专利名称:生物分子基底,使用它的检测和诊断方法及装置的利记博彩app
技术领域:
本发明涉及在检测生物分子(例如DNA,RNA,蛋白质,低重量有机分子(配体等),糖,脂类等)的检验中使用的基底,生物分子芯片,使用其的检测装置以及检测(包括筛选)和诊断方法。
背景技术:
最近,基因相关的科学和技术已经获得比预期更显著的发展。作为检测,分析和测量遗传信息的技术,最近一种称为生物分子芯片(包括DNA芯片,生物芯片,微阵列,蛋白质芯片等)的装置和使用它的检测方法已经受到关注。将许多不同的核酸(DNA如cDNA和基因组DNA,RNA,PNA等)或肽以斑点图案的形式排列和固定在由玻璃或硅制成的基底上。在该基底上,将待检测的样品DNA片段与标记物质如荧光团或同位素等杂交,并捕捉DNA,或者备选地,通过它们的相互作用将待检验的样品多肽或配体与标记蛋白质偶联。使用检测器来检测来自每个斑点中标记的DNA或标记肽的荧光,或使用放射检测器来检测来自那里的放射性,由此获得关于标记的DNA或标记肽斑点的排列信息。通过分析该数据,可以获得关于样品DNA的遗传信息。
使用DNA芯片或类似物的基因检测方法具有将来在用于疾病诊断或生物分析的基因分析中被广泛使用的潜力。芯片应用的实例包括用于组合化学的化合物文库或类似物的筛选。芯片的通用性也已经受到关注。
然而至今,制备如上所述的生物分子芯片的方法需要高精度的设备,其导致检测基底的高成本。此外,检测标记的DNA的装置要求高精度,因此,该装置难以在小企业单位或专业人员中得到广泛使用。生物分子芯片没有足够能力来处理大量数据。因此,期望能够以容易和有效的方式处理数据的基底或芯片。
上述检测基底或检测装置需要一种不要求高精度的方法。本发明的一个目的是提供一种系统,其甚至可以使用低精度的检测装置来制备,并且在该系统中可以进行检验。
发明内容
为了解决上述问题,本发明提供了一种包含基底的装置,所述基底上有众多由特定类型的生物分子(例如DNA等)组成的生物分子斑点,其中依赖于特定数据改变生物分子(例如DNA)斑点的图案或排列以便将数据记录在基底上。
因此,本发明提供下列各项。
一方面,本发明提供了制备生物分子基底的方法,其包含以下步骤1)提供一组生物分子和一种基底;2)将该组生物分子在逐个生物分子类型(biomolecule-type-by-biomolecule-type)的基础上密封在微胶囊中;和3)将生物分子微胶囊喷射在基底上。
在一个实施方案中,本发明另外包含在密封步骤后洗涤生物分子微胶囊的步骤。
在另一个实施方案中,所述喷射步骤是通过喷墨法进行的。
在另一个实施方案中,所述喷墨法是通过气泡喷墨(Bubble Jet)法进行的。
在另一个实施方案中,本发明另外包含将在喷射步骤中使用的溶液温度设置为高于生物分子微胶囊的壳的熔点。
在另一个实施方案中,将该组不同类型的生物分子的微胶囊排列在不同位置。
在另一个实施方案中,所述喷射步骤是通过PIN法进行的。
在另一个实施方案中,所述生物分子包含DNA,RNA和肽的至少一种。
在另一个实施方案中,所述生物分子是DNA。
在另一个实施方案中,所述生物分子是cDNA或基因组DNA。
在另一个实施方案中,本发明另外包含进行对每种微胶囊特异的标记的步骤。
在另一个方面,本发明提供了一种生物分子芯片,其包含基底;排列在基底上的生物分子和芯片属性数据(attribute data),其中将所述芯片属性数据排列在与生物分子相同的区域内。
在一个实施方案中,所述芯片属性数据包含与芯片ID和基底有关的信息。
在另一个实施方案中,本发明另外包含记录区,其中将所述记录区放置在与生物分子和芯片属性数据相同的基底上,并且将受试者数据和测量数据中的至少一种记录在记录区内。
在另一个实施方案中,以这样的方式即通过与对于检测生物分子而言相同的方式读出来记录芯片属性数据。
在另一个实施方案中,将特异性标记附着在所述基底上。
在另一个实施方案中,基于芯片属性数据排列特异性标记。
在另一个实施方案中,芯片属性数据包含生物分子属性数据。
在另一个实施方案中,另外记录了与生物分子地址有关的信息。
在另一个实施方案中,所述地址是跟踪地址(tracking address)。
在另一个实施方案中,将所述芯片属性数据加密。
在另一个实施方案中,记录与用来检测生物分子的标记有关的数据。
在另一个实施方案中,与所述标记有关的数据包含激发光波长和荧光波长中的至少一种。
在另一个实施方案中,所述生物分子包含DNA,RNA和肽中的至少一种。
在另一个实施方案中,所述生物分子是DNA。
在另一个实施方案中,所述生物分子是cDNA或基因组DNA。
在另一方面,本发明提供一种生物分子芯片,其包含1)基底;和2)排列在基底上的生物分子,其中生物分子的斑点被至少一个不等间隔所隔开,从不等间隔可以识别生物分子斑点的地址。
在一个实施方案中,调整不等间隔。
在另一个实施方案中,在至少两个方向上存在所述不等间隔。
在另一方面,本发明提供一种生物分子芯片。该生物分子芯片包含1)基底;和2)排列在基底上的生物分子,其中所述生物分子包括可区别的第一种生物分子和可区别的第二种生物分子,基于第一种生物分子斑点和第二种生物分子斑点的排列可以识别生物分子的地址。
在一个实施方案中,将可区别于所述生物分子的标记排列在所述生物分子斑点之间。
在另一个实施方案中,可以通过检测方法检测所述可区别的标记。
在另一个实施方案中,在基质上在水平方向和垂直方向排列所述标记。
在另一个实施方案中,排列同步标记。
在另一个实施方案中,所述生物分子包含DNA,RNA和肽中的至少一种。
在另一个实施方案中,所述生物分子是DNA。
在另一个实施方案中,所述生物分子是cDNA或基因组DNA。
在另一方面,本发明提供一种生物分子芯片,其包含1)基底;和2)排列在基底上的生物分子,其中将存储属性数据的斑点排列在基底上与排列生物分子斑点的侧面相反的侧面上。
在另一个实施方案中,所述属性数据是地址信息。
在另一方面,本发明提供一种生物分子芯片,其包含1)基底;2)排列在基底上的生物分子;和3)数据记录区。
在一个实施方案中,将所述数据记录区放置在与排列生物分子的侧面相反的侧面上。
在另一方面,本发明提供一种用于检测生物分子芯片标记的方法,其包含步骤1)提供一种生物分子芯片,其上排列至少一种标记的生物分子;2)顺序转换检测元件来检测生物分子芯片上的生物分子;和3)识别通过检测元件检测的信号。
在一个实施方案中,本发明另外包含4)合计每个检测信号。
在另一个实施方案中,通过波长分离镜分离所述信号。
在另一个实施方案中,所述生物分子基底另外包含同步标记,并且基于同步标记鉴定标记。
在另一个实施方案中,生物分子基底包含在生物分子后侧上的地址信息,并且基于地址信息识别标记。
在另一方面,本发明提供一种用于检测关于生物的信息的方法,其包含步骤1)提供来自所述生物的生物分子样品;2)提供本发明的生物分子芯片;3)将所述生物分子样品与生物分子芯片接触,将生物分子芯片放置于导致生物分子样品与放置在所述生物分子芯片上的生物分子相互作用的条件下;和4)检测由生物分子导致的信号和由所述相互作用导致的信号,其中所述信号是所述生物的至少一种信息参数的指示符(indicator),并且所述信号是与分配给不等间隔或斑点排列的地址相关。
在另一个实施方案中,所述生物分子样品包含核酸,并且排列在生物分子芯片上的生物分子是核酸。
在另一个实施方案中,所述样品包含蛋白质并且置于生物分子芯片上的生物分子是抗体,或者所述样品包含抗体并且置于生物分子芯片上的生物分子是蛋白质。
在另一个实施方案中,本发明另外包含用标记分子标记生物分子样品。
在另一个实施方案中,可以将所述标记分子区别于排列在生物分子芯片上的生物分子。
在另一个实施方案中,所述标记分子包含荧光分子,发磷光的分子(phosophorescent molecule),化学发光分子,或放射性同位素。
在另一个实施方案中,在不同于所述相互作用发生的地点进行信号检测步骤。
在另一个实施方案中,所述信号检测步骤是在与发生所述相互作用相同的地点进行。
在另一个实施方案中,本发明另外包含将信号加密。
在另一个实施方案中,本发明另外包含将所述信号进行过滤以便只提取与所需信息有关的信号。
在另一方面,本发明提供一种诊断受试者的方法,其包含步骤1)提供来自所述受试者的样品;2)提供本发明的生物分子芯片;3)将所述生物分子样品与所述生物分子芯片接触,将生物分子芯片放置于导致生物分子样品和位于所述生物分子芯片之上的生物分子相互作用的条件下;4)检测由生物分子导致的信号和由相互作用导致的信号,其中所述信号是至少一种关于受试者的诊断指示符,并且信号是与分配给不等间隔或斑点排列的地址有关;和5)测定来自信号的诊断指示符。
在另一个实施方案中,所述样品是核酸,放置在生物分子芯片上的生物分子是核酸。
在另一个实施方案中,所述样品包含蛋白质并且所述放置在生物分子芯片上的生物分子是抗体,或者样品包含抗体并且放置在生物分子芯片上的生物分子是蛋白质。
在另一个实施方案中,本发明另外包含使用标记分子标记样品。
在另一个实施方案中,可以将标记分子区别于放置在生物分子芯片上的生物分子。
在另一个实施方案中,所述标记分子是荧光分子,发磷光的分子,化学发光分子,或放射性同位素。
在另一个实施方案中,所述诊断指示符是疾病或紊乱的指示符。
在另一个实施方案中,所述诊断指示符是基于单核苷酸多态性(SNP)。
在另一个实施方案中,所述诊断指示符是基于遗传病。
在另一个实施方案中,所述诊断指示符是基于蛋白质的表达水平。
在另一个实施方案中,所述诊断指示符是基于生物化学试验的试验结果。
在另一个实施方案中,测定步骤是在不同于所述相互作用发生的位置进行。
在另一个实施方案中,所述信号检测步骤是在与所述相互作用发生的相同的位置进行。
在另一个实施方案中,本发明另外包含将信号加密。
在另一个实施方案中,本发明另外包含将所述信号进行过滤以便只提取与所需信息有关的信号。
在另一个实施方案中,在检测步骤中生物分子属性数据是埋藏的(hidden),在测定步骤中个人信息数据是埋藏的。
在另一方面,本发明提供了针对生物的信息的检测装置,其包含1)本发明的生物分子芯片;2)与生物分子芯片流体相通的加样部分;3)用于控制位于生物分子芯片之上的生物分子和从所述加样部分施加的生物分子样品之间接触和相互作用的反应控制部分;和4)用于检测由于所述相互作用导致的信号的检测部分,其中所述信号是生物的至少一种信息参数的指示符,并且信号与分配给不等间隔或斑点排列的地址有关。
在另一个实施方案中,本发明另外包含用于接收和发送信号的部分。
在另一个实施方案中,本发明另外包含用于记录信号的区域。
在另一方面,本发明提供了用于受试者的诊断装置。该诊断装置包含1)本发明的生物分子芯片;2)与生物分子芯片流体相通的加样部分;3)用于控制位于生物分子芯片之上的生物分子和从所述加样部分施加的生物分子样品之间接触和相互作用的反应控制部分;和4)用于检测由于所述生物分子导致的信号和由于所述相互作用导致的信号的检测部分,其中所述信号是生物的至少一种信息参数的指示符,并且信号与分配给不等间隔或斑点排列的地址有关;和5)测定来自信号的诊断指示符。
在一个实施方案中,本发明另外包含用于接收和发送信号的部分。
在另一个实施方案中,本发明另外包含用于记录信号的区域。
在一方面,本发明提供了生物检验系统。该生物检验系统包含A)主子系统(main sub system),其包含1)本发明的生物分子芯片;2)与生物分子芯片流体相通的加样部分;3)用于控制位于生物分子芯片之上的生物分子和从所述加样部分施加的生物分子样品之间接触和相互作用的反应控制部分;4)用于检测由于所述生物分子导致的信号和由于所述相互作用导致的信号的检测部分,其中所述信号是生物的至少一种信息参数的指示符,并且信号与分配给不等间隔或斑点排列的地址有关;和5)用于发送和接收信号的发送和接收部分,和B)辅助子系统(sub subsystem),其包含1)用于发送和接收信号的发送和接收部分;和2)用于计算来自从所述主子系统收到的信号的检验值的检验部分。主子系统和辅助子系统是通过网络连接在一起的。
在另一个实施方案中,辅助子系统接收的信号包含与辅助子系统测量的测量数据有关的信号。
在另一个实施方案中,属性数据包含芯片ID,个人信息数据,和生物分子属性数据,主子系统包含芯片ID和个人信息数据,但不包含生物分子属性数据,辅助子系统包含芯片ID和生物分子属性数据,但不包含个人信息数据,并且辅助子系统将响应于请求所测定的检验值发送给主子系统。
在另一个实施方案中,所述网络是因特网。
在另一个实施方案中,加密发送和接收的信号。
在另一方面中,本发明提供了诊断系统。该诊断系统包含A)主子系统,其包含1)本发明的生物分子芯片;2)与生物分子芯片流体相通的加样部分;3)用于控制位于生物分子芯片之上的生物分子和从所述加样部分施加的生物分子样品之间接触和相互作用的反应控制部分;4)用于检测由于所述生物分子导致的信号和由于所述相互作用导致的信号的检测部分,其中所述信号是生物的至少一种信息参数的指示符,并且信号与分配给不等间隔或斑点排列的地址有关;和5)用于发送和接收信号的发送和接收部分,和B)辅助子系统,其包含1)用于发送和接收信号的发送和接收部分;和2)用于测定来自从所述主子系统收到的信号的诊断指示符的测定部分。主子系统和辅助子系统是通过网络连接在一起的。
在另一个实施方案中,辅助子系统收到的信号包含与辅助子系统测量的测量数据有关的信号。
在另一个实施方案中,属性数据包含芯片ID,个人信息数据,和生物分子属性数据,主子系统包含芯片ID和个人信息数据,但不包含生物分子属性数据,辅助子系统包含芯片ID和生物分子属性数据,和测定来自生物分子属性数据的诊断指示符的数据,但不包含个人信息数据,并且辅助子系统将响应于请求所测定的诊断指示符发送给主子系统。
在另一个实施方案中,所述网络是因特网。
在另一个实施方案中,对发送和接收的信号进行加密。
在另一个实施方案中,本发明提供了用于生物信息的检验装置。该检验装置包含基底,基底的支座(support);排列在基底上的多组生物分子,每组包含相同类型的生物分子;移位基底的移位装置;激发标记待检验样品的荧光物质的光源;和汇聚来自光源的光的光学装置。响应于间歇的发射信号,光源间歇地发光以便激发荧光物质,在间歇发射信号中止的时段期间通过光检测器检测来自荧光物质的荧光,从DNA的排列复制识别信息,并且识别生物分子发射的荧光。
在另一个实施方案中,本发明另外包含合计检测的检测信号的装置。
在另一个实施方案中,本发明另外包含波长分离镜。
在另一个实施方案中,本发明提供了本发明的生物分子芯片制备用于检验生物信息的装置的用途。
在另一个实施方案中,本发明提供了本发明的生物分子芯片制备用于诊断受试者的装置的用途。
在另一方面,本发明提供了含生物分子珠粒阵列的含生物分子珠粒(bead)的管子,其中由球形珠粒和固定其上的特定生物分子种类组成的生物分子珠粒排列在由透射具有特定波长的光的材料制成的管状容器中,其中将球形标记珠粒(mark bead)以预定的顺序插入在生物分子珠粒阵列中特定生物分子珠粒之间,所述球形标记珠粒由一种材料制成,所述材料在光学上可区别于制成所述生物分子珠粒的球形珠粒的材料。
在一个实施方案中,将标记珠粒相应于指示识别数据的识别码而排列。
在另一个实施方案中,含生物分子珠粒的管子具有第一区域和第二区域,所述第一区域中生物分子珠粒的数目多于标记珠粒的数目,所述第二区域中标记珠粒的数目多于生物分子珠粒的数目。
在另一个实施方案中,相应于指示识别数据的识别码至少将标记珠粒排列在第二区域中。
在另一个实施方案中,识别数据包括含生物分子珠粒的管子的识别编号。
在另一个实施方案中,相应于指示识别数据的识别码将标记珠粒排列在第一区域中。
在另一方面,本发明提供了一种复制器(reproducer),其通过用光照射含生物分子珠粒的管子和检测来自至少一个标记珠粒的透射光或反射光来读取记录在含生物分子珠粒的管子中的数据。
在一个实施方案中,复制器读出数据;并通过用光照射生物分子珠粒含观察来自生物分子珠粒的荧光获得固定在含生物分子珠粒的管子中生物分子珠粒上的DNA或蛋白质的信息。
在另一个实施方案中,复制器获得作为数据的识别信息。
在另一个实施方案中,基于获自含生物分子珠粒的管子的识别信息,复制器获得含生物分子珠粒的管子中生物分子珠粒的排列信息。
在另一个实施方案中,基于生物分子珠粒的排列信息,复制器获得固定在含生物分子珠粒的管子中生物分子珠粒上的DNA或蛋白质的信息,所述生物分子珠粒的排列信息是基于识别信息获得的。
在另一个实施方案中,复制器从基于识别信息获得的DNA或蛋白质的信息中诊断疾病。
附图简述在这里将参考以下简述的附图描述本发明。提供附图是为了阐明本发明的优选实施方案,而不是为了限制本发明的范围。本发明的范围只由另外后附的权利要求限定。以下将描述各图。
图1(a)显示按照本发明实施方案其上放置DNA的基底顶视图。
(b)显示按照本发明实施方案其上放置DNA的基底横断面视图。
图2显示按照本发明实施方案制备DNA微胶囊的方法的图解。
