用于在钻井期间探测井筒中的气体的系统的利记博彩app

文档序号:6019873阅读:325来源:国知局
专利名称:用于在钻井期间探测井筒中的气体的系统的利记博彩app
技术领域
本发明涉及一种用于探测在钻井流体中出现地层气体的系统,该钻井流体在钻井筒的过程中流经该井筒。在搜寻地层结构中存在的碳氢化合物流体时,重要的是在钻井过程中的早期阶段,探测从地层结构流入到井筒中的气体。如果气体是在高压状态,早期探测很关键,以确保合适的井控制,并且先行放弃疏忽的井筒状态。而且,井筒流体中的气体的流入提供关于井筒通过的各种地下结构层上的有价值的信息。因此,气体的流入可以表明命中一个碳氢化合物富饶的地区或者出现一个严重的井喷。在地下结构层中最普通的气体种类是甲烷(CH4),二氧化碳(CO2)和氮气(N2)。在钻井筒时还有可能遇到H2S。
这些气体种类可以是自由气体气泡,或者溶解在液体中的气体。
直到现在,在钻井筒期间用极时并且精确的方法探测地下结构气体的出现是很困难的。
因此本发明的目的是提供一种可靠而精确的系统,用来探测在钻井流体中地层气体的出现,该钻井流体在钻井筒的过程中流经一个井筒。
根据本发明提供一种用于探测在钻井流体中出现地层气体的系统,该钻井流体在钻井筒的过程中流经一个井筒,该系统包括至少一个传感器室,该传感器室可连接到一个用于钻井筒的钻柱,各传感器室包括一个传感器,一定体积的选定的气体和具有一个膜壁,其允许来自于钻井流体的地层气体通过而进入到传感器室中。传感器被布置用来探测所述体积的气体的选定特性由于来自于钻井流体的地层气体经膜壁进入到传感器室中而发生的一种变化。
膜壁允许气体通过进入传感器室。通过探测由于气体已经通过膜发生的选定特性的变化,及时地提供表示这样的气体通过的信号。
优选膜壁是疏水和疏油的。因此,油和水都有效地保持在传感器室的外面,因此可以提供一种微电子机械传感器固态传感器(“MEMS传感器”)作为传感器。这样的MEMS传感器可以是硅基的和/或聚合体基的。可以采用各种类型的MEMS传感器,包括一个导热的传感器,一个热接触反应的传感器,和一个电子化学传感器,例如一个金属氧化物电子化学传感器。
在一个有利的实施例中,系统包括一个压力平衡装置,其布置成将传感器室中的气体压力保持为基本上等于钻井流体中的液体压力。由于在传感器室中的气体与井筒中的液体压力之间的低压力差,膜壁能够具有一个低的穿透压力,这对于系统的响应钻井流体中地层气体的浓度变化的时间是有利的。而且,由于气体压力与液体压力平衡,系统适于在任何深度上使用。
在本发明的一个特别有利的实施例中,该系统包括一个第一所述传感器室和一个第二所述传感器室,并且其中气体供给装置包括用于将一种第一所述选定的气体供给第一传感器室的装置,和用于将一种第二所述选定的气体供给第二传感器室的装置。各传感器室对于某种地层气体的出现具有其自身的单独的响应,通过结合传感器信号,允许井下地层气体的成分分析。
下面参照附图以举例的方式详细地对本发明进行描述。其中

图1示意地表示一个本发明系统的一个实施例的钻柱;图2示意地表示图1的系统的细节;图3示意地表示用于图1的系统的一种可采用的压力平衡装置;和图4示意地表示本发明系统的可替换的实施例。
在图中相同的标号表示相同的部件。
参见图1,表示一个钻柱1延伸到形成于地层结构4中的井筒2中。钻柱1的下端具有一个钻头6,并且设置有一个气体探测系统8,气体探测系统8适于布置在形成于钻柱1的壁11的凹部10中,该凹部10在钻头6的上方有一个短的距离处。标号12表示一股钻井流体,其经由钻柱1泵送到钻头6,在钻头6处,这股钻井流体经钻头喷嘴14流入到井筒2中,并且向上经过井筒壁和钻柱1之间的环形空间16。
如图2更详细地示出,气体探测系统包括一个传感器室18,其固定地定位在钻柱壁11的凹部10中。传感器室18具有一个膜壁20,该膜壁对井筒中的流体具有排斥力。膜壁20由一叠疏水(排斥水)的膜22和一疏油的膜24形成。膜22,24使得气体可以进入,即他们允许气体从钻井流体12通过进入到传感器室18,而防止水(膜22)和油(膜24)流入到传感器室18中。一个微电子机械传感器固态传感器26(“MEMS传感器”)布置在传感器室中,并且适当地连接到在地表面的一个控制系统(未示出)。传感器26是一个热传导的MEMS颗粒催化剂传感器(pellistor传感器),并且包括一个热源和一个温度传感器,该温度传感器布置成距离热源有一个选定的距离。
