道中加入变化量cosθ1和sinθ2,从而加入假设在发射系统40的射频电路43和模拟电路123中发生的数字基带信号的各信道的频率偏移和相位偏移。延迟调节单元213加入假设在射频电路43和模拟电路中发生的电路延迟量。
虚拟功率放大器(PA)单元214用于仿真假设发生于射频电路43的放大单元中的非线性失真,并且例如具有如图32所示的构成。虚拟PA单元214在包络振幅计算单元230中计算 从而计算数字基带信号的包络振幅X,并输出到平均电路231和失真计算单元232中。
平均电路231在与控制设备121设定的遗忘因子(即,电平计算时间常数)S20H相对应的时间内对包络振幅进行平均,并将所得的平均值Pave输出到饱和电平计算电路233。假设包络振幅的平均值为Pave,并且控制设备121中设定的功率放大器的补偿为IBO,则饱和电平计算电路233通过下式得到饱和电平Asat。
Asat=Pave×10-IBO20---(13)]]>利用在包络振幅计算电路230中得到的包络振幅值X以及在饱和电平计算电路233中得到的饱和电平Asat,失真计算单元232通过下式计算放大器234的控制值。
这样,虚拟功率放大(PA)单元214就能够模拟地在数字基带信号中加入假设在射频电路43的放大单元出现的非线性失真。
接收模拟调节单元129的配置如图33所示。在接收模拟调节单元129中,从选择组合单元128(图22)输出的数字基带信号被输入到频偏-相偏加入单元251。
频偏-相偏加入单元251执行与发射模拟调节单元124中的频偏-相偏加入单元212相同的操作。也就是说,将假设发生在接收电路50的射频电路53和模拟电路131(图22)中的频率偏移和相位偏移加入到I信道和Q信道中。实际上,频偏-相偏加入单元212由复数乘法器构成,该复数乘法器将各信道的信号与分别对应于瞬时相位θ1’或θ2’的变化量cosθ1’或sinθ2’相乘。即,I信道信号与变化量cosθ1’相乘,而Q信道信号与变化量sinθ2’相乘。
在获取瞬时相位θ1’和θ2’时,接收模拟调节单元129在相位增量计算单元252中从频率偏移设定值S22B计算出每个采样的相位旋转量,并将其输出到mod 2π计算电路254和256。此时,为了在I信道信号和Q信道信号之间加入正交性的恶化,加法器255在Q信道信号的相位旋转量中加入正交性恶化量S22C。
上一采样的相位被输入到加法器253。上一采样的相位通过基于初始相位(即相位偏移量)S22A和上一采样的相位进行计算的Z-1计算电路259计算出。加法器253将在相位增量计算电路252中计算出的对应于一个采样的相位旋转量加入到上一采样的相位中,从而得到当前采样的相位旋转量。
随后,频偏-相偏加入单元251将变化量cosθ1’和sinθ2’分别加入数字基带信号的I信道和Q信道中,从而加入假设在接收系统50中的射频电路53和模拟电路131中发生的数字基带信号的各信道的频率偏移和相位偏移。
增益非平衡发生单元261分别独立地将数字基带信号的I信道信号和Q信道信号放大,从而生成增益差异。DC偏移加入单元262将I信道信号和Q信道信号增加或减少一个恒定值,从而加入了DC偏移。延迟调节单元263加入假设在射频电路53和模拟电路131中发生的电路延迟量。
通过控制设备121,用户能够随意地选择发射模拟调节单元124以及接收模拟调节单元129的各个设定值S20(从S20A到S20I)和S22(从S22A到S22H)。
因此,在发射系统40的射频电路43和接收系统50的射频电路53被开发完成前,即,在仅有数字BB处理单元41和51被完成时,能够仿真假设在射频电路43和53以及模拟电路123和131中发生的增益不平衡、DC偏移、频率偏移、相位偏移、电路延迟,以及在放大中出现的非线性失真等。因此,在将正在开发的数字BB处理单元41和51以及具有各种特性的射频电路43和53组合时,就能够评价数字BB处理单元41和51的特性。