图3显示按照本发明实施方案通过针钉法(pin method)附着DNA的方法的图解。
图4显示按照本发明实施方案将DNA转移至针上的方法的图解。
图5显示按照本发明实施方案的DNA芯片的顶视图和数据结构图。
图6显示按照本发明实施方案的DNA基底属性数据结构的图解。
图7显示按照本发明实施方案固定DNA的方法的图解。
图8显示按照本发明实施方案固定DNA的方法的示意图。
图9显示按照本发明实施方案通过喷墨法喷射DNA的方法的结构图。
图10显示按照本发明实施方案将DNA排列在基底上的图解。
图11显示按照本发明实施方案在喷墨法中喷射的图解。
图12显示按照本发明实施方案在基底上DNA斑点的排列的图解。
图13显示按照本发明实施方案标记DNA杂交的图解。
图14显示按照本发明实施方案检测装置的结构图。
图15显示按照本发明实施方案微胶囊的喷射的流程图。
图16显示按照本发明实施方案反射镜的操作的图解。
图17显示按照本发明实施方案激发光和荧光之间的关系的图解。
图18显示按照本发明实施方案DNA斑点的扫描的图解。
图19显示按照本发明实施方案光接收阵列和荧光之间的关系的图解。
图20显示按照本发明实施方案荧光检测的时间图表。
图21显示按照本发明实施方案包含光接收阵列的光检测器的结构图。
图22显示按照本发明实施方案标记检测信号的典型数据的图解。
图23显示按照本发明实施方案检测装置原理的图解。
图24显示按照本发明实施方案检测装置原理的图解。
图25显示按照本发明实施方案DNA斑点和轨道之间的关系的顶视图。
图26显示按照本发明实施方案DNA斑点的排列的图解。
图27显示按照本发明实施方案圆形基底的顶视图。
图28显示按照本发明实施方案圆形基底的DNA区域的图解。
图29显示按照本发明实施方案使用半导体加工方法制备DNA基底的程序的图解。
图30显示按照本发明实施方案喷墨法的原理的图解。
图31显示按照本发明实施方案通过多次扫描检测荧光的方法的流程图。
图32显示按照本发明实施方案在多次扫描的方法中的激发光和检测光的时间图表。
图33显示按照本发明实施方案通过管制法(tube method)制备生物分子芯片的方法的图解。
图34显示按照本发明实施方案通过管制法制备生物分子芯片的另一种方法的图解。
图35显示按照本发明实施方案通过管制法排列生物分子斑点的图解和显示埋藏数据的图解。
图36
显示按照本发明实施方案通过管制法排列生物分子斑点的图解和显示埋藏数据的图解。
图37显示按照本发明实施方案通过管制法排列生物分子斑点的图解。
图38显示按照本发明实施方案通过针法排列生物分子斑点的方法的图解。
图39显示按照本发明实施方案通过喷墨法排列生物分子斑点的方法的图解。
图40显示按照本发明实施方案标识编号和生物分子属性数据的表的图解。
图41显示按照本发明实施方案使用针法的检测方法的流程图。
图42显示按照本发明实施方案包含通过管制法埋藏的含ECC的数据的数据结构的图解。
图43显示按照本发明实施方案网络类型的检验系统的结构图。
图44显示按照本发明实施方案独立(stand-alone)类型的检验系统的结构图。
图45显示按照本发明实施方案分析结果的表的图解。
图46显示按照本发明实施方案生物分子芯片结构的图解。
图47显示按照本发明实施方案结构的图解,其中通过特定的排列可以识别地址。
图48显示按照本发明实施方案生物分子芯片结构的图解,其中通过特定的图案可识别地址。
图49(a)显示按照本发明的实施方案DNA珠粒的横断面视图。
(b)显示按照本发明的实施方案标记珠粒的横断面视图。
图50显示按照本发明的实施方案供给珠粒的原理的图解。
图51显示按照本发明的实施方案排列DNA珠粒的步骤的图解。
图52显示按照本发明的实施方案排列标记珠粒的步骤的图解。
图53显示按照本发明的实施方案通过使用微胶囊排列DNA珠粒的步骤的图解。
图54显示按照本发明通过使用标记珠粒埋藏信息的方法的图解。
图55显示按照本发明的实施方案通过使用放大的DNA珠粒排列DNA珠粒的方法的图解。
(参考号的描述)1 基底2 DNA斑点3 DNA4 主溶液5 主膜6 DNA微胶囊7 辅助膜(sub-film)8 辅助溶液(sub-solution)9 微胶囊10 主容器
11 容器12 托盘13 针14 移动针15 洗涤部分16 纹钉滚筒17 DNA斑点区18 数据区19 基底ID20 DNA号-位置对应表21 DNA序列数据22 标记的DNA23 空微胶囊24 喷嘴25 供应部分26 喷射部分(加热器)27 喷射控制电路28 主控制部分29 喷射信号产生部分30 去除(removal)信号产生部分31 光检测器32 不必需的除液部分33 偏移部分34 箭头35 移位量检测器36 移位控制电路37 同步标记38 荧光染料39 检测装置40 光源(用于激发)
41 反射镜42 透镜43 检测部分44 焦点误差信号检测部分45 循迹误差信号检测部分46 焦点控制电路47 跟踪控制电路48 驱动器49 焦点偏移信号产生部分50 轨道偏移信号产生部分51 斑点号输出部分52 轨道号输出部分53 ECC解码器54 DNA基底属性数据读取部分55 数据处理部分56 同步信号产生部分57 基底移位部分58 捕捉DNA号59 第二标记信号检测部分60 第一标记信号检测部分61 第一标记信号输出部分62 第二标记信号输出部分63 数据输出部分64 位置信息检测部分65 反射镜66 反射镜67 标记信号检测部分68 步骤69 主信号复制部分70 检测单元
71 激发光束72 扫描轨迹73 加密密钥74 密码解码器75 工厂运送数据区76 附言数据区77 第一标记属性数据78 第二标记属性数据79 同步数据80 数据复制区85 标记检测信号86 移位量检测器87 脉冲光发射控制部分88 脉冲光发射信号89 辅助脉冲光发射信号(sub-pulsed light emission signal)90 光检测部分91 阵列92 转换部分93 合计部分94 标记检测信号表95 记录层96 地址97 起始地址98 终端地址99 最内部圆周轨道数100 最外部圆周轨道数111 计数器112 地址计数器113 地址码组计数器114 辅助喷射部分
115 辅助溶液供应部分116 辅助喷嘴118 步骤120 掩模(mask)121 掩模(用于DNA斑点)122 羟基123 A(腺嘌呤)124 C(胞嘧啶)125 G(鸟嘌呤)126 T(胸腺嘧啶)130 管子131 探针132 容器133 薄板(sheet)134 标记管135 溶液136 标记管137 码组(block)138 芯片139 固定板140 固定板ID141 生物分子斑点142 标记斑点143 识别标记144 同步标记145 识别号146 属性表147 测试数据库148 步骤(流程图)149 检测装置
150 网络151 存储器152 错误校正码153 标记溶液154 标记生物分子斑点155 分析程序156 标记微胶囊157 同步标记158 同步标记159 原始数据160 扁平管161 矩形生物分子斑点162 同步标记170 受试者171 样品172 生物分子提取部分173 样本174 主检测系统175 检测部分176 通信部分177 因特网178 辅助检验系统179 通信部分180 分析系统181 分析部分182 选择部分183 输出部分184 (生物分子斑点识别号)属性数据库185 选择性输出186 请求输出
187 诊断系统188 诊断部分189 治疗策略产生部分190 治疗策略输出部分191 芯片ID-受试者对应数据库192 诊断结果输出部分193 检测系统194 黑匣子部分195 输入/输出部分197 密码解码部分198 IC芯片199 电极200 基底201 非易失性存储器300 生物分子芯片301 生物分子斑点302 相等间隔303 不等间隔310 生物分子芯片311 第一生物分子斑点312 第二生物分子斑点320 DNA珠粒321 DNA层322 标记珠粒323 间隔珠粒324325 光源326 箭头327 玻璃管328 罩盖
329 DNA阵列330 信息记录区331 起始标记332 终端标记333 (透射光的)标记珠粒334 (吸收光的)标记珠粒335 珠粒供给部分336 终端部分337 数据阵338 第一壳339 第二壳340 第一区341 第二区342 第三区343 反射器实施本发明的最佳方式应当理解贯穿本说明书用于单数形式的冠词(例如英语的“a”,“an”,“the”等;德语的“ein”,“der”,“das”,“die”,等和它们的变形;法语的“un”,“une”,“le”,“la”等;西班牙语的“un”,“una”,“el”,“la”等;和其它语言的冠词,形容词等)包括它们的复数概念,除非另有说明。还应当理解这里使用的术语具有本领域通常使用的定义,除非另有说明。
在下文中,将描述在这里具体使用的术语的含义。
这里使用的术语“基底”和“支座”具有相同的含义,即用于本发明阵列构造的材料(优选固体形式)。适合基底的材料的实例包括具有通过共价键或非共价键与在本发明中使用的生物分子结合的性质的,或者可以以具有该性质的这样的方式衍生的任何固体材料。
用于基底的该材料可以是任何能够形成固体表面的材料,例如包括但不限于玻璃,硅石,硅,陶瓷,二氧化硅,塑料,金属(包括合金),天然存在的和合成的聚合物(例如聚苯乙烯,纤维素,脱乙酰壳多糖,葡聚糖,和尼龙)。基底可由不同材料制成的多层形成。例如,可以使用无机绝缘材料如玻璃,石英玻璃,氧化铝,蓝宝石,镁橄榄石,碳化硅,氧化硅,四氮化三硅等。此外,可以使用有机材料如聚乙烯,乙烯,聚丙烯,聚异丁烯,聚对苯二酸乙二酯,不饱和的聚酯,含氟树脂,聚氯乙烯,聚偏1,1-二氯乙烯,聚乙酸乙烯酯,聚乙烯醇,聚乙烯醇缩乙醛,丙烯酸类树脂,聚丙烯腈,聚苯乙烯,缩醛树脂,聚碳酸酯,聚酰胺,酚树脂,尿素树脂,环氧树脂,蜜胺树脂,苯乙烯·丙烯腈共聚物,丙烯腈丁二烯苯乙烯共聚物,有机硅树脂,聚苯醚,或聚砜。在本发明中,还可以使用用于核酸印迹的膜,如硝化纤维素膜,PVDF膜,或类似物。
在本发明的一个实施方案中,可以将电极材料用作基底电极,其用作基底和电极。在该基底电极的情形中,绝缘层区域将基底电极表面分离成电极区。优选地,将不同生物分子固定在各自分离的电极区。不具体限制电极材料。电极材料的实例包括单独的金属,如金,金合金,银,铂,汞,镍,钯,硅,锗,镓,钨等以及其合金,或碳如石墨,玻璃化炭黑等,或其氧化物或化合物。另外,可以使用半导体化合物,如氧化硅等,或各种半导体元件,如CCD,FET,CMOS等。当其中在绝缘基底上形成电极膜以使得基底与电极成为一体的基底电极时,通过电镀,印刷,喷镀,沉积或类似方法可以产生电极膜。在沉积的情形中,用电阻加热法,高频加热法,电子束加热法,或类似方法可以形成电极膜。在喷镀的情形中,通过直流喷镀,偏流喷镀,不对称AC喷镀,吸气喷镀,高频喷镀,或类似方法可以生产电极膜。另外,可以使用电聚合膜如聚吡咯,聚苯胺等,或导电聚合物。不具体限制本发明中用于分隔电极表面的绝缘材料,但优选是光聚合物或光致抗蚀剂材料。抗蚀剂材料的实例包括用于曝光的光致抗蚀剂,用于紫外辐射的光致抗蚀剂,用于X射线的光致抗蚀剂和用于电子束的光致抗蚀剂。用于曝光的光致抗蚀剂的实例包括这样的光致抗蚀剂,其包括环化橡胶,聚肉桂酸和酚醛清漆树脂作为主要成分。作为用于紫外辐射的光致抗蚀剂,使用环化橡胶,酚树脂,聚甲基异丙烯基酮(PMIPK),聚甲基丙烯酸甲酯(PMMA),或类似物。作为用于电子束的光致抗蚀剂,可以使用上述物质如PMMA或类似物。
这里使用的“芯片”是指具有各种功能的超微集成电路,其组成系统的一部分。这里使用的“生物分子芯片”是指包含基底和生物分子的芯片,其中将这里阐明的至少一种生物分子排列在基质上。
这里使用的术语“地址”是指可以区别于其它独特位置的在基底上的独特位置。适当利用地址以访问与地址相关的生物分子。在每个地址存在的任何实体可以具有任意形状,其使得该实体可以区别于其它地址存在的实体(例如以光学方法)。地址的形状可以是例如圆形,椭圆形,正方形,或矩形,或备选地不规则形状。
每个地址的大小依赖于,特别地,基底的尺寸,在特定基底上地址的数量,待分析的样品和/或可利用试剂的量,生物分子的大小和使用阵列的任何方法所需分辨率的大小而变化。地址的大小可以是1-2nm至数厘米(例如,1-2mm至数厘米,等,125×80mm,10×10mm等)。地址可以是任何尺寸,只要它与使用它的阵列匹配。在该情形中,将基底材料形成适合于具体生产过程和阵列用途的大小和形状。例如,在其中可获得大量待测样品的分析的情形中,可以在相对大(例如1cm×1cm或更大)的基底上更经济地构建阵列。这里,可以进一步有利地使用不要求很高灵敏度并因此是经济的检测系统。在另一方面,当可获得的待分析样品和/或试剂的量是有限时,可以设计阵列以便最小化样品和试剂的消耗。
以与其中使用微阵列的具体用途相匹配的方式设计地址的空间排列和形状。可以将地址以适合于待分析样品的特定类型的图案密集写入,广泛分配,或分成子群。这里使用的“阵列”是指固定在固相表面或膜上的固体基底的图案,或一组具有该图案的分子。典型地,阵列包含生物分子(例如DNA,RNA,蛋白质-RNA融合分子,蛋白质,低重量有机分子等),其与固定在固相表面或膜上的核酸序列偶联,好像生物分子捕捉核酸序列。在阵列上可排列生物分子“斑点”。这里使用的“斑点”是指预定的一组生物分子。
在基底上可排列任何数量的地址,典型地高达108个地址,在其它实施方案中高达107个地址,高达106个地址,高达105个地址,高达104个地址,高达103个地址,或高达102个地址。因此,当将一个生物分子放置在一个地址上时,可以在基底上放置高达108个生物分子,在其它实施方案中可以在基底上放置高达107个生物分子,高达106个生物分子,高达105个生物分子,高达104个生物分子,高达103个生物分子,或高达102个生物分子。在这些情形中,更小尺寸的基底和更小尺寸的地址是适当的。特别是,地址的大小可以与单个生物分子的大小一样小(即,该大小可以是1-2nm的等级)。在一些情形中,基于基底上地址的数量确定基底的最小面积。
这里使用的术语“生物分子”是指与生物有关的分子。这里使用的“生物”是指生物有机体,其包括但不限于动物,植物,真菌,病毒等。生物分子包括从生物提取的分子,但不限于此。生物分子是任何能够对生物有影响的分子。因此,生物分子还包括通过组合化学合成的分子,和能够被用作药物的低重量分子(例如低分子量配体等),只要它们被确定为对生物有影响。该生物分子的实例包括,但不限于蛋白质,多肽,寡肽,肽,多核苷酸,寡核苷酸,核苷酸,核酸(例如包括DNA(如cDNA和基因组DNA)和RNA(如mRNA)),多糖,寡糖,脂类,低重量分子(例如激素,配体,信号转导物质,低重量有机分子等),和其复合分子等。生物分子还包括细胞它自身,和组织的一部分或整体,等,只要它们可以与本发明的基底偶联。优选地,生物分子包括核酸或蛋白质。在优选实施方案中,生物分子是核酸(例如基因组DNA或cDNA,或通过PCR等合成的DNA)。在另一个优选实施方案中,生物分子可以是蛋白质。优选地,可以对本发明基底上的每个地址提供一种类型的生物分子。在另一个实施方案中,对每个地址可提供包含两种或多种类型生物分子的样品。
这里使用的术语“蛋白质”,“多肽”,“寡肽”和“肽”具有相同的含义并且是指具有任何长度的氨基酸聚合物。该聚合物可以是直链,支链或环链。氨基酸可以是天然存在或非天然存在的氨基酸或变异的氨基酸。可以将该术语聚集成多个多肽链的复合体。该术语还包括天然存在或人工修饰的氨基酸聚合物。该修饰包括例如二硫键形成,糖基化,脂质化(lipidation),乙酰化,磷酸化或其它任何操作或修饰(例如与标记组分偶联)。例如该定义包含多肽,所述多肽含有至少一种氨基酸类似物(例如非天然存在的氨基酸等),类似肽的化合物(例如类肽),和在本领域已知的其它变体。
在这里使用的术语“多核苷酸”,“寡核苷酸”,和“核酸”具有相同的含义并且是指具有任何长度的核苷酸聚合物。该术语还包括“寡核苷酸衍生物”或“多核苷酸衍生物”。“寡核苷酸衍生物”或“多核苷酸衍生物”包括核苷酸衍生物,或者是指在核苷酸之间具有不同于典型键的键的寡核苷酸或多核苷酸,所述典型键是可互换使用的。该寡核苷酸的实例具体包括2’-O-甲基-核苷酸,其中寡核苷酸中的磷酸二酯键被转换为硫代磷酸酯键的寡核苷酸衍生物,其中寡核苷酸中的磷酸二酯键被转换为N3’-P5’氨基磷酸酯键的寡核苷酸衍生物,其中寡核苷酸中的核糖和磷酸二酯键被转换为肽-核酸键的寡核苷酸衍生物,其中寡核苷酸中的尿嘧啶被C-5丙炔基尿嘧啶取代的寡核苷酸衍生物,其中寡核苷酸中的尿嘧啶被C-5噻唑尿嘧啶取代的寡核苷酸衍生物,其中寡核苷酸中的胞嘧啶被C-5丙炔基胞嘧啶取代的寡核苷酸衍生物,其中寡核苷酸中的胞嘧啶被吩噁嗪修饰的胞嘧啶取代的寡核苷酸衍生物,其中DNA中的核糖被2’-O-丙基核糖所取代的寡核苷酸衍生物,和其中寡核苷酸中的核糖被2’-甲氧乙氧基核糖所取代的寡核苷酸衍生物。