传感器室18充有一定量的选定的清洁气体。在此例中,清洁气体是氦,然而还能够是氖、氩或者任何其他适合的参考气体。
氦的气源是在储存容器28中,该容器通过导管30和控制阀32连接到室18。
设置有一个压力平衡装置34,以保持传感器室18中的气体压力基本上等于钻井流体12中的流体压力。根据图2所示的实施例的压力平衡装置34包括一个壳体36,壳体36具有一个液体室38和一个气体室40。气体室40与液体室38由一个挠性壁41分开。导管42使液体室38与这段钻井流体12流体连通。导管43和30使气体室40与传感器室18内部流体连通。一个具有一个控制阀45的出口导管44提供传感器室18与钻井流体12的流体连通。壳体36中的挠性壁40例如是由一种弹性体材料形成。控制阀32,45由一个适合的控制系统(未示出)控制。
图3示意地表示一个可采用的压力平衡装置74。此实施例与上面所描述的不同之处在于在壳体36中未设置将液体78与气体80分开的挠性壁。液体80能够经一个敞开的连接导管42供给到壳体36,导管可选择地设置有一个切断阀81。气体80可以是清洁气体,其经导管43和30供给到传感器室18的内部。一个出口导管44,可选择地具有一个控制阀,提供传感器室18与钻井流体12之间的流体连接。为了确保本实施例的适当的功能,敞开的连接导管42应当在壳体36的底部连接到壳体36,因为液体78与气体80是靠重力分开的。
一个压力平衡装置一般能够有利地设置在检测系统中,例如上面描述的具有一个不同于MEMS传感器的适合的传感器的系统中。
在图4中,表示本发明系统的一个可替换的实施例,其中第一传感器室50和一个相邻的第二传感器室52布置在钻柱壁11上形成的凹部10中。第一传感器室50封装有一个第一MEMS传感器53,并且第二传感器室52封装有一个第二MEMS传感器54。传感器53,54连接到一个控制器56,控制器56由控制线58与地表面的一个适合的控制系统(未示出)相连。氦清洁气体的气源设在储存容器60中,该容器由导管62和控制阀63连接到第一传感器室50,氩清洁气体的供应源设在储存容器64中,该容器由导管66和控制阀67连接到第二传感器室52中。控制阀63,67由控制器56控制,而控制器56由地表面的控制系统控制。控制器由电池68供电。
在图1和图2的实施例的正常操作期间,钻柱1转动,从而进一步钻井筒2,从而钻井流体12向下环流通过钻柱1和向上通过井筒壁和钻柱1之间的环形空间16。传感器室充有选定的清洁气体氦。如上面所述,清洁气体是在每次地层气体(formation gas)测量以后补充的。MEMS传感器连续地发射信号,信号表示在传感器室18中出现的一定量的气体的导热性。只要没有地层气体进入到传感器室18中,则该信号基本上不变。
当井筒2中穿透了包含气体例如乙烷、二氧化碳或者氮气的地层时,气体中一些被夹带到流入到环形空间16中的钻井流体12中。这些气体能够溶入该液体,或者如果钻井流体中的气体过饱和,则能够是气泡形式。而且如果井筒2进入高压气田(gas reservoir)中,则这些气体能够是大团(slugs)的形式。在钻井流体12中的各气体成分的分压高于充有氦气的传感器室18的压力。
由于钻井流体12中与传感器室18中的气体的分压不同,因此存在于钻井流体12中的气体会通过膜22,24进入到传感器室18中。这适用于钻井流体12中稀释的所有的气体种类。疏水膜22防止钻井流体12中的水进入到传感器室18中,疏油膜24防止钻井流体12中的油进入到传感器室18中。当气体进入到传感器室18中时,MEMS传感器26周围的气体环境的导热性会发生变化。其结果是,传感器26的输出信号会发生变化,从与清洁气体相关的水准变为与已经进入到传感器室18中的与地层气体相关的水准。该变化的信号表明地层气体已经进入到传感器室18中。因此采用本发明的系统进行的气体测量是样品气体相对于参考清洁气体的一种差值测量。传感器室18的气体体积相对地小,使得只用很少量的来自钻井流体12的样品气体。因此分析时间短,并且只用很少量的清洁气体清洁传感器室18,以准备下一次测量。