(3)实施方式的效果因此,按照前述的构造,通过提供开关125、信道处理单元126-1~126-MN以及选择组合单元128,可以仿真实际发生在多天线设备中的信道变化,从而能够准确和容易地在多天线设备中仿真信道特性。其中,开关125生成在发射系统40中得到的M个信号的每一个的N个副本,从而形成M×N个信道信号;信道处理单元126-1到126-MN分别将与发射和接收天线的排列相对应的有相关瞬时变化和短期间变化加入到M×N个信道信号中;选择组合单元128重复地在加入有信道变化的M×N个信号中有选择地组合M个信号以形成N个信号。
本发明并不局限于前述的实施方式,而是能够以其各种修改方式来进行实施。
按照本发明的一种形态的信道仿真方法包括信道变化形成步骤,使用发射和接收天线的排列的信息形成M×N个信道的传输路径的每一中的信道变化;以及信道变化加入步骤,将与M×N个信道相对应的信道变化加入M×N个信道的各自信号中。
按照这一方法,基于发射和接收天线的排列信息形成所有M×N个信道的信道变化,从而能够准确和容易地形成在由多天线设备形成的M×N个信道的传输路径中形成信道变化。另外,在运行的实验中收集信道数据以进行再现的情况下,对应于单信道的数据由具有一个发射天线和一个接收天线的数据收集设备来收集。而且,使用该数据作为参考信道,可准确和容易地从参考信道和被开发装置的发射和接收天线的相关排列中形成M×N个信道传输路径中的信道变化。因此,可以大量节约用于数据存储的存储器,从而显著地降低运行实验的次数,从而能够提高开发的效率。
在本发明的另一种形态的信道仿真方法中,在信道变化形成步骤中,使用发射和接收天线的排列信息获得由于所述天线的排列而引起的各个信道的延迟和相位变化,并且形成该延迟和相位在各信道传输路径之间变化不同的信道变化。
按照这一方法,通过只改变由天线的排列引起的每一个信道上的延迟和相位变化,来形成M×N个信道的信道变化,从而能够容易地形成M×N个信道的信道变化。
在本发明的另一个方面的信道仿真方法中,在信道变化形成步骤中,在形成关于各个信道传输路径的短期间变化以作为信道变化时,通过下面步骤形成对应于M×N个信道的短期间变化,即,使用在各信道中的发射和接收天线之间的位置关系的信息、以及各路径的辐射方向和到达方向的信息,获得预先设置或准备的参考信道的各路径与各信道的各路径之间的路径距离差,并为各信道的各路径的信号生成短期间变化,从而使得通过所述路径距离差产生相对于所述参考信道的各路径的短期间变化的相位差。
按照这一方法,因为发射天线之间的距离以及接收天线之间的距离与短期间变化周期相比足够小,所以通过将各信道中的路径数目和路径中的增益看作相等,来形成短期间变化,以使得通过路径距离差产生相对于参考信道的各路径的短期间变化的相位差,从而能够从参考信道的信道模型中形成所有M×N个信道的短期间变化。因此,仅预先准备参考信道的信道模型就能够容易和准确地形成M×N信道传输路径的短期间变化。
在本发明的另一种形态的信道仿真方法中,在信道变化形成步骤中,在形成各个信道传输路径的瞬时变化以作为信道变化时,通过对以下的处理重复进行对应于M×N个信道个数的次数,来形成对应于M×N个信道的有相关瞬时变化,所述处理包括分别生成对应于参考信道和其它的一个信道的频带受限的高斯噪声,使用至少将天线的排列信息作为参数的有相关滤波器特性对该两个频带受限的高斯噪声进行加权加法运算来形成与参考信道上的瞬时变化相关的有相关瞬时变化。