这里使用的“基因”是指定义遗传性状的因子。基因典型地排列在染色体上的特定序列中。定义蛋白质一级结构的基因被称为结构基因。调节结构基因表达的基因被称为调节基因。这里使用的“基因”可以指“多核苷酸”,“寡核苷酸”和“核酸”,和/或“蛋白质”,“多肽”,“寡肽”和“肽”。如在这里使用,基因的“同源性”是指两个或多个基因序列之间同一性的大小。因此,两个特定基因之间的同源性越大,它们序列之间的同一性或相似性越大。通过直接比较它们的序列或通过在严谨条件下的杂交方法来确定两个基因是否具有同源性。当将两个基因序列直接相互比较时,基因典型地具有至少50%的同源性,优选至少70%的同源性,更优选至少80%,90%,95%,96%,97%,98%,或99%的同源性,基因的DNA序列是相同的。
术语“多糖”,“复合糖”,“寡糖”,“糖”,和“碳水化合物”具有相同的含义并且是指其中单糖是由糖苷键脱氢缩合的聚合物化合物。“单糖(simple sugar)”或“单糖(monosaccharide)”是指由通式CnH2nOn表示的物质,其不能通过水解分解成更简单的分子。其中n=2,3,4,5,6,7,8,9和10的CnH2nOn分别表示二糖,丙糖,四糖,戊糖,己糖,庚糖,辛糖,壬糖和癸糖(decose)。单糖通常相当于链状多元醇的醛或酮,前者称为醛醣,后者称为酮糖。
从生物可以收集或者可以通过本领域技术人员已知的方法化学合成本发明的生物分子。例如,在下列各项中描述了使用自动固相肽合成仪的合成法Stewart,J.M.等(1984)。Solid Phase Peptide Synthesis,PierceChemical Co.;Grant,G.A.(1992)。Synthetic PeptidesA User’s Guide,W.H.Freeman;Bodanszky,M.(1993)。Principles of Peptide Synthesis,Springer-Verlag;Bodanszky,M.等(1994)。The Practice of Peptide Synthesis,Springer-Verlag;Fields,G.B.(1997)。Phase Peptide Synthesis,Academic Press;Pennington,M.W.等(1994)。Peptide Synthesis Protocols,Humana Press;Fields,G.B.(1997)。Solid-Phase Peptide Synthesis,Academic Press。通过使用任何从Applied Biosystems等商购的DNA合成仪的自动化学合成可以制备寡核苷酸。例如在美国专利号4,415,732,Caruthers等(1983);美国专利号4,500,707,Caruthers等(1985);和美国专利号4,668,777,Caruthers等(1987)中公开了用于自动寡核苷酸合成的组合物和方法。
在本发明的一个实施方案中,可以将生物分子(例如低重量有机分子,组合化学产物)库与基底偶联,并且可将得到的基底用来生产用于分子筛选的微阵列。可以通过包括但不限于组合化学技术,发酵法,从植物和细胞的提取法,或类似方法的任何方法制备或获得在本发明中使用的化合物库。用于生产组合库的方法在本领域是众所周知的。参见例如E.R.Felder,Chimica 1994,48,512-541;Gallop等,J.Med.Chem.1994,37,1233-1251;R.A.Houghten,Trends Genet.1993,9,235-239;Houghten等,Nature 1991,354,84-86;Lam等,Nature 1991,354,82-84;Carell等,Chem.Biol.1995,3,171-183;Madden等,Perspectives in Drug Discovery and Design2,269-282;Cwirla等,Biochemistry 1990,87,6378-6382;Brenner等,Proc.Natl.Acad.Sci.USA 1992,89,5381-5383;Gordon等,J.Med.Chem.1994,37,1385-1401;Lebl等,Biopolymers 1995,37 177-198;和其中引用的文献。这些出版物全部在此引入作为参考。
这里使用的“严谨条件”是指在关于杂交的领域中广泛使用和众所周知的条件。该条件是例如下列各项在0.7-1.0M NaCl存在的条件下在65℃进行杂交,其后,在65℃使用0.1至2倍浓度的SSC(盐水-柠檬酸钠)溶液(1倍浓度的SSC溶液具有150mM氯化钠,15mM柠檬酸钠的组成)洗涤滤器。按照在实验手册如Molecular Cloning第二版,Current Protocolsin Molecular Biology,增刊1-38,DNA Cloning 1Core Techniques,A PracticalApproach,第二版,Oxford University Press(1995),或类似手册描述的方法进行杂交。
在这里通过序列分析工具BLAST,使用缺省参数计算碱基序列之间的同一性比较。
可将本发明的方法,生物分子芯片和装置用于例如诊断,法医学,药物搜索(药物筛选)和开发,分子生物学分析(例如基于阵列的核苷酸序列分析和基于阵列的基因序列分析),蛋白质性质和功能分析,药物基因组学,蛋白质组学,环境评估和其它生物和化学分析。
可将本发明的方法,生物分子芯片和装置用于检测各种基因。不具体限制待检测的基因。待检测的该基因的实例包括病毒病原体(包括但不限于肝炎病毒(A,B,C,D,E,F,和G型),HIV,流感病毒,疱疹病毒,腺病毒,人多瘤病毒,人乳头瘤病毒,人细小病毒属,腮腺炎病毒,人轮状病毒,肠道病毒,日本脑炎病毒,登革病毒,风疹病毒和HTLV)的基因;细菌病原体(包括但不限于金黄色葡萄球菌(Staphylococcusaurens),溶血性链球菌,毒性大肠杆菌,肠炎弧菌,幽门螺杆菌(Helicobacterpylori),弯曲杆菌属(Campylobacter),霍乱弧菌(Vibrio cholerae),痢疾杆菌,沙门氏菌属(Salmonella),耶尔森氏菌属(Yersinia),gunococcus,单核细胞增生利斯特氏菌(Listeria monocytogenes),钩端螺旋体属(Leptospira),军团菌属(Legionella),螺旋体属(Spirochaeta),肺炎支原体(Mycoplasmapneumoniae),立克次氏体属(Rickettsia),和衣原体(Chlamydia))的基因,和痢疾阿米巴(Entamoeba histolytica),致病真菌,寄生虫和真菌的基因。
可将本发明的方法,生物分子芯片和装置用于肿瘤性疾病的检测和诊断,所述肿瘤性疾病如遗传病,成视网膜细胞瘤,维尔姆斯氏瘤,家族性结肠息肉病,神经纤维瘤病,家族性乳腺癌,着色性干皮病,脑瘤,口腔癌,食管癌,胃癌,结肠癌,肝癌,胰腺癌,肺癌,甲状腺瘤,乳腺肿瘤,泌尿器官肿瘤,雄性器官肿瘤,雌性器官肿瘤,皮肤肿瘤,骨瘤和软部瘤,白血病,淋巴瘤,实体瘤等。
还可将本发明用于多态性分析,如RFLP分析,单核苷酸多态性(SNP)分析,或类似分析,碱基序列分析等。还可将本发明用于药物筛选。
可将本发明用于除了医用以外要求生物分子检验的任何情形,如食品检验,检疫,药物检验,法医学,农业,耕作,渔业,林业等。特别为了食品安全也打算使用本发明(BSE检验)。
本发明可用于获得生物化学检验数据。生物化学检验项目的实例包括但不限于总蛋白,清蛋白,麝香草酚反应,Kunkel’s硫酸锌检验,血浆氨,脲氮,肌酸酐,尿酸,总胆红素,直接反应胆红素,GOT,GPT,胆碱脂酶,碱性磷酸酶,亮氨酸氨肽酶,γ-谷氨酰转肽酶,肌酸酐磷酸激酶,乳酸脱氢酶,淀粉酶,钠,钾,氯离子(氯),总钙,无机磷,血清铁,不饱和铁结合能力,血清渗透压,总胆固醇,游离胆固醇,HDL-胆固醇,甘油三酯,磷脂,游离脂肪酸,血浆葡萄糖,胰岛素,BSP保留比率,ICG清除率(disappearance ratio),ICG保留比率,脊髓液·总蛋白,脊髓液·糖,脊髓液·氯,尿·总蛋白,尿·葡萄糖,尿·淀粉酶,尿·尿酸,尿·脲氮,尿·肌酸酐,尿·钙,尿·渗透压,尿·无机磷,尿·钠,尿·钾,尿·氯,尿中的N-乙酰葡糖胺糖苷酶,1-小时肌酸酐清除率,24-小时肌酸酐清除率,酚磺酞(phenolsulfonephthalein),C-反应性蛋白等。测量这些检验项目的方法和原理在本领域是众所周知和常规使用的。
还可将本发明用于检测除了直接从生物收集的样品以外,通过PCR,SDA,NASBA,或类似方法扩增的基因。在本发明中,使用电化学活性物质,荧光物质(例如FITC,若丹明,吖啶,德克萨斯红,荧光素等),酶(例如碱性磷酸酶,过氧化物酶,葡糖氧化酶等),胶体颗粒(例如半抗原,发光物质,抗体,抗原,金胶体等),金属,金属离子,金属螯合物(例如三联吡啶,三菲咯啉,六胺)等可以预先标记靶基因。
在本发明中,不具体限制待检验或诊断的样品,其包括例如血液,血清,白细胞,尿,粪便,精液,唾液,组织,培养的细胞,痰等。
在一个实施方案中,为了检验核酸,核酸组分是从这些样品中提取的。不将提取限制于具体方法。可以使用液液萃取法,如酚-氯仿法等,或使用载体的液固提取法。备选地,可以使用可商购的核酸提取法QIAamp(QIAGEN,德国)或类似方法。接下来,将含有提取的核酸的组分的样品在本发明的生物分子芯片上进行杂交反应。反应是在具有0.01-5的离子强度和5-10的pH值的缓冲液中进行。可将葡聚糖硫酸酯(杂交促进剂),鲑鱼精DNA,牛胸腺DNA,EDTA,表面活性剂或类似物加入该溶液。将提取的核酸组分加入该溶液,接着在90℃或更高温度下热变性。在变性后或在迅速冷却至0℃后可立即进行生物分子芯片的插入。备选地,通过将溶液滴在基底上可以进行杂交反应。在反应过程中通过搅拌或摇动可以增大反应速率。反应温度为10-90℃。反应时间是1分钟至约1晚上。杂交反应后,移去电极然后洗涤。对于洗涤,可以使用具有0.01-5的离子强度和5-10的pH值的缓冲液。
这里使用的“微胶囊”是指用分子膜或类似物包被物质的微颗粒或其类似容器的物质。微胶囊通常具有球形和数微米至数百微米的大小。通常,可以如下制备微胶囊。生产水包水滴型(water droplet-in-water type)的乳状液,通过在微乳颗粒和介质之间的界面处的界面缩聚生产聚合物薄膜使得颗粒被薄膜覆盖。通过离心从油分离胶囊,接着为了纯化透析。当制备乳状液时,将预定的生物分子溶解和分散在水相中,以便可以将生物分子包被在胶囊中。薄膜的厚度是10-20μm。薄膜可被提供以半渗透性或表面电荷。在本发明中,微胶囊保护和隔离内含物,如生物分子。该内含物可以任选地溶解,混合或允许反应。在按照本发明生产生物分子基底的方法中,通过喷墨法(例如气泡喷墨等),PIN法或类似方法将微胶囊喷射在基底上。将喷射的微胶囊加热至高于它壳的熔点的温度以便将内含物如生物分子固定在基底上。在该情形中,优选用具有对生物分子的亲和力的物质包被基底。
这里使用的“标签”和“标记”具有相同的含义并且是指将期望的分子或物质区别于其它物质的实体(例如物质,能量,电磁波等)。该标记方法的实例包括RI(放射性同位素)法,荧光法,生物素法,化学发光法等。当通过荧光法标记核酸片段和它的互补寡核苷酸时,使用具有不同最大荧光波长的荧光物质标记它们。优选最大荧光波长的差异是至少10nm。可以使用任何可以与核酸碱基部分结合的荧光物质。优选的荧光物质包括花青染料(例如Cy DyeTM系列的Cy3,Cy5,等),若丹明6G试剂,N-乙酰氧基-N-2-乙酰氨基芴(AAF),AAIF(AAF的碘衍生物)等。在最大荧光波长方面具有至少10nm差异的荧光物质组合的实例包括Cy5和若丹明6G试剂的组合,Cy3和荧光素的组合,若丹明6G试剂和荧光素的组合等。
这里使用的“芯片属性数据”是指与关于本发明生物分子芯片的一些信息相关的数据。芯片属性数据包括与生物分子芯片相关的信息,如芯片ID,基底数据,和生物分子属性数据。这里使用的“芯片ID”是指识别每个芯片的编码。这里使用的“基底数据”或“基底属性数据”是指与本发明生物分子芯片中使用的基底相关的数据。基底数据可包含关于生物分子排列或图案的信息。“生物分子属性数据”是指关于生物分子的信息,其包括例如生物分子的基因序列(在核酸情形中为核苷酸序列,在蛋白质情形中为氨基酸序列),有关基因序列的信息(例如基因和具体疾病或状况之间的关系),在低重量分子或激素的情形中的功能,在组合库情形中的库信息,有关对于低重量分子的亲和力的分子信息等。这里使用的“个人信息数据”是指与用于识别通过本发明方法,芯片或装置测量的生物或受试者的信息相关的数据。当所述生物或受试者是人时,个人信息数据包括但不限于年龄,性别,健康状况,病史(例如药史),教育背景,你的保险的公司,个人基因组信息,住址,姓名等。当个人信息数据是家畜时,该信息可包括关于动物的生产公司的数据。这里使用的“测量数据”是指作为用本发明的生物分子基底,装置和系统的测量结果的原始数据和从其中衍生的具体处理数据。该原始数据可以通过电信号的强度来表示。该处理数据可以是具体的生物化学数据,如血糖水平和基因表达水平。
这里使用的“记录区”是指其中可以记录数据的区域。在记录区,可以记录测量数据以及上述芯片属性数据。
在本发明优选实施方案中,可以分开管理个人信息数据和生物分子属性数据或者测量数据。通过分开管理这些数据,可以保护健康相关信息的秘密,即个人隐私。此外,在药物筛选的情形中,即使将筛选出租(outsourcing)给外面的公司来进行,可以获得数据而不将秘密信息泄漏给外面的公司。因此,可以将本发明用于外部采办,其中秘密信息受到保护。
(常规技术)除非另外指定,这里使用的技术是众所周知的技术,其在显微射流技术,显微机械加工,有机化学,生物化学,遗传工程,分子生物学,遗传学和在本领域技术范围内的它们的相关领域中常规使用。例如在以下列出和本文别处描述的文献中充分描述这些技术。
例如在Campbell,S.A.(1996).The Science and Engineering ofMicroelectronic Fabrication,Oxford University Press;Zaut,P.V.(1996).Micromicroarray Fabricationa Practical Guide to Semiconductor Processing,Semiconductor Services;Madou,M.J.(1997).Fundamentals ofMicrofabricaticn,CRC1 5 Press;Rai-Choudhury,P.(1997).Handbook ofMicrolithography,Micromachining,& MicrofabricationMicrolithography;等中描述了显微机械加工,其相关部分在此引入作为参考。
例如在Maniatis,T.等(1982).Molecular CloningA Laboratory Manual,Cold Spring Harbor;Ausubel,F.M.(1987).Current Protocols in MolecularBiology,Greene Pub.Associates and Wiley-Interscience;Ausubel,F.M.(1989).Short Protocols in Molecular BiologyA Compendium of Methodsfrom Current Protocols in Molecular Biology,Greene Pub.Associates andWiley-Interscience;Sambrook,J.等(1989).Molecular CloningA LaboratoryManual,Cold Spring Harbor;Innis,M.A.(1990).PCR ProtocolsA Guide toMethods and Applications,Academic Press;Ausubel,F.M.(1992).ShortProtocols in Molecular BiologyA Compendium of Methods from CurrentProtocols in Molecular Biology,Greene Pub.Associates;Ausubel,F.M.(1995).Short Protocols in Molecular BiologyA Compendium of Methods fromCurrent Protocols in Molecular Biology,Greene Pub.Associates;Innis,M.A.等(1995).PCR Strategies,Academic Press;Ausubel,F.M.(1999).ShortProtocols in Molecular BiologyA Compendium of Methods from CurrentProtocols in Molecular Biology,Wiley,and annual updates;Sninsky,J.J.等(1999).PCR ApplicationsProtocols for Functional Genomics,Academic Press;等中描述了分子生物学和重组DNA技术,其相关部分在此引入作为参考。