进行若干次测量,在每次测量以后,通过打开控制阀32,用来自存贮容器28中的氦清洁传感器室18来去除样品气体。
压力平衡装置34,74确保传感器室18中的气体压力基本上与钻井流体12中的气体压力相等。以此方式,使得膜22,24不会由于膜22,24两侧的高压差而被损坏。因此,采用压力平衡装置34,74使得系统能够用于深井筒中,例如1km或者1km以上,或者3km或者3km以上,以允许系统尽可能接近钻柱的下端。系统接近钻柱下端有助于对来源于井筒深处的地层气体进行早期的探测。
而且,压力平衡装置34,74允许设置相对薄并且具有相对大的表面积的膜壁,这有利于减小在钻井流体中出现地层气体与对其最早检测之间的时间延迟。
上述压力平衡装置的实施例具有一个液体室38与井筒环形区16中的钻井流体相连通,一个气体室40与充有气体的传感器室18相连通。通过此布置,使得在充有气体的传感器室18与充有钻井流体的井筒环形区16之间存在压力连通。同时,挠性壁41使得钻井流体12与传感器室18中的气体相分离。因此,压力平衡装置34使得井筒中的钻井流体与传感器室18中的气体分开。
上述的替换实施例的压力平衡装置74具有一种与井筒环形区域16中的钻井流体相连通的液体78,和一种与传感器室18中的气体相连通的气体。这样的布置使得在充有气体的传感器室18与充有钻井流体的并筒环形区16之间存在压力连通。由于没有挠性壁使钻井流体12与传感器室18中的气体分开,因此这个实施例对于确保在液体和气体之间不存在由可能由挠性壁提供的可能的机械支撑造成的压力差是优选的。然而,在这个替换的实施例中,存在流体进入传感器室的危险。
为了补偿在井筒中将系统下降时的第一个大约500米的深度期间相对大的气体压力,壳体36中存在的清洁气体能够选择地用一个关闭的切断阀81进行预加压。当达到大约500米深度时,将切断阀打开,从而实现与井筒的打开连接。因此壳体36中所需气体80的量能够减少。
膜22,24中的毛细管压力导致膜22,24两侧有一个相对小的压力差。通过使选择膜22,24带有非常小的孔隙,这样的压力差可以在2-14巴。为了清洁传感器室18,贮存容器28中的氦气应当高于最大的预期的井筒压力。
作为一种测量方法,可以选择使用信号振幅,从而在初始干扰之后,在相对长的时间段之后,即对于每次测量大约80分钟之后信号变得稳定。一种更优选的方法涉及由于地层气体扩散到传感器室18时造成的输出信号随时间改变时的斜率(slope)。这个测量很快,大约15-20秒的转变时间。各测量涉及交互的清洁气体流入和地层气体流入,15秒间隔。为了改善精确度,能够进行大量数据样本的统计平均值的计算。输出信号的斜率正比于部分溶解的气体浓度。而且,钻井流体12中的自由气体显示出与溶解在钻井流体12中的气体的明显不同的斜度,使得这种不同能够用来识别气体的相,即或者气体在液体中,或者作为从钻头6返回的回流钻井流体中的自由气体。
图4的实施例的正常操作基本上类似于图1、2和3的正常操作。主要不同是两种不同清洁气体氦和氩用于相关的传感器室50,52,而不是一种清洁气体。开始时传感器室50充有氦,传感器室52充有氩。当地层气体甲烷、二氧化碳和氮气进入到传感器室50,52时,传感器室50中的气体体积的导热性发生与传感器室50中的气体体积的导热性不同的变化。因此传感器53的传感器信号不同于传感器54的传感器信号地改变。而且,信号的变化依赖于相关气体成分甲烷、二氧化碳和氮气的浓度。通过校准用于气体成分甲烷、二氧化碳和氮气的来自于传感器室50的信号,在传感器内部的选定的温度下测量得到第一个方程式。通过考虑三种气体成分CO2,N2和CH4的所有的浓度的总和相加为1(add up to one)而得第二个方程式。第三个方程式通过校准来自于传感器室52的关于气体成分甲烷、二氧化碳和氮气的信号来得到。通过解三个方程式能够求出成分信息。