按照这一方法,能够从参考信道的各路径的信息中形成与该参考信道相关的M×N个信道的有相关瞬时变化。因此,与独立地设定M×N个信道的瞬时变化相比,能够准确和容易地形成M×N个信道的瞬时变化。换言之,这一方法对由笹冈提出的作为生成两个信道的有相关瞬时变化的现有方法进行了扩展,以生成M×N个信道的有相关瞬时变化。
在本发明的另一种形态的信道仿真方法中,信道变化形成步骤包括下列步骤生成在各信道之间相互独立的M×N×(路径的数目)个瞬时变化;从输入数据或实验数据、以及天线的位置关系获得的各路径的传播路径距离差以及瑞利衰落的理论空间-时间相关值获得相关矩阵(MN×MN);在所述相关矩阵的基础上获得变换矩阵,以从相互不相关的信号向量中计算出相互相关的信号向量;以及通过使用所述变换矩阵对所述各信道对应的路径的各瞬时变化重复执行与所述路径数目相应次数的矩阵运算处理,从而获得信道之间相互相关的M×N×(路径的数目)个有相关瞬时变化。
按照这一方法,不仅是参考信道和各信道之间的相关,还能够形成所有信道之间相互相关的M×N×(路径的数目)个有相关瞬时变化。因此,能够形成更接近于发生在实际的M×N个信道传输路径中的瞬时变化的瞬时变化。
在本发明的另一种形态的信道仿真方法中,信道变化形成步骤包括下列步骤生成在各信道之间和各路径之间相互独立的M×N×(路径的数目)个瞬时变化;从输入数据或实验数据、从天线的位置关系获得的各路径的传播路径距离差以及瑞利衰落的理论空间-时间相关值获得相关矩阵(M×N×(路径的数目))×(M×N×(路径的数目));在所述相关矩阵的基础上获得变换矩阵,以从相互不相关的信号向量中计算出相互相关的信号向量;以及通过使用所述变换矩阵对所述M×N×(路径的数目)个瞬时变化执行矩阵运算处理,从而获得信道之间相互相关的M×N×(路径的数目)个有相关瞬时变化。
按照这一方法,获得了在各信道之间和各路径之间相关的有相关瞬时变化,从而能够准确和容易地进行M×N信道且存在多径的传输路径的仿真。
在本发明的另一种形态的信道仿真方法中,在获得变换矩阵的步骤中,通过特征值变换得到所述变换矩阵。
按照这一方法,在从相互独立的瞬时变化中获得有相关瞬时变化时,能够使用具有少量元素的矩阵(特征值)而不是使用具有(M×N)2或(M×N×(路径的数目))2个元素的矩阵,从而能够以少量的计算获得相关瞬时变化。
在本发明的另一种形态的信道仿真方法中,在获得变换矩阵的步骤中,通过乔列斯基因式分解获得所述变换矩阵。
按照这一方法,在从相互独立的瞬时变化获得有相关瞬时变化时,使用通过乔列斯基因式分解得到的下三角矩阵,而不是使用具有(M×N)2或(M×N×(路径的数目))2个元素的矩阵,从而能够以少量的计算得到有相关瞬时变化。
本发明的一种形态的信道仿真器是用于仿真使用M×N信道传输系统的无线设备的信道特性的信道仿真器,所述M×N信道传输系统使用M个发射天线和N个接收天线,所述信道仿真器具有输入单元,输入由所述无线设备的发射系统获得的M个信号;信号复制单元,为所述M个信号的每一个都生成N个副本,从而形成M×N个信道信号;信道处理单元,向所述M×N个信道信号的每一个加入对应于发射和接收天线的排列的信道变化;以及组合单元,重复地在加入有信道变化的M×N个信道信号中有选择地组合M个信道信号以形成N个信号。
按照这一构成,能够仿真实际发生在多天线设备中的信道变化,因此能够准确和容易地仿真多天线设备中的信道特性。