例如在Gait,M.J.(1985).Oligonucleotide SynthesisA PracticalApproach,IRL Press;Gait,M.J.(1990).Oligonucleotide SynthesisAPractical Approach,IRL Press;Eckstein,F.(1991).Oligonucleotides andAnaloguesA Practical Approach,IRL Press;Adams,R.L.等(1992).TheBiochemistry of the Nucleic Acids,Chapman & Hall;Shabarova,Z.等(1994).Advanced Organic Chemistry of Nucleic Acids,Weinheim;Blackburn,G.M.等(1996).Nucleic Acids in Chemistry and Biology,Oxford University Press;Hermanson,G.T.(1996).Bioconjugate Techniques,Academic Press;等中描述核酸化学,如DNA合成技术等,其相关部分在此引入作为参考。
光刻法是由Fodor等开发的技术,其中使用光反应保护基团(参见Science,251,767(1991))。碱基的保护基团抑制相同或不同类型的碱基单体与该碱基结合。因此,与保护基团结合的碱基末端无新的碱基结合反应。通过照射可容易地去除保护基团。最初,将具有保护基团的氨基固定在整个基底上。其后,通过与在半导体加工中通常使用的光刻法技术类似的方法选择性地照射仅与期望的碱基结合的斑点,以便能够通过随后只与照射部分中的碱基结合引入另一个碱基。现在,在其末端具有相同保护基团的期望的碱基与该碱基结合。其后,改变光掩模的图案,选择性照射其它斑点。其后,具有保护基团的碱基类似地与斑点结合。重复该过程直至在每个斑点获得期望的碱基序列,由此制备DNA阵列。这里可使用光刻法技术。
喷墨法(技术)是利用热或压电效应将相当小的液滴喷射到二维平面上预定位置的技术。该技术主要在印刷机中广泛使用。在生产DNA阵列中,使用喷墨装置,其具有其中压电器件与玻璃毛细管组合的构造。对与液体隔室连接的压电器件施加电压,以便改变压电器件的体积并且将隔室中的液体作为液滴从与隔室连接的毛细管排出。排出的液滴大小是由毛细管的直径,压电器件的体积变化,和液体的物理性质决定的。液滴的直径通常是30μm。使用该压电器件的喷墨装置可以以大约10kHz的频率排出液滴。在使用该喷墨装置的DNA阵列制造设备中,喷墨装置和DNA阵列基底是相对移动的以便可以将液滴滴到DNA阵列上期望的斑点。粗略地将使用喷墨装置的DNA阵列制造设备分为两类。一类包括使用单个喷墨装置的DNA阵列制造设备,另一类包括使用多头喷墨装置的DNA阵列制造设备。使用单个喷墨装置的DNA阵列制造设备具有其中将用于去除低聚物末端保护基团的试剂滴到期望斑点上的构造。通过使用喷墨装置将保护基团从将引入期望的碱基的斑点去除以便活化斑点。其后,将期望的碱基在整个DNA阵列上进行结合反应。在该情形中,期望的碱基只与具有低聚物的斑点结合,所述低聚物的末端被从喷墨装置滴下的试剂活化。其后,保护新增加的碱基的末端。其后,改变去除保护基团的斑点并且重复步骤直至获得期望的核苷酸序列。在另一方面,在使用多头喷墨装置的DNA阵列制造设备中,为每种含有不同碱基的试剂提供喷墨装置,以便期望的碱基可以直接与每个斑点结合。使用多头喷墨装置的DNA阵列制造设备可以具有比使用单个喷墨装置的DNA阵列制造设备更高的通量。在用于将预先合成的寡核苷酸固定于基底的方法中,有一种机械显微点样技术,其中将含有寡核苷酸的液体机械压在基底上以便将寡核苷酸固定在基底上,所述寡核苷酸是附着在不锈钢针头上。通过该方法获得的斑点大小是50-300μm。在显微点样后,进行随后步骤,如使用UV光固定。
实施本发明的最佳方式一方面,本发明提供了制备生物分子基底的方法。该方法包含步骤1)提供一组生物分子和一种基底;2)将该组生物分子在逐个生物分子类型的基础上密封在微胶囊中;和3)将生物分子微胶囊喷射在基底上。优选地,该组生物分子相同。在优选实施方案中,所述方法提供了多组生物分子。优选地,将不同类型的该组生物分子的微胶囊排列在不同位置。在一个实施方案中,本发明可另外包含在封闭步骤后洗涤生物分子微胶囊的步骤。
在本发明方法中使用的喷射步骤是通过喷墨法(包括气泡喷墨法),PIN法,或类似方法进行的。优选地,通过气泡喷墨法进行喷射步骤。这是因为可以有效地固定微胶囊。
在优选实施方案中,该方法可另外包含将在喷射步骤中使用的溶液的温度设置在高于生物分子微胶囊的壳的熔点的步骤。该提高的溶液温度可导致生物分子有效的固定。
在该生物分子基底制备方法中,生物分子可以是天然存在或合成的生物分子。该生物分子的实例包括但不限于蛋白质,多肽,寡肽,肽,多核苷酸,寡核苷酸,核苷酸,核酸(例如包括DNA,如cDNA和基因组DNA,和RNA如mRNA),多糖,寡糖,脂类,低重量分子(例如激素,配体,信号转导物质,低重量有机分子等),和其复合分子等。
优选地,本发明生物分子基底制备方法可另外包含进行对每个胶囊特异性标记的步骤。
在另一方面,本发明提供了生物分子芯片。该生物分子芯片包含基底;排列在基底上的生物分子和芯片属性数据。该芯片属性数据是排列在与生物分子相同的区域中。通过将生物分子和芯片属性数据排列在相同的区域,可以进行有效检验。
在一个实施方案中,上述芯片属性数据可包含关于芯片ID和基底的信息。在另一个实施方案中,本发明的生物分子芯片可另外包含记录区,其中将记录区放置在与生物分子和芯片属性数据相同的基底上,并且将受试者数据和测量数据中的至少一种记录在记录区。优选地,可将受试者数据和测量数据都记录在上述记录区中。注意当它是用来保护依赖于目的的隐私时,只可将这些信息中的一部分记录在记录区。在这种情形中,可将该数据加密,然后记录。
优选地,以这样的方式即可以通过与检测上述生物分子相同的方法读出数据来记录上述芯片属性数据。该检测方法的实例包括但不限于能够检测生物分子的任何手段,如荧光分析装置,分光光度计,闪烁计数器,和发光计。因为芯片属性数据和生物分子可以通过相同的检测手段读出,通过单次读出操作可以进行原始数据的检测和测量条件的读出,由此可以显著减少操作时间和简化信号发送和接收装置。
在优选实施方案中,可将特异性标记附着在上述基底上。通过将特异性标记附着在基底上,可双重核对基底的鉴定,从而可以减少诊断和检验误差。在另一个优选实施方案中,基于芯片属性数据排列特异性标记。通过提供该特异性标记,可以容易地读出芯片属性数据。
在另一个实施方案中,上述芯片属性数据可包含上述生物分子属性数据。通过将生物分子属性数据加至生物分子芯片上,通过只使用芯片可进行各种检验和诊断。在另一个实施方案中,可以在另一个位置保存该芯片属性数据。通过在另一位置保存数据,即使当生物分子芯片被无意地传给第三方,也可以防止个人信息被无意地泄漏。
在另一个实施方案中,可另外记录关于上述生物分子地址的信息。该地址信息的实例包括在本发明中定义的排列或图案的几何信息。通过将地址相关信息加至生物分子芯片,可进行独立检验。还可将地址相关信息保存在另一个位置。通过将该信息保存在另一个位置,即使当生物分子芯片被无意地传给第三方,也可以防止个人信息被无意地泄漏。在优选实施方案中,地址可以是跟踪地址。
在另一个优选实施方案中,可以加密上述芯片属性数据。可以加密全部或一部分数据。优选地,可以加密个人信息数据,生物分子属性数据和测量数据。可通过单独的加密装置加密这些数据。该加密装置在本领域是众所周知的,其包括例如使用公共密钥的装置。本发明不限于此。
在另一个实施方案中,可以记录关于用于检测生物分子的标记的数据。该标记的实例包括但不限于用于标记生物分子的任何物质,例如荧光分子,化学发光分子,放射性同位素等。通过提供该标记相关数据,通过仅使用一块生物分子芯片可以进行检验或诊断。优选地,标记相关数据包含激发光波长和荧光波长中的至少一种,更优选它们两种。
本发明生物分子芯片中使用的生物分子可以是天然存在或合成的生物分子。该生物分子的实例包括但不限于蛋白质,多肽,寡肽,肽,多核苷酸,寡核苷酸,核苷酸,核酸(例如包括DNA,如cDNA和基因组DNA,和RNA如mRNA),多糖,寡糖,脂类,低重量分子(例如激素,配体,信号转导物质,低重量有机分子等),和其复合分子等。优选地,生物分子可以是核酸或蛋白质,更优选DNA(例如cDNA或基因组DNA)。在另一个优选实施方案中,生物分子可以是通过扩增方法如PCR或类似方法扩增的DNA。在另一个优选实施方案中,生物分子可以是合成的蛋白质。
在另一方面,本发明提供了生物分子芯片,其包含1)基底;和2)排列在基底上的生物分子,其中生物分子斑点被至少一个不等间隔隔开,从不等间隔可以识别生物分子斑点的地址。通过提供至少一个不等间隔,可以将所述间隔用作识别其它斑点相对位置的基准。使用该结构,可以仅通过检测所有生物分子和检测在接触样品后的斑点的步骤识别相互作用的斑点的地址,而没有识别斑点位置的步骤。该地址识别法在这里也称为使用特定“排列”的地址识别。图47显示使用特定排列的地址识别的实例。在图47中,生物分子是以通过302指示的相等间隔隔开,除了生物分子之间的至少一个间隔是通过303指示的不等间隔。当将该不等间隔用作起点时,可以识别任何斑点的地址。
优选地,调整不等间隔。这里使用的调整是指斑点间隔的变化。调整可以是规则或不规则的。该调整的一个实施例是在二进制数中的00,01,10,00,01,01,01顺序。本发明并不限于此。通过改变调整,可以更有效地识别地址。
在特定实施方案中,上述不等间隔可存在于至少两个方向。优选地,两个方向中的不等间隔可彼此区别。通过在至少两个方向使用不等间隔,即使在基底被倒置的情形中读出数据,也可以可靠地识别地址。优选地,可以存在众多该不等间隔。此外,在基底上可分散该不等间隔。
在另一个实施方案中,本发明提供了一种生物分子芯片,其包含1)基底;和2)排列在基底上的生物分子,其中生物分子包括可区别的第一生物分子和可区别的第二生物分子,基于第一生物分子斑点和第二生物分子斑点的排列可以识别生物分子的地址。通过提供至少两类可区别的生物分子,可以仅通过检测所有生物分子和检测在接触样品后的斑点的步骤识别相互作用的斑点的地址,而没有识别斑点位置的步骤。该地址识别方法也称为使用特定“图案”的地址识别。图48显示使用特定图案的地址识别的实例。在图48中,第一生物分子311可区别于第二生物分子312。在该实例中,通过使用第二生物分子312作为起点,可以识别任何斑点的地址。
这里使用的“可区别的”显示通过至少一种检测手段(包括但不限于肉眼,荧光测量仪器,分光光度计,放射线测量仪器等)可以进行识别。因此,可区别的生物分子可以是例如,可以通过肉眼识别的分子,或当它被激发时发射不同荧光的分子。“可区别的”还表示通过具有不同水平的相同标记(例如染料量的差异等)可以进行识别。
在其中通过特定排列或特定图案识别地址的本发明生物分子芯片的一个实施方案中,可将可区别于生物分子的标记放置在生物分子斑点之间。该标记可以是这里定义的任何标记,优选可以通过与检测生物分子的上述手段相同的检测手段来检测的标记。
在其中通过特定排列或特定图案识别地址的本发明生物分子芯片的一个实施方案中,通过检测手段可以检测上述可区别的标记。该检测手段的实例包括但不限于能够检测生物分子的任何手段,如荧光分析仪器,分光光度计,闪烁计数器,和发光计。
在其中通过特定排列或特定图案识别地址的本发明生物分子芯片的一个实施方案中,可在基底上以水平方向和垂直方向排列标记。
在其中通过特定排列或特定图案识别地址的本发明生物分子芯片的一个实施方案中,可以排列同步标记。通过提供同步标记,使地址识别更容易。
在其中通过特定排列或特定图案识别地址的本发明生物分子芯片的一个实施方案中使用的生物分子可以是天然存在或合成的生物分子。该生物分子的实例包括但不限于蛋白质,多肽,寡肽,肽,多核苷酸,寡核苷酸,核苷酸,核酸(例如包括DNA,如cDNA和基因组DNA,和RNA如mRNA),多糖,寡糖,脂类,低重量分子(例如激素,配体,信号转导物质,低重量有机分子等),和其复合分子等。优选地,生物分子可以是核酸或蛋白质,更优选DNA(例如cDNA或基因组DNA)。在另一个优选实施方案中,生物分子可以是通过扩增方法如PCR或类似方法扩增的DNA。
在另一方面,本发明提供了一种生物分子芯片。该生物分子芯片包含1)基底;和2)排列在基底上的生物分子,其中将存储属性数据的斑点排列在与其上排列生物分子斑点的侧面相反的基底侧面上。通过将存储属性数据的斑点排列在生物分子芯片的后侧,通过单次读出操作可以检测两种数据,因此可以进行检验和/或诊断。优选地,该属性数据可包含地址信息。该属性数据可包含生物分子属性数据等。
在另一方面,本发明提供了一种生物分子芯片,其包含1)基底;2)排列在基底上的生物分子;和3)数据记录区。通过提供该数据记录区,可以仅使用一块生物分子芯片进行检验和/或诊断。优选地,可将数据记录区放置在与其上排列生物分子斑点的侧面相反的基底侧面上。
在一个方面,本发明提供了用于检测生物分子芯片标记的方法。该方法包含步骤1)提供一种生物分子芯片,其上排列至少一种标记的生物分子;2)顺序转换用于检测生物分子芯片上生物分子的检测元件;和3)识别通过检测元件检测的信号。使用该方法,可以在生物分子芯片中有效和实时检测信号。优选地,该方法另外包含4)合计每个检测信号。在一个实施方案中,可利用波长分离镜来分离该信号。在另一个实施方案中,上述生物分子基底可另外包含同步标记,并且基于该同步标记可以识别标记。通过提供同步标记,可以顺利地识别地址。在另一个实施方案中,生物分子基底包含生物分子后侧的地址信息,并且基于地址信息识别标记。
在另一方面,本发明提供了用于检验来自生物的信息的方法。该方法包含步骤1)提供来自生物的生物分子样品;2)提供本发明的生物分子芯片;3)将生物分子样品与生物分子芯片接触,将生物分子芯片放置于导致生物分子样品和位于所述生物分子芯片之上的生物分子相互作用的条件下;和4)检测由生物分子导致的信号和由所述相互作用导致的信号,其中所述信号是关于所述生物的至少一种信息参数的指示符,并且所述信号与分配给不等间隔或斑点排列的地址相关。
在本发明用于检验关于生物的信息的方法的优选实施方案中,样品包含蛋白质并且置于生物分子芯片上的生物分子是抗体,或者样品包含抗体并且置于生物分子芯片上的生物分子是蛋白质。在该检测方法中,检测核酸之间的杂交。可以在各种严谨条件下进行该杂交。当检测SNP时,可以使用严谨杂交条件。当搜索有关系但就物种而论关系很远的基因时,可以使用适度的杂交条件。取决于情况,由本领域的那些技术人员从众所周知的常规技术中可以确定该杂交条件。
在本发明用于检验关于生物的信息的方法的优选实施方案中,样品包含蛋白质并且置于生物分子芯片上的生物分子是抗体,或者样品包含抗体并且置于生物分子芯片上的生物分子是蛋白质。在该检测方法中,检测抗原-抗体反应。可以在各种严谨条件下检测抗原-抗体反应。抗体可以是单克隆抗体或多克隆抗体。优选地,抗体可以是单克隆抗体。抗体可以是嵌合抗体,人源化抗体,或类似物。
在优选实施方案中,本发明的方法另外包含用标记分子来标记生物分子样品。通过用期望的标记分子来标记样品,可以使用期望的检测手段。
在本发明用于检验关于生物的信息的方法的优选实施方案中,标记分子可以区别于置于生物分子芯片上的生物分子。通过提供可以区别于生物分子的标记,容易检测其中发生相互作用的斑点。可以区别于生物分子的标记是指可以通过至少一种上述检测手段区别于生物分子的标记。
本发明用于检验关于生物的信息的方法的优选实施方案中,上述标记分子包含荧光分子,发磷光的分子,化学发光分子,或放射性同位素。在该情形中,可以使用对应于标记分子类型的检测手段。
本发明用于检验关于生物的信息的方法的优选实施方案中,在不同于相互作用发生的位置或在与相互作用发生相同的位置进行信号检测步骤。当在不同位置进行信号检测步骤时,可以加密信号。该加密在本领域是众所周知的。例如,可以利用使用公共密钥的加密。通过在不同位置进行检测,可以外包诊断或检验。
本发明用于检验关于生物的信息的方法的优选实施方案中,方法可另外包含将信号进行过滤以便只提取与所需信息有关的信号。当外包检验时为了保护个人信息可能需要该步骤。