各传感器53,54具有其自己的电子设定和增益,使得信号水准优化用于读取和用于解三个方程的方程组和三个未知数。通过使用钻井方面的现有的知识,三种气体的探测问题可以减少到一种气体的探测问题。例如通过假设在某一个井中,天然气中的甲烷浓度是唯一的变量。
还有可能使用预期的地层气体例如N2,CH4或者H2S在一个传感器室中。充有这种气体的一个室不显示由传感器探测的该气体的选定特性的变化。同时,如果第二传感器室显示选定特性的变化,这就直接快速地表明这种地层气体出现在钻井流体中。
权利要求
1.一种用于探测在一股钻井流体中出现地层气体的系统,该股钻井流体在钻井筒的过程中流经一个井筒,该系统包括至少一个传感器室,该传感器室能连接到一个用于钻井筒的钻柱,各传感器室包括一个传感器和一定体积的选定的气体并具有一个膜壁,膜壁允许来自于钻井流体的地层气体通过而进入到传感器室中,传感器被布置用来探测所述体积的气体的选定特性由于来自于钻井流体的地层气体经膜壁进入到传感器室中而发生的变化。
2.如权利要求1的系统,其中所述膜壁基本上防止来自于钻井流体的液体通过进入到传感器室中。
3.如权利要求1或2的系统,其中所述膜壁是疏水和疏油的。
4.如权利要求3的系统,其中所述膜壁是由包括疏水膜和疏油膜的一叠形成的。
5.如前面权利要求中任一项的系统,其中传感器布置成检测或者测量所述体积的气体的导热性的变化。
6.如权利要求1-5中任一项的系统,其中传感器包括一个热源和一个布置成与该热源有一选定的距离的温度传感器,并且其中所述体积的气体在热源和温度传感器之间扩散。
7.如权利要求1-6中任一项的系统,其中传感器是一个微电子机械传感器(MEMS)固态传感器。
8.如权利要求7的系统,其中传感器是一个传导的MEMS颗粒催化剂传感器(pellistor传感器)。
9.如权利要求1-6中任一项的系统,进一步包括一个压力平衡装置,其布置成将传感器室中的气体压力保持为基本上等于这股钻井流体中的流体压力。
10.如权利要求9的系统,其中压力平衡装置包括一个壳体,壳体中包含一种液体和一种气体,所述液体和气体被布置成相互施加一个力,其中液体与钻井流体流体连通,并且气体与传感器室流体连通。
11.如权利要求10的系统,其中壳体包括一个液体室和由一个可移动壁与液体室分开的一个气体室,从而液体室与钻井流体流体连通,并且气体室与传感器室流体连通。
12.如权利要求11的系统,其中所述可移动壁是一个挠性壁。
13.如权利要求1-12中任一项的系统,进一步包括一个气体供应源装置,用于将所述选定的气体供给传感器室。
14.如权利要求13的系统,其中该系统包括一个第一所述传感器室和一个第二所述传感器室,并且其中气体供应源装置包括用于将一种第一所述选定的气体供给第一传感器室的装置,和用于将一种第二所述选定的气体供给第二传感器室的装置。
15.如权利要求13或14的系统,其中气体供应源装置被布置成用来以相应的选定的气体清洁各传感器室。
16.一种钻柱,设置有如权利要求1-15中任一项的系统。
17.基本上如前面参照附图所描述的系统。
18.基本上如前面参照附图所描述的钻柱。
全文摘要
一种用于探测在钻井流体中出现地层气体的系统,该钻井流体在钻井筒的过程中流经一个井筒。该系统包括至少一个传感器室,该传感器室可连接到一个用于钻井筒的钻柱,各传感器室包括一定体积的选定的气体和具有一个膜壁,其允许来自于钻井流体的地层气体通过而进入到传感器室中。传感器被布置用来探测所述体积的气体的选定特性由于来自于钻井流体的地层气体经膜壁进入到传感器室中而发生的一种变化。
文档编号G01N33/28GK1666008SQ03815306
公开日2005年9月7日 申请日期2003年6月17日 优先权日2002年6月28日
发明者约瑟夫·G·C·克嫩 申请人:国际壳牌研究有限公司
网友询问留言 已有0条留言
  • 还没有人留言评论。精彩留言会获得点赞!
1