在本发明的另一种形态的信道仿真器中,信道处理单元具有路径形成单元,为每一个信道的信号形成具有与发射和接收天线的排列对应的延迟的各路径的信号;短期复脉冲响应生成单元,形成加入到每一个信道的各路径的短期间变化的复增益;以及短期间变化加入单元,向每一个信道的各路径的信号中加入短期间变化,其中,短期间复脉冲响应生成单元使用在每一个信道中的发射和接收天线之间的位置关系的信息以及各路径中的辐射方向和到达方向的信息,获得参考信道的各路径和每一个信道的各路径之间的路径距离差,并为在路径形成单元中形成的每一个信道的各路径的信号生成短期间变化,从而通过前述路径距离差,生成与预先设置或准备的参考信道的各路径的短期间变化相应的相位差。
按照这一构成,能够从参考信道的信道模型中形成所有M×N个信道的短期间变化,从而仅预先准备参考信道的信道模型就能容易和准确地形成M×N个信道传输路径的短期间变化。
本发明的另一种形态的信道仿真器采用这样的构成该信道处理单元具有路径形成单元,为每一个信道的信号形成具有与发射和接收天线排列相应的延迟的各路径信号;有相关高斯噪声生成单元,生成加入到每一个信道的各路径中的有相关瞬时变化,以及和有相关瞬时变化加入单元,向每一个信道的各路径的信号加入有相关瞬时变化。
按照这一构成,与独立地设定M×N信道瞬时变化的情况相比,能够很好地仿真假定实际发生在多天线设备中的M×N个信道的瞬时变化,以加入到被提供有与发射和接收天线的排列相对应的延迟的各路径的信号中。
本发明的另一种形态的信道仿真器采用这样的构成有相关高斯噪声生成单元通过对以下的处理重复进行与M×N个信道的个数相应的次数,形成对应于M×N个信道的有相关瞬时变化,该处理包括分别生成对应于参考信道和其它的一个信道的频带受限的高斯噪声,使用至少将天线的排列信息作为参数的有相关滤波器特性对该两个频带受限的高斯噪声进行加权加法运算来形成与参考信道上的瞬时变化相关的有相关瞬时变化。
按照这一构成,能够从参考信道的各路径信息中形成与参考信道相关的M×N信道的有相关瞬时变化。因此,与独立地设定M×N信道的瞬时变化的情况相比,能够准确和容易地形成M×N信道的瞬时变化。换句话说,这一方法是对由笹冈提出的作为生成两信道的有相关瞬时变化的传统方法的扩展,以生成M×N信道的有相关瞬时变化。
本发明的另一种形态的信道仿真器采用进一步具有变换矩阵计算单元,从输入数据或实验数据、从天线的位置关系获得的各路径的传播距离差和瑞利衰落的理论空间相关值中计算出相关矩阵,然后,基于所述相关矩阵获得变换矩阵,以从相互不相关的信号向量中计算相互相关的信号向量,其中,有相关高斯噪声生成单元具有瞬时变化生成单元,生成在各信道之间相互独立的M×N×(路径的数目)个瞬时变化;以及矩阵运算单元,使用所述变换矩阵对所述多个瞬时变化重复进行对应于所述路径数目的次数的矩阵运算处理,生成在信道之间相关的M×N×(路径的数目)个有相关瞬时变化。
按照这一构成,不仅是参考信道和每个信道之间的相关,还能够形成在所有信道之间相关的M×N×(路径的数目)个有相关瞬时变化。因此,能够形成接近于发生在实际的M×N信道的传输路径中的瞬时变化的瞬时变化。
本发明的另一种形态的信道仿真器采用进一步设置有变换矩阵计算单元的构成,从输入数据或实验数据、从天线的位置关系获得的各路径的传播距离差和瑞利衰落的理论空间相关值中计算出相关矩阵,然后,基于所述相关矩阵获得变换矩阵,以从相互不相关的信号向量中计算相互相关的信号向量,其中,所述有相关高斯噪声生成单元具有瞬时变化生成单元,生成在各信道之间和各路径之间相互独立的M×N×(路径的数目)个瞬时变化;以及矩阵运算单元,使用所述变换矩阵对所述多个瞬时变化进行矩阵运算处理,生成在路径之间相关的M×N×(路径的数目)个有相关瞬时变化。
按照这一构成,能够获得各信道之间和各路径之间相关的有相关瞬时变化,从而可能准确和容易地进行M×N信道且存在多径的传输路径特性的仿真。
本发明的另一种形态的信道仿真器采用在其中变换矩阵计算单元通过特征值变换获得变换矩阵的构成。