在另一方面,本发明提供了诊断受试者的方法。该方法包含步骤1)提供来自受试者的样品;2)提供本发明的生物分子芯片;3)将生物分子样品与所述生物分子芯片接触,并将生物分子芯片放置于导致生物分子样品和位于生物分子芯片之上的生物分子相互作用的条件下;4)检测由生物分子导致的信号和由相互作用导致的信号,其中所述信号是关于受试者的至少一种诊断指示符,并且信号与分配给不等间隔或斑点排列的地址有关;和5)测定来自信号的诊断指示符。
在本发明用于检验关于生物的信息的方法的优选实施方案中,样品是核酸,置于生物分子芯片上的生物分子是核酸。在该检测方法中,检测核酸之间的杂交。可以在各种严谨条件下进行该杂交。当检测SNP时,可以使用严谨杂交条件。通过将与特定疾病相关的核酸置于生物分子芯片上,由杂交导致的信号可能是关于特定疾病的指示符。
在本发明用于检验关于生物的信息的方法的优选实施方案中,样品包含蛋白质并且置于生物分子芯片上的生物分子是抗体,或者样品包含抗体并且置于生物分子芯片上的生物分子是蛋白质。在该检测方法中,检测抗原-抗体反应。可以在各种严谨条件下检测抗原-抗体反应。通过将与特定疾病或状况相关的蛋白质或抗体置于生物分子芯片上,检测信号可能是与特定疾病或状况相关的指示符。
在本发明用于检验关于生物的信息的方法的优选实施方案中,方法另外包含用标记分子标记样品。通过用期望的标记来标记样品,可以使用期望的检测手段。标记分子可以是可区别于置于上述生物分子芯片上的生物分子。通过提供可以区别于生物分子的标记,容易检测其中发生相互作用的斑点。
在本发明用于检验关于生物的信息的方法的优选实施方案中,上述标记分子可以包含荧光分子,发磷光的分子,化学发光分子,或放射性同位素。在该情形中,可以使用对应于标记分子类型的检测手段。
在本发明用于检验关于生物的信息的方法的优选实施方案中,诊断指示符可以是关于疾病或紊乱的指示符。在另一个实施方案中,诊断指示符可以是基于单核苷酸多态性(SNP)。该诊断指示符可以是与遗传病有关。在另一个实施方案中,该诊断指示符可以是基于蛋白质的表达水平。该诊断指示符可以是基于生物化学检验的检验结果。可以使用基于生物化学检验的众多检验值。
本发明用于检验关于生物的信息的方法的优选实施方案中,在不同于相互作用发生的位置或在与相互作用发生相同的位置进行测定步骤。当在不同位置进行测定步骤时,本发明可另外包含加密信号。通过在不同位置进行检测,可能外包诊断或检验。该外租对应于工业上可应用的工作。
本发明用于检验关于生物的信息的方法的优选实施方案中,方法可另外包含将信号进行过滤以便只提取与所需信息有关的信号。当外包检验时,为了避免个人信息的过度泄漏来保护个人信息可能需要该步骤。
本发明用于检验关于生物的信息的方法的优选实施方案中,在检测步骤中生物分子属性数据是埋藏的,并且在测定步骤中个人信息数据是埋藏的。因此,防止诊断所需的整个信息被集中在一个人或实体中,由此保护个人信息。
在另一方面,本发明提供了关于生物的检测装置信息。该装置包含1)本发明的生物分子芯片;2)与生物分子芯片流体相通的加样部分;3)用于控制置于生物分子芯片之上的生物分子和从所述加样部分施加的生物分子样品之间接触和相互作用的反应控制部分;和4)用于检测由于所述相互作用导致的信号的检测部分,其中所述信号是生物的至少一种信息参数的指示符,并且信号与分配给不等间隔或斑点排列的地址有关。该装置可以进行生物信息检验而无另外的地址识别。
在优选实施方案中,本发明的检测装置另外包含用于接收和发送信号的部分。通过提供用于接收和发送信号的部分,可以向外部或从外部发送或接收信息。可以将该发送和接收部分与记录器驱动器如软盘驱动器,MO驱动器,CD-R驱动器,DVD-R驱动器,或DVD-RAM驱动器;或网络,如因特网或内联网相连。
在优选实施方案中,本发明的检测装置另外包含用于记录信号的区域。通过提供记录区,可以存储检验结果。当多次使用检测装置时,可以互相比较存储的检验结果。
在另一方面,本发明提供了用于受试者的诊断装置。该装置包含1)本发明的生物分子芯片;2)与生物分子芯片流体相通的加样部分;3)用于控制置于生物分子芯片之上的生物分子和从所述加样部分施加的生物分子样品之间接触和相互作用的反应控制部分;和4)用于检测由于生物分子导致的信号和由于所述相互作用导致的信号的检测部分,其中所述信号是生物的至少一种信息参数的指示符,并且信号与分配给不等间隔或斑点排列的地址有关;和5)测定来自信号的诊断指示符。该装置可以进行受试者信息检测而无另外的地址识别。
在优选实施方案中,本发明的检测装置另外包含用于接收和发送信号的部分。通过提供用于接收和发送信号的部分,可以向外部或从外部发送或接收信息。可以将该发送和接收部分与记录器驱动器如软盘驱动器,MO驱动器,CD-R驱动器,DVD-R驱动器,或DVD-RAM驱动器;或网络,如因特网或内联网相连。
在优选实施方案中,本发明的检测装置另外包含用于记录信号的区域。通过提供记录区,可以存储诊断结果。当多次使用检测装置时,可以互相比较存储的诊断结果。
在另一方面,本发明提供生物检验系统,其包含A)主子系统,其包含1)本发明的生物分子芯片;2)与生物分子芯片流体相通的加样部分;3)用于控制置于生物分子芯片之上的生物分子和从所述加样部分施加的生物分子样品之间接触和相互作用的反应控制部分;和4)用于检测由于生物分子导致的信号和由于相互作用导致的信号的检测部分,其中所述信号是生物的至少一种信息参数的指示符,并且信号与分配给不等间隔或斑点排列的地址有关;5)用于发送和接收信号的发送和接收部分,和B)辅助子系统,其包含1)用于发送和接收信号的发送和接收部分;和2)用于计算来自从所述主子系统收到的信号的检验值的检验部分,其中主子系统和辅助子系统是通过网络连接在一起的。
优选地,主子系统和辅助子系统是通过网络连接在一起的。
在另一个优选实施方案中,辅助子系统接收的信号包含与辅助子系统测量的测量数据有关的信号。
更优选地,属性数据包含芯片ID,个人信息数据,和生物分子属性数据;主子系统包含芯片ID和个人信息数据,但不包含生物分子属性数据,辅助子系统包含芯片ID和生物分子属性数据,但不包含个人信息数据,并且辅助子系统将响应于请求测定的检验值发送给主子系统。因此,本发明的生物检验系统防止信息泄漏给第三方。如果信息被泄漏,在检验生物过程中可保护隐私。在优选实施方案中,加密待发送和接收的信号。
优选地,上述网络可以是因特网或其它网络(例如内联网等)。
在另一方面,本发明提供了诊断系统,其包含A)主子系统,其包含1)本发明的生物分子芯片;2)与生物分子芯片流体相通的加样部分;3)用于控制置于生物分子芯片之上的生物分子和从所述加样部分施加的生物分子样品之间接触和相互作用的反应控制部分;4)用于检测由于生物分子导致的信号和由于相互作用导致的信号的检测部分,其中所述信号是生物的至少一种信息参数的指示符,并且信号与分配给不等间隔或斑点排列的地址有关;和5)用于发送和接收信号的发送和接收部分,和B)辅助子系统,其包含1)用于发送和接收信号的发送和接收部分;和2)用于测定来自从所述主子系统收到的信号的诊断指示符的测定部分。主子系统和辅助子系统是通过网络连接在一起的。在优选实施方案中,加密待发送和接收的信号。
优选地,辅助子系统收到的信号包含与辅助子系统测量的测量数据有关的信号。更优选地,属性数据包含芯片ID,个人信息数据,和生物分子属性数据,主子系统包含芯片ID和个人信息数据,但不包含生物分子属性数据,辅助子系统包含芯片ID和生物分子属性数据,和测定来自生物分子属性数据的诊断指示符的数据,但不包含个人信息数据,并且辅助子系统将响应于请求测定的诊断指示符发送给主子系统。因此,本发明的诊断系统防止信息泄漏给第三方。如果信息被泄漏,在诊断过程中可保护隐私。
优选地,上述网络可以是因特网或其它网络(例如内联网等)。
在另一方面,本发明提供用于生物信息的检验装置,其包含基底,用于基底的支座;排列在基底上的多组生物分子,每组包含相同类型的生物分子;移位基底的移位装置;激发标记待检验样品的荧光物质的光源;和汇聚来自光源的光的光学装置。响应于间歇发射的信号,光源间歇地发光以便激发荧光物质,在间歇发射信号中止的时段中通过光检测器检测来自荧光物质的荧光,从DNA的排列复制识别信息,并且识别生物分子发射的荧光。
优选地,检验装置另外包含合计检测的检测信号的装置。在另一优选实施方案中,检验装置另外包含波长分离镜。
在另一方面,本发明提供了本发明的生物分子芯片制备检验生物信息的装置的用途。
在另一方面,本发明提供了本发明的生物分子芯片制备诊断受试者的装置的用途。
在另一方面,本发明提供了本发明生物分子筛选药物和制备用于筛选药物的装置的用途。本发明还提供了用于药物筛选的生物分子芯片。本发明还提供了用于药物筛选的筛选装置。本发明还提供了使用本发明生物分子芯片筛选药物的方法。这些方法,装置和生物分子芯片具有通过与检测和诊断生物分子相同的原理构成的基本结构,其可以由本领域的技术人员根据本说明书来实现。
在下文中,将通过举例说明最佳方式实施方案的实施例来描述本发明。以下所述的实施例只是为了举例说明的目的。因此,本发明的范围只由权利要求的范围而不是实施例所限制。
实施例以下,将参考图1-46通过实施例来描述本发明最佳方式的实施方案。(实施例1生物分子芯片的制备实例(1))在本实施例中,将描述将具有不同序列的捕捉DNA 2排列和固定在基底1上的方法。
图1(a)是DNA斑点2的顶视图,其中按照本发明将一组具有特定序列的DNA片段以圆点的形状固定在基底1上。图1(b)是其横断面图。基底1通常是由玻璃制成并且可以由塑料制成。基底1的形状可以是类似DNA芯片的正方形或圆形。每个DNA圆点2包含不同的捕捉DNA,其是被固定在基底1上。在微阵列的情形中DNA圆点的大小是100-200μm的直径,在DNA芯片的情形中为10-30μm。
参照图2和3将描述形成DNA斑点的方法。如图2所示,(1)显示捕捉DNA 3。省略了制备捕捉DNA的方法。将捕捉DNA和具有受试者标记的标记DNA进行杂交以便预测受试者DNA的序列。(2)显示包含捕捉DNA 3的DNA溶液4。(3)显示DNA微胶囊6,其中DNA溶液4被覆盖物5所覆盖。(4)显示容器11,其中DNA微胶囊6被分散在溶液8中。(5)显示微胶囊9,其中收集在(4)中显示的DNA微胶囊6并用辅助膜(sub-membrane)与溶液8一起密封。
该微包囊化使得可以独立选择两种溶液,即DNA的主溶液4和DNA微胶囊的辅助溶液8。作为DNA溶液4,可以选择对于DNA最适的溶液或将DNA 3固定到基底1所需的溶液。作为辅助溶液8,可以选择当在PIN法或喷墨法中将DNA排列在基底1上时具有最适粘度或者洗涤附着力的溶液。
图3显示通过针钉斑点法将第1-第K个DNA斑点排列在基底1上的方法。最初,在托盘12上,以DNA号的顺序排列数百至数千个包含具有不同序列的捕捉DNA的容器11(图2(4))。如图4(1),(2),(3)和(4)所示,在(1)上移动的针14被移动以便DNA微胶囊可以从DNA容器11附着在移动的针14上;在(2)和(3)上,DNA微胶囊溶液附着在针13的尖端;在(4)上,在洗涤部分15中洗涤移动的针14,去除第n个DNA,其后,将第n+1个DNA附着在移动的针14上。返回图3,将第1个-第K个DNA相继附着在纹钉滚筒16上的针13上,其被特定的间隔分隔。
然后随着纹钉滚筒16旋转附着的DNA被相继附着在基底1上。从而将DNA 3排列在基底1上。假定将最小DNA间隔的一半定义为t,图3显示DNA被间隔1t,2t,3t和5t隔开。
参照图7将描述在附着的DNA微胶囊6和辅助溶液8中DNA的固定,即将捕捉DNA固定在基底1上。如图7(1)所示,将DNA微胶囊6和辅助溶液4附着在基底1上。辅助溶液4的汽化温度低于膜6的熔点。因此,当在(2)中温度轻微增加时,辅助溶液4被蒸发,仅剩下微胶囊6。当在(3)将温度进一步提高到膜6的熔点时,膜6熔化以致熔化的膜6的流体,主溶液4和捕捉DNA 3与溶液混合。在该情形中,膜6可以是由汽化温度低于主溶液的汽化温度的材料制成并且膜6可以被蒸发。已经将基底1的表面进行表面处理以致DNA容易地固定在表面上。因此,如图8所示在(4)中将捕捉DNA 3固定在基底1上。部分或全部主溶液4在(5)中干燥并在(6)中洗涤,由此完成DNA斑点2。
在本发明中,调整DNA斑点2a,2b和2c的排列以向其中引入位置信息。依照该位置信息,可以确定各个DNA斑点2的位置顺序。同时,如图5所示,DNA斑点区17和数据区18彼此分隔开。在数据区,调整基底ID19,用于DNA斑点位置和DNA斑点ID的DNA号对应表20,和DNA自身的序列数据21(生物分子属性数据)(数据结构示于图5(2)中),并记录在斑点图案中。通过XY扫描仪可读取斑点图案。因此,可通过XY扫描仪读取DNA斑点的排列数据。备选地,使用使样品能产生荧光的激发激光器可以读出数据区的数据。图6显示DNA基底属性数据的具体实例。在从工厂装运前已经将DNA基底ID 19,显示DNA号和位置信息之间对应关系的DNA号-位置对应表20,和显示每个DNA的DNA序列的DNA序列数据21作为数据记录在数据区。注意使用加密密钥将DNA号的DNA序列数据加密,然后记录。个人DNA数据是必须严格保护的高度个人隐私的信息,因此使用公用密钥,如RSA,椭圆码(ellipse code)或类似物,或高位加密密钥(high-bit encryption key)来加密。因此,即使包含受试者信息的DNA芯片或DNA基底流失,没有加密密钥(encryption key)不能读取具体DNA斑点的DNA序列。因此,可以防止个人DNA信息泄漏。还可能为了改善安全性而将DNA序列数据21积存在DNA管理中心而不将数据记录在DNA芯片上。用户通知DNA管理中心DNA基底ID 19和标记的DNA 22和DNA斑点2之间的反应,即荧光水平的数据。接下来,中心使用DNA基底ID 19从DNA基底数据库搜索的每个DNA斑点的DNA序列。中心另外分析DNA斑点和标记的DNA 22的反应结果,DNA序列-疾病对应数据来诊断和预测疾病(在人的情形中),并以密码形式只发送必需的信息给实验室医疗技术人员或医生。使用该系统,可以防止秘密信息不适当的泄漏。
(实施例2生物分子芯片的制备实例(2)喷墨法)以上已经描述针钉斑点法。接下来,将描述利用喷墨将DNA附着在基底上的方法。图9是显示喷墨(气泡喷墨)附着装置的结构图。喷墨喷嘴24包含含有DNA的微胶囊9a,9b和只含有主溶液4的空微胶囊23a,23b,23c,23d,它们是由墨水供应部分25供应的。特定的空胶囊包含显示地址信息的特定染料。主控制部分28发送喷射命令给喷射信号产生部分29,然后是喷射控制电路27。结果,喷射部分26产热以致产生气泡。气泡导致微胶囊9a被喷向基底。喷射空微胶囊23b,23c。然而,空微胶囊23b,23c不是必需的。当光检测器31检测空微胶囊时,去除信号产生部分30发送去除信号给不必需的液体去除部分32。在不必需的液体去除部分32中,将偏移场(deviation field)施加在偏移部分33上以便如虚线箭头34所示将空微胶囊23中的不必需的液体去除并且不到达基底。
光检测器31具有滤光片31g,31h,31i(R,G,B等),因此可以检测空微胶囊的颜色信息。光检测器31还具有计数部分111。第一个计数器111a计算微胶囊组(microcapsule block)的数量。第二个计数器111b计算DNA微胶囊的数量。第三个计数器111c计算空微胶囊的数量。当存在四种颜色时,从一组空微胶囊获得2位地址数据。从8空微胶囊获得16位地址数据。当16位中的2位被用作检验位时,可以精确地校验微胶囊的顺序,排列,或数量是否错误。因此,可以有利地防止不正确地附着。即使当微胶囊无色时,通过连续喷射1,2,3,或4个微胶囊可以获得2位。当使用8组时,可以获得16位,即可以获得与上述相同大小的地址数据。经由地址输出部分31p将通过光检测器31获得的微胶囊的地址信息发送至主控制部分。基于地址信息,可以识别DNA号。例如,如在图15的流程图步骤68m中所示,如果微胶囊使具有DNA号码n的DNA胶囊数量大1,则下述的去除部分去除该微胶囊。
在另一方面,基于来自移位量检测器35的信号,通过移位部分37将基底1移位预定的量,以便如图10(4)所示将DNA斑点2a-2h附着在基底1上,所述移位部分37是由移位量控制电路36控制。
接下来,将描述图15的流程图。最初,步骤68a设定m=0,n=1。如果在步骤68b检测同步胶囊序列,在步骤68c中第一个计数器111a的胶囊组号m增加1。在步骤68d中校验m是否是最后的号码。在步骤68f中校验第m个组中的空微胶囊的排列和顺序。如果步骤68g的结果不正确,则流程转至步骤68m。如果微胶囊的数量比参考数大L,则在步骤68n中对于L胶囊输出喷射信号(=1)。输出去除信号(=1)以便去除胶囊。进行该操作L次以导致排列正常,然后流程返回到步骤68g。如果步骤68m的结果是NO,则流程转至68p。如果微胶囊的数量比参考值小L,则在步骤68q中停止喷射对应于L微胶囊的时间(clocks)。在这个时间中,遗漏了DNA斑点2。因此,将缺陷组标记(defect block flag)设置为1,其被记录在DNA基底2上的数据区18中,显示存在缺陷。通过将地址增加L来纠正地址计数器112或地址组计数器113中微胶囊的地址。
现在,流程返回到步骤68g。在步骤68h中校验DNA微胶囊的数量。如果结果是OK,则在步骤68i中对于一个单位将喷射信号设置为ON并且将去除信号设置为OFF。在该情形中,喷射微胶囊结果形成一个DNA斑点。在该情形中,据判断无缺陷,将DNA微胶囊的地址增加1(步骤68k)。然后流程返回步骤68b。因此,可以形成包含相应DNA的DNA斑点2。
现在,将参照图11描述利用喷墨的喷射程序。在(1),(2)中,包含第n个DNA的微胶囊9a与喷嘴24的尖端接触。当将电压施加到(2)中的喷射部分26时,产生气泡以致在(3)中微胶囊9a被喷射并附着于(4)中的基质1上。该方法称为气泡喷墨。可以提供压电器件而不是喷射部分26来获得相同的效果。在该情形中,在压电喷墨法中通过向压电器件施加喷射电压,喷射微胶囊。同时,包含第(n+1)个DNA的微胶囊9b与尖端部接触。当在(5)中施加喷射电压时,微胶囊9b被喷向基底1。在(6)中,第(n+2)个微胶囊9c被运送至尖端部分。在该情形中,显示同步标记的三个连续空微胶囊23c,23d,23e中的空微胶囊23d,23e存在于光检测器31a,31b上。这些空微胶囊具有高水平的透射率,用光检测器31检测它们两个。胶囊是作为同步标记来检测的。因此,认为在这些微胶囊之后的微胶囊9d含有来自对应表的第(n+3)个DNA。因此,可以防止由于微胶囊的移位导致的具有错误号码的DNA的喷射。同步标记是由2,3,或4个空胶囊组成。一组可包含2位数据。将同步胶囊用来将DNA自身与它的DNA号码匹配,以便可以喷射匹配的DNA。如果如在图15的步骤68p中未喷射具有特定号码的DNA,则在图5的数据区记录缺少信息。如图12所示,例如,众多第(n+1)个DNA斑点是作为DNA斑点3a,3b,3c形成。因此,缺少DNA斑点不会导致问题。在(7)中,同步胶囊23d,23e与尖端部分接触。这些胶囊不包含DNA并且是不必需的。因此,在(8)中施加去除信号,使胶囊偏离并通过不必需的液体去除部分32去除,使得胶囊未到达基底1。去除电路可以防止不必需的物质附着在基底1上。
参照图10将描述光检测信号,喷射信号,去除信号和DNA斑点的排列。最初,按照图10(3)中的移位时钟来操作系统。最初,由于如图(1)所示DNA胶囊具有低水平的光透射比,与(4)中喷射信号同步检测DNA胶囊。如(2)所示检测同步胶囊,因为两个光检测器31a,31b都被打开。如(4)所示,对于包含DNA的微胶囊和不包含DNA的同步胶囊都产生喷射信号。然而,在(2)的检测信号之后与喷射信号同步产生(5)的去除信号以便去除所有的同步胶囊。在本发明中,为了指定每个DNA斑点2的DNA号码,如(11)所示将位置数据,如地址等作为DNA斑点之间的间隔来埋藏。当位置数据长度为12位时,如(10)所示将位置数据分为00,01,10,00,和01,其中00对应于3个时钟(clock)的标记间隔并且01,10和11分别对应4t,5t和6t。因此,进行间隔调整。另外,存在具有10t间隔的同步标记37。使用该方法,当形成DNA斑点时可埋藏位置信息。因为获得了每个DNA斑点的地址,从图6中所示的DNA号码位置信息20获得用于同步标记的第一个DNA斑点的DNA号码。因此,在本发明中,可以识别所有DNA斑点2的DNA号码。通过使用记录在图6基底1中DNA号码的序列信息21可以获得所有DNA斑点的序列信息。因为获得了地址,当读出DNA斑点的位置时不需要绝对的精确。因此,不需要高精度的XY扫描仪和可以用低精度装置制备和读取DNA斑点,由此可以供应便宜的DNA检验装置。在现有技术中,为了提高DNA斑点的密度要求高精度的制备和读取装置。在本发明中,用低精度的制备和读取装置可以获得高密度。另外,由于如图6所示在相同基底1上记录DNA斑点的属性数据,有利地消除错误读出DNA特征的可能性。
除图9的系统之外,图30显示辅助喷嘴116,辅助喷射部分114,和辅助溶液供应部分115。微胶囊和来自辅助溶液供应部分115的辅助溶液供应辅助喷嘴116。
将从(1)至(6)依次描述操作。在(1),(2)和(3)中,运送DNA胶囊9a,并且在(4)中喷射。在(5)中,从辅助溶液供应部分115释放大量的辅助溶液,然后通过去除部分32去除。在(6)中,运送DNA微胶囊9b。在该方法中,用辅助溶液洗涤喷嘴的内部,由此可以防止DNA的混合。
(珠粒法)以下,描述衍生自喷墨法的珠粒法。图49(a)是DNA珠粒320的横断面视图,DNA珠粒320由透光球形珠粒和其中固定探针DNA或捕获DNA的围绕球形珠粒的DNA层321组成,所述球形珠粒由玻璃或塑料制成,并在核中具有几十至几百微米的直径。图49(b)是用于标记的标记珠粒322的横断面视图,其由吸收特定波长光的玻璃或塑料制成的球形珠粒组成。
图50(a)是显示在第(n+1)步骤供应第(n+1)个珠粒的第(n+1)个珠粒供应部分的原理的图表。由于与图9实质上相同的操作,省略了珠粒320的喷射操作描述。
从珠粒供应部分25顺序喷射具有第(n+1)个捕捉DNA的DNA珠粒320b,吸收特定波长光的间隔珠粒323a,323b和323c,DNA珠粒320ba和间隔珠粒323d,323e和323f。如图50(b)的图表所示,其显示光密度I,由于当光从光源325经过间隔珠粒323时导致的光衰减,通过光检测器31检测部分衰减的信号。从而,可通过第一计数器111a计数在光检测器31前经过的间隔珠粒323数目。由于DNA珠粒320不衰减透射光并且在图50(b)中的光密度信号中于t=t4和t=t8处不衰减光密度,可检测DNA珠粒320的存在。从而,可通过第二计数器111b计数经过的DNA珠粒320的数目。
通过喷射珠粒,珠粒朝向由箭头326指向的方向,一个第(n+1)DNA珠粒320bb和多个间隔珠粒323m传输到玻璃管中以形成DNA阵列。在先前的第n个步骤中,通过珠粒供给部分335a,已将具有第n个捕捉DNA序列的一个DNA珠粒320a传输到玻璃管327中。因此,DNA珠粒320a已经存在于玻璃管327的左侧部分。
在已经于第(n+1)步骤供给第(n+1)DNA珠粒320bb后,通过另一个供给部分将具有第(n+2)捕捉DNA的DNA珠粒320传输到玻璃管327中,所述DNA珠粒320由在第(n+2)步骤中供给第(n+2)DNA的第(n+2)珠粒供给部分335b。在重复上述步骤后,可将几百种类型的DNA珠粒320传输到玻璃管327。
因此,如图51(a)所示,第n个DNA珠粒320a,第(n+1)个DNA珠粒320b和第(n+2)个DNA珠粒320c顺序排列在玻璃管327中,并且那些DNA珠粒320由间隔珠粒323间隔。最终可排列几百种类型的DNA珠粒。接下来,进行熔融间隔珠粒的步骤。整个玻璃管327的温度增加到T0或高于T0。通过将T0设定为一个温度,例如高于间隔珠粒323材料的熔点10℃,间隔珠粒323熔化并流向由箭头328指示的方向,然后,间隔珠粒从玻璃管327消失。因此,如图51(c)所示,DNA珠粒320z,320a,320b,320c,320d,320e,320f彼此临近排列。实际上,为了识别地址,吸收具有特定波长的光的标记珠粒322a,322b以预定的间隔排列。因此,完成了珠粒型DNA阵列329。图52是显示整个标准化DNA阵列329示意图。在该DNA阵列329的尖端,临近排列识别地址的两个标记珠粒322a,322b。它们隔壁排列10个连续的DNA珠粒320,一个标记珠粒322c,和一个标记珠粒322d,然后,临近排列两个标记珠粒322e,322f。当将两个临近标记珠粒的地址定义为“11”时,通过标记珠粒可以识别地址。因此,排列更多的DNA珠粒,可更精确地识别地址,从而导致减少错误检测。随后,分开排列一个标记珠粒322g和一个标记珠粒322h。在阵列的末端,存在防止DNA珠粒320流出的盖帽328。
很难一个接一个地在玻璃管中插入具有几十至几百微米直径并且具有不同DNA序列的微小珠粒。在描述于图50和51的本发明方法中,将一组一个DNA珠粒和在该DNA珠粒前后的多个间隔珠粒按一组处理。由于珠粒以一组传输,通过核对其尾部计数该组中多个珠粒,可以完全喷射一个DNA珠粒。即使喷射的间隔珠粒的数目波动1个或两个,由于控制了DNA珠粒的数目而仅喷射一个DNA珠粒。即使所喷射的在一组中DNA珠粒前后的间隔珠粒比指定的数目多或少一个或两个,由于这些间隔珠粒将在随后的加热步骤消失,因此DNA阵列的排列整体上不受影响。因此,本方法具有喷射可喷射的指定数目(如一个)的DNA珠粒。
参考图53将描述形成包含多个DNA珠粒的微胶囊的方法。如图53b所示,通过使用图50中描述的程序等将由包含多个DNA珠粒320a的微胶囊9组成的微胶囊9a(小于微胶囊9)和由包含多个DNA珠粒320b的微胶囊9组成的微胶囊9b排列在玻璃管327中,所述DNA珠粒320a具有第n个捕捉DNA,所述DNA珠粒320b具有第(n+1)个捕捉DNA,那些微胶囊9a和9b由标记珠粒322a,322b和322c间隔。然后,相对于参考环境温度0℃将玻璃管的温度升高T0(即10℃),使得微胶囊9的包囊329熔化。因此,包囊329变为流动液体,并且如图53c所示,在标记珠粒322a,322b和322c间排列多个DNA珠粒320a,320b。当珠粒的直径变小时,由于珠粒的总表面积变大而使得敏感性增加。通过如图53d所示连续排列两个或三个标记珠粒,如标记珠粒322g和322h,可埋藏包含多个信息的地址信息。
(复制生物分子珠粒的方法)将描述图54a所示读取来自包含生物分子珠粒的玻璃管327的信息的方法。
通过将样品经过至玻璃管327中,固定在DNA珠粒表面上生物分子层中的生物分子与用荧光标记的样品中的生物分子如DNA等杂交。然后,洗掉样品,得到包含用荧光团标记的特定DNA珠粒320的玻璃管。
为了读取在该玻璃管中珠粒上的信息,使用图14所示的检测装置,其中如图51c,52或54a所示用玻璃管327代替基底1。通过使用基底移位部分57将玻璃管327朝向由箭头指示的方向移动用光照射到珠粒上,观察来自那里的反射光,透射光,荧光等以识别杂交状态来分析生物分子的结构。首先,将已被汇聚的发射自激发光源40的光如激光等照射到玻璃管327中的珠粒上。相对于玻璃管327,将反射器343排列在光源40的对侧。当将光汇聚到DNA珠粒上时,由于DNA珠粒是可透过光的,使得光透过DNA珠粒。透射光被反射器343发射而在透过DNA珠粒320等,并通过透镜42和镜子41。然后,由检测部分43检测透过DNA珠粒的光作为电信号。另一方面,当光汇聚到标记珠粒时,由于标记珠粒吸收光导致光衰减。因此,由反射器343反射的光也衰减,并光在通过标记珠粒后进一步衰减。因此,在检测部分343产生的电信号变小。从而,伴随使用基底移位部分57将玻璃管327移向箭头指示的方向,按照标记珠粒的顺序间歇中断的在检测部分43产生的调制信号由主信号复制部分69复制。在如图52所示在玻璃管327中排列珠粒的情况下,在标记珠粒数目少的第一个区域中一部分两种连续标记珠粒322a,322b和一部分单个标记珠粒322c之间的珠粒数目的差异用作同步信号以解调地址信息。然后,如图54a所示,通过将透射光标记珠粒333翻译为“1”,将吸收光标记珠粒334翻译为“0”,复制了数据排列“0101011....”。该数据排列包含识别玻璃管327的识别信息。因此,可从彼此识别玻璃管。
主检测系统174包含检测部分175,并且在该检测部分175中包含图14的检测部分。通过通信部分176和通信路径177如因特网等,玻璃管327的识别信息传输到子检测系统178。数据库184包含芯片ID,其是指示玻璃管中DNA珠粒顺序状态的数据。这些数据通过通信路径177传输到主检测部分174的诊断系统187。从而,可以识别用荧光团标记的DNA珠粒320上固定的生物分子的DNA序列,然后,可以假定来自样本的DNA,RNA或蛋白质的结构。基于该结构,诊断部分188诊断来自取样的样本的器官的疾病。如上所讨论,依照本发明,由于通过同样的检测系统可以获得识别信息,有利地消除了错误读取DNA属性的可能性,从而导致更可靠的检测或诊断。
(埋藏数据的方法)在图54a和54b中描述了依照标记珠粒322的顺序状态储存DNA阵列329的属性信息的方法,所述属性信息例如厂商名称,独特号(uniquenumber)如ID号,捕捉DNA(探针)的序列图案号。如图54a所示,在读取DNA阵列329中珠粒的末端部分如起始部分或末端部分中提供信息储存区330。该阵列包含表达信息的区域,其在起始标记331和末端标记322之间包含透射具有特定波长的光的透射光标记珠粒和衰减具有特定波长的光的吸收光标记珠粒,所述起始标记331由5个标记珠粒322a,322b,322c,322d和322e组成,所述末端标记332由5个标记珠粒322f,322g,322h,322i和322j组成。在图54a的情形中,通过将透射具有特定波长的光如600nm红光的标记珠粒333a翻译为“0”,将衰减光的标记珠粒334a翻译为“1”,可以通过使用具有特定波长的光读取24位数据“010101100110100110101010”。
接下来,在图54a中,当用红光(R光)读取时,标记珠粒333a透射红光,当用蓝光(B光)读取时,珠粒也透射B光。因此,认为标记珠粒333a是透射光的,并指定为符号“00”。认为标记珠粒333b是蓝色的并指定为符号“10”,因为它阻断R光而透射B光。认为标记珠粒322c是红色的并指定为符号“01”,因为它透射R光而阻断B光。对于标记珠粒322d,指定为符号“11”,因为它既不透射R光也不透射B光。
(排列放大的珠粒的方法)
图55a显示结合DNA珠粒320的玻璃管327,所述DNA珠粒320中固定了各种DNA序列,其中DNA珠粒320上用两层涂层覆盖,所述涂层由具有T1熔点的第一壳338和具有T2熔点的第二壳339组成。然后,加热玻璃管327,以产生温度图谱,其由位于温度T=T0的第一区340,位于升高的温度T1>T0的第二区341和位于进一步升高的温度T2>T1的第三区342组成。因此,如图55b所示,由于第二壳339的溶解,DNA珠粒变小,如在第二区341的DNA珠粒320d。在第三区342,由于第一壳338的溶解,DNA珠粒320c变得更小,如DNA珠粒320b。通过重复该程序,在玻璃管327中排列无壳DNA珠粒320z等。在该方法中,由于以放大的状态排列珠粒,变得容易处理珠粒。另外,由于用第一和第二壳保护DNA珠粒,在该过程中存在剥离探针的可能性。另外,可以使用干燥的方法。
(实施例3生物分子芯片的制备实例(3)管制法)接下来,将描述按照本发明制备生物分子芯片的具体方法和其结构,其中作为实例将描述光纤汇聚系统。注意尽管在实施例3中将光纤汇聚类型制备方法用作实例,可以将通过排列生物分子斑点埋藏数据(例如地址,芯片ID等)的方法,其是本发明的特征,用于其它方法,如PIN法,喷墨法,半导体掩模法等。
在该方法中,最初,将对应于特定DNA,RNA和蛋白质的探针131与凝胶溶液一起以凝胶形式从包含探针131的容器132注入中空线状管130。将不同探针131a,131b,131c,131d等注入各自的管130a,130b,130c,131c,130d等,然后如图33(b)所示将其在X方向,即水平地包扎以形成薄板133。接着,堆叠包扎的薄板133a,133b以便将管130以矩阵方式排列以形成如图33(c)所示的块137。可以以圆形的方式排列管以形成柱状块。
在本发明的一个实施方案中,将用于显示地址或数据的标记的标记管134放置在组中。注意在第二种方法中,将标记管136放置在组中,所述组包含探针溶液135或管130,其中包含用于反射、吸收、或发射具有特定波长的荧光的物质。下面将详细描述标记管136。尽管图33(c)显示10×10的矩阵,实际的矩阵的边为数百至数千个管。
在Z方向将块137切片,以便完成芯片138。将芯片138固定在固定板139上。固定板139是用来固定芯片,可以包含用于存储样品的容器,并且以此形式运送。不修饰地使用固定板139来进行检验。在固定板上,以条形码,字符,或位模式(bit pattern)的形式记录固定板ID 140,其依赖于对应的探针特性而变化。通过按照本发明埋藏数据的方法将用于管理过程控制的芯片ID或芯片的属性数据记录在第一个薄板133a中。可以将该属性数据用于识别具有不同探针序列的芯片。因此,通过校验,当不正确的固定板ID140被提供给芯片138时可以检测。
(用于埋藏数据的方法)将每个探针斑点放置在芯片138上。将数据埋藏在斑点的排列中。这里将包含用于检测DNA或蛋白质的探针131的斑点称为DNA斑点2。该斑点还可称为生物分子斑点。现在,将描述用于埋藏数据的方法。具体地,如图35(3)所示,例如,将10个生物分子斑点141e至141p排列在x方向。将两个标记斑点142a,142b置于左端并将三个标记斑点142c,142d,142e置于右端。首先,将描述其中标记斑点不包括生物分子的情形。稍后将描述其中标记斑点包括生物分子的情形。