按照这一构成,在矩阵运算单元从相互独立的瞬时变化获得有相关瞬时变化时,能够使用具有少量元素的矩阵(特征值)而不是使用具有(M×N)2或(M×N×(路径的数目))2个元素的矩阵,因此,能够减少矩阵运算单元中的计算量。
本发明的另一种形态的信道仿真器采用在其中变换矩阵计算单元通过乔列斯基因式分解获得变换矩阵的构成。
按照这一构成,在矩阵运算单元从相互独立的瞬时变化获得有相关瞬时变化时,使用通过乔列斯基因式分解得到的下三角矩阵,而不是使用具有(M×N)2或(M×N×(路径的数目))2个元素的矩阵,因此,可降低矩阵运算单元中的计算量。
本发明的另一种形态的信道仿真器采用进一步具有模拟调节单元的构成,模拟调节单元由数字电路构成,且仿真由对应于每一个所述M×N个信道的各信道的模拟电路的性能偏差而引起的各个信道中的信号偏差。
按照这一构成,是注意到这样的事实作为仿真对象的多天线设备在发射端具有M个模拟电路,在接收端具有N个模拟电路,M×N个模拟电路之间的偏差影响信道中的信号,模拟调节单元仿真信道之间的偏差以适当加入到数字基带信号中。因此,能够仿真在M×N信道的传输路径中更接近真实变化的信道变化。
本发明的另一种形态的信道仿真器进一步采用了这样一种构成,其具有输入接口,输入无线设备的发射系统的数字基带处理单元的输出信号;增益控制单元,执行增益控制以使得通过对加入有所述信道变化的各路径信号进行相加而得到的多径信号的信号电平几乎恒定;以及输出接口,向无线设备的接收系统的数字基带处理单元输出受到增益控制的数字基带信号,其中,所述信道处理单元加入具有相等的I分量和Q分量的信道变化分量。
按照这一构成,从输入单元直接输入数字基带信号,在增益控制单元中对加入有信道变化的多径信号进行电平校正,以使得在接收系统的AD转换中不会损失比特,多径信号进一步加入有具有相等的I分量和Q分量的信道变化分量。因此,即使在被开发装置的接收系统的射频电路不存在时,也能够测量AFC和AGC在几乎理想的操作情况下时的各路径的特性。因此,不需要AGC电路和AFC电路而仅通过数字基带信号就能够评价数字基带处理单元的性能。因此,不需要射频电路也能评价数字基带处理单元的性能,从而提高了开发效率。
如上所述,按照本发明,使用接收天线的排列信息形成在M×N信道的传输路径的每一个中的信道变化,与M×N信道对应的信道变化被加入到M×N信道的各自信号中。因此,所有M×N个信道的传输路径的信道变化可从发射和接收天线的排列信息中形成,因此能够准确和容易地形成由多天线设备形成的M×N信道的传输路径中的信道变化。
本申请基于中请号为2002-372960、申请日为2002年12月24目的日本专利申请,其全部的内容被并入本文作为参考。
工业实用性本发明适合在例如移动电话、移动电话的基站以及无线LAN(局域网)的MT(移动终端)和AP(接入点)的开发中使用。
权利要求
1.一种用于仿真由M个发射天线和N个接收天线形成的M×N个信道传输路径的信道仿真方法,所述方法包括信道变化形成步骤,使用发射和接收天线的排列的信息形成M×N个信道的传输路径的每一个中的信道变化;以及信道变化加入步骤,将与所述M×N个信道相对应的信道变化加入M×N个信道的各自信号中。
2.如权利要求1所述的信道仿真方法,其中,在所述信道变化形成步骤中,使用所述发射和接收天线的排列信息获得由于所述天线的排列而引起的各个信道的延迟和相位变化,并且形成该延迟和相位变化在各信道传输路径之间不同的信道变化。