标记斑点在特定波长方面具有不同于生物分子斑点141的光学性质。具体地,标记斑点具有不同于生物分子斑点的关于特定波长的反射率或吸光率,或者存在或不存在关于特定波长的荧光或者荧光的强度。因此,标记斑点可明确区别于生物分子斑点141。例如,当在关于激发光或照射的反射或吸收方面有差异时,如图35(3)中阴影线所示,标记斑点在光学上可以明确区别于生物分子斑点。关于激发光当标记斑点142的荧光波长不同于生物分子斑点141的荧光波长时也可以获得相同的效果。在图35(4)中举例说明了通过使用具有特定波长的光照射标记斑点而获得的反射光或荧光的强度。将(3)中的一组标记斑点142共同称为识别标记143。将2位代码,“10”,“11”等分配给各自的识别标记143e,143f。图35(2)显示包括识别标记143e,143f的全图,其中省略了识别标记之间的生物分子斑点141部分。该图显示7个识别标记143a-143g,分别分配了代码00,10,11,01,10,11和00。当将包含4个连续标记斑点142的识别标记143a,143g用作同步标记144a,144b时,可以将同步标记144之间的5个识别标记143用来埋藏10位数据,即10,11,01,10,和11。
通过使用检测装置中的扫描光束或CCD读取这些标记,从该区域读取10位数据。如果将这些10位数据用作例如地址数据,仅通过读取10位就可获得该区域的地址,“1011011011”。这样,识别标记143c右边第三个生物分子斑点141x是地址“1011011011”中的第23个生物分子斑点。因此,可以将生物分子斑点的识别号145识别为“101101011-23”。因此,可以单独识别芯片上的所有生物分子斑点141而不用从矩阵的末端对斑点计数。因此,不需要识别斑点的常规方法,该常规方法是通过从矩阵的末端到对应于那个斑点的矩阵x,y坐标来计数斑点而进行的。
通过从图40中的属性表146读出对应于识别号145的生物分子斑点141的属性信息,使各种检验和诊断成为可能。包含在图40的属性表146中的属性信息包括具有该识别号的生物分子的序列或遗传信息,或特定疾病的标记信息,或者可与该生物分子探针杂交的DNA,RNA或其它物质等。
在实际的制备方法中,例如管桩法(tube piling method),在堆叠(piling)中误差被累积,以致几乎不可能精确形成矩阵的x和y坐标轴。因此,在该情形中,从该x和y坐标识别的每个生物分子斑点的识别号极可能与正确的识别号匹配。不正确的识别号导致错误的检验结果。在DNA检验或类似检验的情形中,当将错误的检验结果用于患者的诊断时,经常出现误诊,可能导致严重的问题。
相反,本发明具有有利的作用,即,即使未将生物分子斑点排列在精确的矩阵上,通过局部读取生物分子141的附近可以精确地识别生物分子141的识别号。可以使用除了半导体加工之外的生物分子芯片制备方法来制备大量包含生物分子斑点的芯片。即使在通过半导体加工获得的完美矩阵排列的情形中,当增加斑点数量时,在检验装置上对斑点计数中出现错误,其可能导致错误的识别号。在本发明中,不需要从生物分子芯片末端相对于x和y计算斑点,因此不出现计数错误。此外,通过只读取生物分子斑点的附近可以获得每个生物分子斑点的识别号,由此可以在短时间内识别期望生物分子斑点的识别号。
具体程序如下。例如,假设已经将具有发射波长为λ2的荧光的标记的DNA,RNA或类似物与生物分子斑点141x杂交。当用具有λ1波长的激发光照射生物分子斑点141x时,可以观测到发射波长为λ2的荧光的生物分子斑点141x。按照本发明的数据埋藏方法,获得生物分子斑点141x的识别号,并且从属性表可获得DNA或类似物的序列,由此可以分析或检验样品。
(实施例4使用生物分子芯片检验)(检验程序)参考图41中显示的流程图将描述用于检验或诊断的程序。最初,在步骤148a中,提供具有荧光标记的样品并将其杂交至通过芯片制备方法,如管制法,半导体加工方法,喷墨法,PIN法或类似方法制备的生物分子芯片138的表面。在步骤148b中去除不必需的未杂交样品。将该芯片装载至稍后描述的在图14中显示的激光扫描型检验装置或CCD读出型检验装置之中。在步骤148c中,通过光束,CCD等读出图33的在芯片138的第一行记录的芯片ID或/和固定板139上的固定板ID 140,以便校验对于预定样品的芯片ID或固定板ID。接下来,对照预定的ID表校验这些ID。如果上述校验的结果错误,停止程序。如果校验的结果是正确的,通过网络150,如因特网,LAN等获得对应于芯片ID的属性表146(参见图40),并暂时存储在检验装置149的存储器151中。
程序转到检验模式。在步骤148d中,将m设置为0。在步骤148e中,将m增加1。在步骤148f中,用具有第一种波长为λ1的激发光照射芯片的表面。当使用激光器或CCD扫描芯片时,将波长分离滤光片,如图14中的反射镜65,66用来搜索发射特定波长荧光的第m个生物分子斑点。在步骤148g中继续搜索直至发现斑点。当发现第m个生物分子斑点时,在步骤148h中用激发光或参考光照射芯片。将标记斑点142的光学性质,如关于激发光波长的反射率等设置为与生物分子斑点141不同。因此,如图35(2)所示,使用激发光或参考光可将标记斑点在光学上区别于生物分子斑点。在该情形中,即使当标记斑点142发射具有不同于生物分子斑点141的波长的荧光时,也可以获得相同的效果。因此,可以检测标记斑点142。在步骤148j中,将n设置为0。在步骤148k中,将n增加1,识别第n个识别标记143的代码。当在步骤148n中重复程序直至n到达最后的n时,获得一个数据阵。为了提高数据阵的可靠性该数据阵包含纠错码(error correction code)152。因此,在步骤148p中将数据阵进行纠错,在步骤148q中获得不含错误的数据阵。在步骤148r中,通过计算从最近的识别标记143至受试者生物分子斑点的斑点数量,可以获得如图35(2)所示从同步标记到受试者生物分子斑点141(例如141x)的生物分子斑点的总数。在步骤148s中,基于计数器的地址和数字识别第m个生物分子斑点的识别号145。在该情形中,从滤光片设定可以指定荧光的波长,因此可以识别荧光的标记号码。
在步骤148t中,从存储器151读出对应于芯片ID的属性表146,如图40所示检索具有特定识别号的DNA序列数据等。因此,可以获得包含在样品中的DNA,RNA,或蛋白质的类型。在步骤148u中,将该信息和识别号登记在存储器151的测试数据库147中。在步骤148v中,校验是否任何其它发射荧光的生物分子斑点保持未读。如果存在未读的斑点,程序返回到步骤148e,并定位发射荧光的生物分子斑点。如果不存在未读的斑点,在步骤148x中将测试数据库147的数据发送给分析程序155。在步骤148y中,输出分析过的检验或诊断结果。这样,完成操作。
如上所述,按照本发明,将数据如地址,芯片ID等埋藏在生物分子斑点的排列中。因此,从生物分子斑点或感兴趣的识别号周围的标记斑点的排列可以获得感兴趣的生物分子斑点的识别号。该数据可以包含芯片ID和芯片属性数据以及地址。在该情形中,从芯片自身获得检验或分析所需的所有数据。如果将从芯片获得的芯片ID与上述固定板的固定板ID 140比较,在检验中可以校验错误的固定板ID,由此减少了由于错误的固定板ID导致的错误检测的发生,所述错误的固定板ID是由制造过程中的错误导致的。另外,可以不要固定板139只分配生物分子芯片,由此可以降低芯片成本。
注意为了简化,如图35所示,已经首先描述了其中将包含生物分子的生物分子斑点141和不含生物分子的标记斑点142,即两种斑点用来埋藏数据,如地址的实例。在该方法中,只加入标记斑点,因此,容易管理制备。在另一方面,不利地减小了生物分子斑点的密度。对于要求更高生物分子斑点密度的应用,如图34(a’)所示,将具有不同于(a)中溶液135的光学性质,如关于特定波长,荧光等的反射率,吸光率和折射率的标记溶液153导入管中。如在(b)中的管130c那样排列该管。如(d)所示,在芯片上形成标记生物分子斑点154。当不是有效制备两种生物分子溶液时,即一种含有标记和一种不含标记,如标记管134,136表示的那样可以将标记附着在管130上。在该情形中,尽管降低了该标记的灵敏度,但获得与在图36中描述的标记生物分子斑点154基本上相同的效果。
可将该制备方法用于另一个应用。在PIN法的情形中,将标记物质加至如图2所示的主溶液4或辅助溶液8中以制备标记溶液153。如图38所示,将由空圆表示的标准溶液(normal solution)和由实圆表示的标记溶液中的生物分子固定在基底1上。因此,如图38所示可以在基底1上形成生物分子斑点141a-141i和包含标记溶液153的标记生物分子斑点154。省略图38的描述,因为操作基本上与图3中的相同。
在喷墨法的情形中,装载包含生物分子和标记溶液的标记微胶囊156而不是图11中所示的同步胶囊23d,23e,以便将胶囊156附着在基底1上,如图39(4),(5),(6),和(7)所示。由此,可以获得与图38中相同的生物分子斑点141和标记生物分子斑点154的排列。此外,当使用半导体掩模时,通过将用于掩模的物质堆叠在标记生物分子斑点上而获得相同的效果。
在上述三种制备方法中,芯片基底上生物分子斑点141和标记生物分子斑点154的排列与图36中相同。当使用标记斑点142而不是在图35中所示的标记生物分子斑点154时,可以获得与管制法中相同的效果。在该情形中,在三种制备方法中将只包含掩模溶液而不含生物分子的溶液或物质固定在芯片基底上。已经描述4种示例性的制备方法。还可将本发明用于除了4个实施例以外的各种生物分子芯片制备方法。
返回图35,将描述另一种数据埋藏方法。图35(2)和(3)显示排列标记斑点142以便将数据如地址等埋藏,其中连续标记斑点的数量是1-n。以下,括号中的描述对应于图41。图36(5)显示通过随数据改变标记斑点142(标记生物分子斑点154)之间的间隔而埋藏数据。具体地,将具有相当于8个生物分子斑点的间隔的两个标记斑点定义为同步标记157。从同步标记157a-157b的标记斑点142(标记生物分子斑点154)之间的间隔是4,5,6,7和4。因此,可以埋藏对应于七进制计数系统中的5位数的数据,即7的5次幂个数据。该数据可包含地址数据,纠错码,和芯片属性数据。在该情形中,因为标记斑点具有最长的间隔可以容易地检测标记斑点。
图35(图36)(6)显示其中将两个连续标记斑点142(标记生物分子斑点154)作为同步标记158排列的方法。在该情形中,从同步标记158a至158b在标记斑点142(标记生物分子斑点154)之间的间隔是3,6,4,5,和8。因此,可以埋藏7的5次幂个数据。
图37(a)显示长生物分子斑点161a,161b和161c和生物分子斑点141a至141k的排列,其是通过利用平管(flat tube)160的管制法获得。当将拉长的生物分子斑点161a认为是一个标记斑点时,可以将两个邻近的拉长的生物分子斑点16a,161b定义为同步标记162。类似于图35(6)中的同步标记158,从图37中的7个生物分子斑点141k,141j的排列读取7个数据。因此,如图37(b)所示,可以将“75456”,即八进制计数系统中的5位数据埋藏在拉长的生物分子斑点161b和随后的拉长的生物分子斑点161(未显示)之间。
在本发明中,采用使用纠错码来纠正数据中错误的方法。在10位的情形中,如图42的数据结构图所示,为10位原始数据159(A0到A9)提供2位纠错码152(C0,C1),其是使用Reed Solomon编码或turbo编码从原始数据159产生,从而纠正错误。因此,提高埋藏数据的可靠性,使得在重要数据如地址中不大可能出现错误。在图42中,仅在水平方向使用纠错码。其中另外在垂直方向使用纠错码的产生代码的方法,花费更长的时间来进行操作和获得原始数据。然而,在该情形中,改善了埋藏数据的可靠性。
(实施例5用于生物分子芯片的检测装置)在上述方法中,可以制备DNA芯片或DNA基底,其上排列捕捉DNA。可以使用该DNA基底来检验DNA或蛋白质。
从DNA样本提取DNA,如cDNA或类似物,并用荧光物质38标记以制备标记的DNA 22。如图13(1)所示,将标记的DNA 22施加在本发明的DNA基底上。将DNA基底放置在特定条件下,如在几个摄氏度加热等,来进行杂交。如图13(2)所示,将标记的DNA 22与第n个DNA斑点中的捕捉DNA 3a偶联。
现在,将描述使用本发明的DNA基底检测该标记的DNA或标记的蛋白质的方法。图14是显示用于检测的检验装置39的结构图。首先,将描述结构图的左边一半。通过具有波长选择性的反射镜41和透镜42将从激发光源40发射的光如激光等汇聚并聚焦在基底1上。来自基底1的反射光经由反射镜41和起偏镜42到达检测部分43。焦点出错信号检测部分45将焦点误差和循迹误差分别发送给聚焦控制电路46和循迹控制电路47。驱动器48以这种方式,即,使焦点与循迹相匹配来驱动和控制透镜42。为了最优化标记检测信号,焦点偏移信号产生部分49和轨道偏移信号产生部分50对焦点和跟踪(tracking)施加偏移。在本发明中,有意调整DNA斑点2的排列以包括位置信息。下面将描述用于复制该数据的方法。
通过主信号复制部分69来复制主信号。位置信息检测部分64检测位置信息。轨道数输出部分52和DNA斑点号码输出部分51向数据处理部分55发送当前扫描的DNA斑点号码和轨道数。由此识别DNA斑点。
通过在主信号复制部分的解调部分,如EFM,PM或类似部分将来自图5中显示的数据区18的信号复制给数据。在ECC解码器53中将该数据进行纠错。通过DNA基底属性数据读取部分54来复制图6中所示的DNA基底属性数据,并发送至数据加工部分55。在数据加工部分55中,识别当前扫描的DNA斑点2a的捕捉DNA识别号58。将反射镜65用来将对应于捕捉DNA识别号58的荧光发送给第一标记信号检测部分60。因此,从标记信号输出部分输出具有对应于捕捉DNA 3的特定识别号的第一识别的DNA的标记强度数据(荧光水平等)。
使用来自具有第一波长λ0的光源40的激发光照射与DNA斑点2a连接的第一标记的DNA22的荧光染料38。在荧光发射开始并持续半衰期后,荧光达到一半的水平。半衰期是数纳秒至数十微秒。
图17(1)显示激发光的输出功率。图17(2)显示通过激发光从荧光物质或荧光染料发射的荧光强度。图17(2)显示荧光强度在t=t6时达到半衰期。
现在,参考图16将详述分离波长的方法。在众多入射光束λ0,λ1和λ2中,具有最高强度的波长为λ0的激发光被具有膜厚度为λ0/4的光学镀膜(optical film)68a的反射镜41反射。来自第一标记的波长为λ1的荧光被具有λ1/4厚度的光学镀膜68b的反射镜65反射,而具有波长λ2的荧光透过反射镜65。这样,三种波长被分离。分离的波长的透射率小于或等于1/1000,因此,抑制了每个波长之间的干扰。因此,可以检测微弱的荧光标记水平。可以增加适于λ0的λ/4滤光片以进一步改善分离度,由此可以抑制激发光源40的组分,因此提高S/N比。如图18所示,将激发光束71制得比DNA斑点2小。例如,激发光束71的大小与数微米一样小。在该情形中,可以在扫描方向,即扫描轨迹72的方向将DNA斑点2分开。将产生部分称为单元(cell)70a,70b,70c,70d。在扫描方向获得4种数据,由此可以高精度地测量荧光量的分布。如下测量单元70g,70h有意产生轨道出错信号,其在轨道偏移信号(track offset signal)产生部分50中是V0;将轨道出错信号输入到轨道控制电路47;在轨道方向产生偏移;并且如图18中由扫描轨迹72a所示,转移轨道以便在将激发光施加在单元70g,70h时扫描单元70g,70h。当输入反向轨道出错信号时,可以扫描单元70e,70f。因此,在图18的情形中,将DNA斑点2分为8个单元,其可以使用激发光扫描和照射。