3.如权利要求2所述的信道仿真方法,其中,在所述信道变化形成步骤中,在形成关于各个信道传输路径的短期间变化以作为所述信道变化时,通过下面步骤形成对应于所述M×N个信道的短期间变化,即,使用在各信道中的发射和接收天线之间的位置关系的信息、以及各路径的辐射方向和到达方向的信息,获得预先设置或准备的参考信道的各路径与各信道的各路径之间的路径距离差,并为各信道的各路径的信号生成短期间变化,从而使得通过所述路径距离差产生相对于所述参考信道的各路径的短期间变化的相位差。
4.如权利要求1所述的信道仿真方法,其中,在所述信道变化形成步骤中,在形成各个信道传输路径的瞬时变化以作为所述信道变化时,通过对以下的处理重复进行对应于M×N个信道个数的次数,来形成对应于M×N个信道的有相关瞬时变化,所述处理包括分别生成对应于参考信道和其它的一个信道的频带受限的高斯噪声,使用至少将天线的排列信息作为参数的有相关滤波器特性对该两个频带受限的高斯噪声进行加权加法运算来形成与参考信道上的瞬时变化相关的有相关瞬时变化。
5.如权利要求1所述的信道仿真方法,其中,所述信道变化形成步骤包括以下步骤生成在各信道之间相互独立的M×N×(路径的数目)个瞬时变化;从输入数据或实验数据、从天线的位置关系获得的各路径的传播路径距离差以及瑞利衰落的理论空间相关值获得相关矩阵(MN×MN);在所述相关矩阵的基础上获得变换矩阵,以从相互不相关的信号向量中计算出相互相关的信号向量;以及通过使用所述变换矩阵对所述各信道对应的路径的各瞬时变化重复执行与所述路径数目相应次数的矩阵运算处理,从而获得信道之间相互相关的M×N×(路径的数目)个有相关瞬时变化。
6.如权利要求1所述的信道仿真方法,其中,所述信道变化形成步骤包括以下步骤生成在各信道之间和各路径之间相互独立的M×N×(路径的数目)个瞬时变化;从输入数据或实验数据、以及天线的位置关系获得的各路径的传播路径距离差以及瑞利衰落的理论空间-时间相关值获得相关矩阵(M×N×(路径的数目))×(M×N×(路径的数目));在所述相关矩阵的基础上获得变换矩阵,以从相互不相关的信号向量中计算出相互相关的信号向量;以及通过使用所述变换矩阵对所述M×N×(路径的数目)个瞬时变化执行矩阵运算处理,从而获得路径之间相互相关的M×N×(路径的数目)个有相关瞬时变化。
7.如权利要求5或6所述的信道仿真方法,其中,在所述获得变换矩阵的步骤中,通过特征值变换得到所述变换矩阵。
8.如权利要求5或6所述的信道仿真方法,其中,在所述获得变换矩阵的步骤中,通过乔列斯基因式分解获得所述变换矩阵。
9.一种用于仿真使用M×N信道发射系统的无线设备的信道特性的信道仿真器,所述M×N信道发射系统使用M个发射天线和N个接收天线,所述信道仿真器包括输入单元,输入由所述无线设备的发射系统获得的M个信号;信号复制单元,为所述M个信号的每一个都生成N个副本,从而形成M×N个信道信号;信道处理单元,向所述M×N个信道信号的每一个加入对应于发射和接收天线的排列的信道变化;以及组合单元,重复地在加入有信道变化的M×N个信道信号中有选择地组合M个信道信号以形成N个信号。
10.如权利要求9所述的信道仿真器,其中,所述信道处理器具有路径形成单元,为每一个信道的信号形成具有与发射和接收天线的排列对应的延迟的各路径的信号;短期间复脉冲响应生成单元,形成加入到每一个信道的各路径的短期间变化的复增益;以及短期间变化加入单元,向每一个信道的各路径的信号中加入短期间变化,其中,所述短期复脉冲响应生成单元使用在每一个信道中的发射和接收天线之间的位置关系的信息以及各路径中的辐射方向和到达方向的信息,获得参考信道的各路径和每一个信道的各路径之间的路径距离差,并为在所述路径形成单元中形成的每一个信道的各路径的信号生成短期间变化,从而通过前述路径距离差,生成与预先设置或准备的参考信道的各路径的短期间变化相应的相位差。
11.如权利要求9所述的信道仿真器,其中,所述信道处理单元具有路径形成单元,为每一个信道的信号形成具有与发射和接收天线排列相应的延迟的各路径信号;有相关高斯噪声生成器,生成加入到每一个信道的各路径中的有相关瞬时变化,以及有相关瞬时变化加入器,向每一个信道的各路径的信号加入有相关瞬时变化。
12.如权利要求11所述的信道仿真器,其中,所述有相关高斯噪声生成单元通过对以下的处理重复进行与M×N个信道的个数相应的次数,形成对应于M×N个信道的有相关瞬时变化,该处理包括分别生成对应于参考信道和其它的一个信道的频带受限的高斯噪声,使用至少将天线的排列信息作为参数的有相关滤波器特性对该两个频带受限的高斯噪声进行加权加法运算来形成与参考信道上的瞬时变化相关的有相关瞬时变化。
13.如权利要求11所述的信道仿真器,进一步包括变换矩阵计算单元,从输入数据或实验数据、从天线的位置关系获得的各路径的传播距离差和瑞利衰落的理论空间相关值中计算出相关矩阵,然后,基于所述相关矩阵获得变换矩阵,以从相互不相关的信号向量中计算相互相关的信号向量,其中,所述有相关高斯噪声生成单元具有瞬时变化生成单元,生成在各信道之间相互独立的M×N×(路径的数目)个瞬时变化;以及矩阵运算单元,使用所述变换矩阵对所述多个瞬时变化重复进行对应于所述路径数目的次数的矩阵运算处理,生成在信道之间相关的M×N×(路径的数目)个有相关瞬时变化。
14.如权利要求11所述的信道仿真器,进一步包括变换矩阵计算单元,从输入数据或实验数据、从天线的位置关系获得的各路径的传播距离差和瑞利衰落的理论空间-时间相关值中计算出相关矩阵,然后,基于所述相关矩阵获得变换矩阵,从相互不相关的信号向量中计算相互相关的信号向量,其中,所述有相关高斯噪声生成单元具有瞬时变化生成单元,生成在各信道之间和各路径之间相互独立的M×N×(路径的数目)个瞬时变化;以及矩阵运算单元,使用所述变换矩阵对所述多个瞬时变化进行矩阵运算处理,生成在路径之间相关的M×N×(路径的数目)个有相关瞬时变化。
15.如权利要求13或14所述的信道仿真器,其中,所述变换矩阵计算单元通过特征值变换获得所述变换矩阵。
16.如权利要求13或14所述的信道仿真器,其中,所述变换矩阵计算单元通过乔列斯基因式分解获得所述变换矩阵。
17.如权利要求9所述的信道仿真器,进一步包括模拟调节单元,包括数字电路,且仿真由对应于每一个所述M×N个信道的各信道的模拟电路的性能偏差而引起的各个信道中的信号偏差。
18.如权利要求9所述的信道仿真器,进一步包括输入接口,输入无线设备的发射系统的数字基带处理单元的输出信号;增益控制单元,执行增益控制以使得通过对加入有所述信道变化的各路径信号进行相加而得到的多径信号的信号电平几乎恒定;以及输出接口,向无线设备的接收系统的数字基带处理单元输出受到增益控制的数字基带信号,其中,所述信道处理单元加入具有相等的I分量和Q分量的信道变化分量。
全文摘要
提供开关125、信道处理单元126-1~126-MN和选择组合单元128,开关125生成在发射系统中得到的M个信号的各个的N个副本,从而形成M×N个信道信号。信道处理单元126-1~126-MN分别向M×N个信道信号加入对应于发射和接收天线的有相关瞬时变化和短期间变化,选择组合单元128重复地在加入有信道变化的M×N个信道信号中有选择地组合M个信道信号以形成N个信号。
文档编号G01R31/00GK1754326SQ20038010996
公开日2006年3月29日 申请日期2003年12月24日 优先权日2002年12月24日
发明者猪饲和则, 今村大地, 星野正幸, 太田现一郎 申请人:松下电器产业株式会社
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1