接下来,将参考图20描述检测程序。图20(1)显示将DNA斑点2a-2i排列在DNA基底1上。在(2)中,将具有第一种荧光波长λ1的标记的第一标记的DNA 22a和具有第二种荧光波长λ2的标记的第二标记DNA 22b引入到基底上来进行杂交。第一标记的DNA 22a与包含在DNA斑点2b,2e,2h中的DNA互补结合。第二标记的DNA 22b与DNA斑点2h结合。在(3)中,进行干燥,使用波长为λ0的激发光源40开始扫描。(4)显示激发光的反射的光的激发光检测信号。通过波长为λ0的激发光产生的荧光不包含λ0的波长组分,使得只获得λ0的检测信号。基底1的表面,如玻璃或类似物,具有特定的反射率。然而为了提高激发光检测信号的信号水平,在图1的基底表面上可另外形成反射层。由于DNA斑点2关于λ0的反射率和基底1表面之间反射率的不同获得如(4)所示的检测信号。如关于参考图10用于DNA斑点形成的程序的描述,通过随具体数据改变本发明基底1上DNA的图案或排列埋藏位置数据等。如(4)所示,检测信号之间的间隔改变。结果,如(5)所示可以复制信号00,01,10,00,01,01。基于这些信号,可以复制位置数据,即如(6)所示的地址信息。因此,例如,可以发现DNA标记2a位于第260轨道并且在第1128个地址。如参考图6所述检测装置从基底1的数据区18获得DNA基底属性数据。具体地,例如,在DNA号码位置信息20中第260个轨道的DNA识别号的起始号是243142。因此,可以识别具有识别号244270的DNA。另外,当用户可以获得加密密钥73时,通过密码解码器74解码关于按照DNA号码的序列信息21中DNA号码(=244270)加密的DNA序列信息。由此,在DNA斑点2具有DNA序列ATCTAGTA…这样的条件下可以识别DNA斑点2。注意当用户没有加密密钥73时,不能解码DNA序列。在该情形中,即使获得DNA斑点的荧光数据,个人DNA信息的隐私也受到了保护。在图6的附录数据区76中,另外记录杂交的标记的DNA的第一标记属性数据77和第二标记属性数据78,如激发光波长410nm,标记的410nm,荧光波长700nm,600nm,半衰期100ns,100ns等。因此,使用该附录数据可以校验或设置检验装置的操作。
返回图20,将描述测量通过激发光产生的标记的荧光的方法。最初,如18所示,在扫描轨迹72的情形中,使用激发光束71扫描单元70a,70b,70c,70d。在DNA斑点2b的情形中,产生波长为λ1的荧光,并通过第一标记信号检测部分检测(图14)。结果,如(8)所示检测对应4个单元的第一标记检测信号85a。当扫描DNA斑点2g时,产生波长为λ2的荧光,如(9)所示产生第二标记检测信号85b。当在图18中施加偏移时,即在扫描轨迹72a的情形中,如(10)所示获得标记检测信号85c,其获自仅来自两个单元的荧光的检测。
在本发明中,当要求标记的DNA更高的检测灵敏度时,使激发光源40间歇发射。通过移位量检测器86检测在基底直线方向或旋转方向的移位量。取决于移位量,通过脉冲光发射控制部分87产生脉冲光发射信号88或具有反向的次脉冲光发射信号87。在第一次扫描中,如(11)所示,当将脉冲光发射信号88施加到光源40时,进行脉冲光发射。结果,第一和第三单元,即单元70a,70c产生荧光。在该方法中,当光源40是关闭状态时检测荧光。因此,获得了相当高的S/N。例如,如(13)所示获得标记检测信号85d。在该情形中,轻微移动第一标记检测部分的光接收部分,使得改善光接收效率。在第二扫描,即偶数的扫描中,如(12)中所示具有反向的次脉冲光发射信号被输入光源40,并且扫描相同的轨道72。由于相对于第一次扫描反向,使用激发光照射第2和第4个单元,即单元70b和70d(两个时钟后)(图18)。在时钟的随后期间,激发光是关闭的。因此,可以无激发光干扰地检测来自单元70b或70d的荧光。因此,通过扫描两次,可以高精度地有利地检测所有单元的荧光水平。参考图31的流程图将给出描述。在步骤118a中,进行扫描1次以便将轨道上所有DNA斑点的排列信息存储在存储器中(步骤118b,118c)。在该情形中,在步骤118d中,如果在第二次或其后以恒定速度进行扫描时,通过从存储器读出可以复制DNA斑点的位置(步骤118f)。
参考图31和32将给出描述。在步骤118g中,在奇数的时钟时间,间歇地发射激发光(图32(2))。产生荧光(图32(4))。在步骤118h中,基于图32(3)的检测允许信号来检测荧光(图32(5))。
在第三次扫描中,在步骤118j中在偶数的时钟时间,间歇地发射激发光(图32(6))。在步骤118k中,间歇检测荧光(图32(9))。因此,消除了激发光的影响,由此改善了SN。
因此,在本发明中,即使通过脉冲的光发射,在直线方向也获得高精度。在轨道方向的精度方面未出现问题。
接下来,将描述用于改善灵敏度同时提高位置分辨率的方法。参考图19,移动基底1以便单元70b以(1),(2),(3),(4),(5),和(6)的顺序移动。为了测量来自基底1的荧光的量,光检测部分90具有阵列结构91并取决于移位量以(1’),(2’),(3’),(4’),(5’),和(6’)的顺序进行转换。由此,在保持分辨率的同时获得高度的灵敏度。图21是结构图,其显示转换是通过转换部分92基于来自移位量检测器87的信号和来自DNA斑点2的同步信号在阵列上进行;跟踪单元70b的荧光,并且通过合计部分93累积和输出荧光数据。在该情形中,如果来自单元中心的移位量的量是在f×0.05内,其中f表示透镜42的焦距,则通过阵列91可以检测该单元。
在检验装置中的标记检测信号表94具有如图22所示的数据。使用激发光将该数据记录在图5的数据区18中。在该情形中,用单个基底可以结合所有数据。因此,消除了获得错误数据的可能性,由此避免事故如误诊等。
图23显示将记录层95加至基底1并且将光源40和透镜42a装备在基底与记录层95相反的一侧。因为可以在记录层95上记录数据,可以记录大量数据。图24显示将两个上面和两个下面的驱动器48,48a机械偶联在一起。在该情形中,如图25所示,因为可以用记录层95中的地址96定义每个DNA斑点2a的位置,用起始地址97,终端地址98,最内部圆周轨道数99,和最外部圆周轨道数100可以指定DNA斑点2a的外部形状,由此可以高速访问DNA斑点。在记录层95中可以记录该对应表。参考图26,DNA斑点2a,2b,2c是矩形的形状,由此可以更准确地进行扫描跟踪。图27和28显示如图5所示的DNA芯片但是为圆状的形式。特别是,可以使用图28的DNA芯片的整个后表面。因此,图28的DNA芯片具有大的记录容量并可存储整个DNA序列。这里使用术语DNA。可以将如这里定义的任何生物分子(例如蛋白质)用作被标记的受试者的物质。可以使用RNA代替DNA。可以使用细胞或组织的一部分,只要可以将它们排列在基底上。
在实施方案中,作为制备DNA基底的方法,使用PIN法和喷墨法来描述本发明的实施例。然而,还可将本发明用于半导体加工方法。参考图29,在半导体加工方法中,将探针DNA排列在玻璃基底上。参考图29(2),如下进行光刻。将掩模120用来进行掩模。照射特定的DNA探针以激活延伸反应(elongation reaction)。如图29(3)所示形成包含A(腺嘌呤)123的探针DNA。其后,如图29(4)和(5)所示形成C(胞嘧啶)124。该延伸反应是针对A,C,G和T进行的,即4次来完成一层。如果如图29(6)所示进行延伸反应4N次,形成具有N个碱基长度的探针DNA。在半导体加工方法的DNA芯片制备过程中,利用本发明如图10(7)所示移动掩模孔的位置。如图29(1)所示,与特定数据一致将掩模121a相对于最初的掩模121b移动。由此,可以将位置数据埋藏和记录在DNA斑点的排列中。
(实施例6网络型检验装置)将描述使用按照本发明的生物分子芯片的检验系统的操作。图43是显示本发明检验系统操作的流程图。在生物分子提取部分172中,提取,纯化,或从样品171培养生物分子来制备样本173,所述样品171是从受试者170处收集的。在主检验系统174的检验部分175中,将该样本173装载至生物分子芯片138,随后反应。样本173中的一部分分子与如上所述特定的生物分子斑点141中的探针杂交。该生物分子斑点显示标记信息,如荧光等,因此可以容易地检测。另一方面,从生物分子芯片138可以检测芯片ID 19。将这些检验数据与芯片ID 19(基底ID 19也称为芯片ID 19)一起加密,经由通信部分176和然后通过因特网177或通信电路将加密的数据发送至辅助检验系统178的通信部分179,如测试中心等。其后,将数据发送至分析系统180的分析部分181。在分析部分181中,从识别号-属性数据库184可以获得对应芯片ID的每个生物分子斑点的属性数据。从获得的属性数据和标记号,可以识别样本173的状态,如基因,蛋白质或等。
在图45中显示在遗传信息的情形中的分析结果。首先,显示对应于基因序列的基因号码183。显示对应于该号码的基因的基因属性184的基因属性数据包含基因的序列;疾病的标记,性状(character)或类似物;等。因为该类检验是在特定疾病的检验或特定分子的检验中使用,主检验系统174输出请求,如具体地例如,数据“请输出疾病a的有关信息”。如图45的选择性输出185中所示,选择部分182只选择与请求输出186有关的信息,并通过输出部分183加密和通过通信部分179和因特网187发送至主检验系统174。
在基因检验中,在检验和分析期间获得最初未想要的数据。例如,当需要关于特定癌症的遗传信息时,如果输出未想要的遗传信息,如其它的疾病或特征(例如难治疗的和不可避免的疾病(青少年阿尔茨海默氏病等),灾变的特征(catastrophic character)等),很可能损害受试者的利益。如果无意泄漏该类信息,出现隐私问题。按照本发明,选择部分182把与请求输出无关的信息或原始遗传信息过滤掉,由此可以防止输出不必要的信息。
对应于芯片ID的检验结果,其是主检验系统174所请求的,由诊断系统187接收并由诊断部分188处理。可以将芯片ID-受试者对应数据库191用来将受试者170从芯片ID 19中识别出来。所有的芯片具有唯一的芯片ID。因此,可以识别对应于每块芯片的受试者。不将该数据发送至任何辅助检验系统。因此,防止患者数据被泄漏给检验实验室或医院外面。检验系统可以了解受试者和芯片ID之间的关系,但没有芯片ID的每个生物分子斑点的属性数据。除非从辅助检验系统获得属性数据,不能获得完整的遗传信息。换句话说,主检验系统174和辅助检验系统178各自具有不完全的互补信息,由此维护保密性。因此,可以保护受试者遗传信息的安全性。
在该情形中,每个芯片ID不同于其它并具有随机的号码。因此,即使将具有特定芯片ID号的芯片的所有属性信息(例如每个生物分子斑点中对应于识别号的生物分子的属性数据)公开,也不能识别任何其它芯片ID的数据,因为在特定芯片ID和其它芯片ID之间没有相关性。可以保护整个系统的安全,只要可以保持辅助检验系统的秘密。当保持主检验系统的秘密时,即使通过第三方获得芯片和个人ID,也不能获得将芯片与人连接的信息。在该情形中,进一步提高了安全性。
基于受试者的历史数据(疾病等)和从辅助检验系统获得的检验结果,诊断部分188输出诊断结果。诊断结果输出部分192向外输出诊断结果。治疗策略产生部分189基于诊断结果产生众多治疗策略,对治疗策略指定优先权,并且通过输出部分190输出治疗策略。
(利用除了疾病之外的遗传信息)在上述实施例中,与特定疾病有关的信息被指定为请求信息并作为请求输出186发送出去。近来,已经显示从遗传信息可以获得受试者的心理属性(psychological attribute),如性格或类似属性。例如,已知在第11号染色体上多巴胺D4受体的第三个外显子长的人具有挑战性的性格。因此,现在或此后,将从遗传信息中依次将属性信息,如个人性格分类。考虑到这点,将显示受试者的心理特征如性格的属性数据加至图43的请求输出186中的疾病数据。在该情形中,将关于受试者170的性格,特质(aptitude)或类似属性的信息从辅助检验系统发送至诊断系统187。取决于受试者的属性和特质数据,改变治疗策略产生部分189的治疗策略选项的优先权。例如,对于更喜欢高风险和高成效(result)的受试者,增大在高风险下提供高成效的治疗选项的优先权。对于更喜欢在低风险下中等成效的受试者,增大安全但效果不高的治疗剂的优选权。使用该方法,可以实现用于提供适于受试者性格或特质的治疗策略的诊断系统。
(实施例7独立检验装置)使用图43的示例性的网络型检验装置已经描述了本发明的操作(安全性等)。如图44所示,可将本发明用于独立型的检验系统193。
图43的网络型检验系统包含两个系统,即主检验系统和辅助检验系统。后者是由中立的实体如检验中心来管理,能够增强保密性以维护整个系统的安全。相反,图44的独立型检验系统包含具有高水平保密性的黑匣子部分194代替辅助检验系统178。黑匣子部分194不泄漏除了请求输出到外界的信息以外的内部信息。从输入/输出部分195只输出所需数据。通过黑匣子部分194维护了信息的安全性。
大多数独立型的检验装置具有与图43中相同的操作。以下将只描述与图43中那些的不同点。最初,在检验部分175中,通过芯片138复制加密的数据,如利用公用密钥加密功能或类似功能加密的生物分子斑点-属性数据146,并且发送至黑匣子部分194。通过黑匣子部分194中的密码解码部分197将该加密数据解码成纯文本数据。该纯文本数据包含有关生物分子芯片上每个生物分子斑点的属性信息。将属性信息加到生物分子斑点标识号-属性数据库184。
在图43的情形中,主检验系统通过网络访问在辅助检验系统如检验中心或类似系统中的数据库184并获得数据。因此,该辅助检验系统,如检验中心或类似系统,需要获得全世界生产的所有芯片的最新数据并需要时更新数据。主检验系统不能获得检验结果,除非可利用网络。然而,在图44的方法中,即使芯片是近来生产的,属性数据146存在于生物分子芯片中,并且将该属性信息自动记录在识别号-属性数据对应数据库184中,其每次将芯片装载在检验系统中时如此被更新。因此,独立型的检验系统不必须与网络连接。此外,检验系统的存储器存储只对应于一块芯片的数据。因此,可以显著减小存储器的容量。在该方法的情形中,可以使用移动类型的检验装置。与图43类似,在该方法中,通过选择部分182只选择与来自主检验系统请求的输出有关的信息,并将其从黑匣子部分194发送至主检验系统174的诊断系统187。
注意如果以这样的方式即例如将黑匣子部分194结合到LSI芯片中并且将它的外末端限制在输入/输出部分195和密码解码部分197来生产黑匣子部分194,在外面不能读出内部数据。因此,保护了安全性。如上所述,使用本发明包含加密数据的生物分子芯片和本发明独立型检验系统,不用网络或外部输入数据可以进行所需的检验或诊断,同时保护受试者的信息安全。
注意尽管上述实施例是这样的以致将生物分子芯片的属性信息埋藏在生物分子斑点的排列数据中,可以使用凹点标记(pit mark)或类似物将该信息光学记录在与如图5所示结合芯片的基底上。备选地,如图46所示,将生物分子芯片138,具有非易失性存储器201的IC芯片198,和电极199装备在基底200上,可以将属性信息记录在IC芯片198的非易失性存储器201中。可以在检验系统中光学读出属性信息,或从电极199或类似物电读出属性信息。
通过具体的参考将在此引用的所有出版物,专利,和专利文献结合至此。参考各种具体和优选的实施方案和技术已经描述了本发明。然而,应当理解在不背离本发明的精神和范围的前提下可以进行各种修饰和变化。
注意在实施方案的描述中,生物分子斑点的排列以与生物分子斑点的单个具体的排列方向相同的方向改变。然而,可以容易的实施其它方法,尽管省略了它们的描述。首先,可以改变生物分子斑点的大小。具体地,将数据“01”分配给具有小尺寸的生物分子斑点;将“10”分配给具有中等尺寸的生物分子斑点;和将“11”分配给大尺寸。因此,可以将三个有价值的数据埋藏在一个生物分子斑点中。
备选地,可以有意将生物分子斑点的位置从参考位置以垂直于生物分子斑点的具体排列方向的方向移动。具体地,将数据“01”分配给相对于参考位置移动+20%的生物分子斑点;将“10”分配给移动0%即未移动的生物分子斑点;和将“11”分配给移动-20%的生物分子斑点。在该情形中,可以将三值(three-valued)数据埋藏在一个生物分子斑点中。如果增大移位量的数量或分辨率,可以埋藏多值数据,如五值(five-valued)数据,七值(seven-valued)数据等。
备选地,可以以垂直于具体排列方向改变生物分子斑点的大小而生物分子斑点的位置不变。例如,将数据“0”分配给在垂直方向具有主轴的椭圆形生物分子斑点,和将数据“1”分配给圆形生物分子斑点,由此可以埋藏二值(two-valued)数据。备选地,可以在与排列方向相同的方向改变生物分子斑点的大小。
如果同时使用上述埋藏方法中的众多方法,可以进一步增大埋藏数据的量。
工业适用性如上所述,在本发明中,改变生物分子(例如DNA,RNA,蛋白质,低重量分子等)的位置或它自身的图案以埋藏该生物分子的位置信息。因此,不需要额外的加工并且不再需要常规的高精度定位。当生物分子的种类数较大并且要求生物分子的密度时,该方法更有效。另外,使用激发光源,检验装置可以读出DNA斑点的位置信息,因此,只可以相对定位生物分子斑点。不需要用于绝对定位生物分子斑点的常规高精度装置。因此,只通过简单的构造可以获得检验装置。另外,在基底上记录数据,并使用激发光读出数据。因此,从相同的基底可以读出生物分子斑点的属性数据而不增加组件的数量,由此消除了数据匹配误差。上述有利的效果促进了生物检验装置和诊断装置的广泛应用。
权利要求
1.一种包含生物分子珠粒阵列的含生物分子珠粒的管,在所述生物分子珠粒阵列中,生物分子珠粒排列在由透射具有特定波长的光的材料制成的管状容器中,所述生物分子珠粒由球形珠粒和固定于其上的特定生物分子种类组成,其中将由一种材料制成的球形标记珠粒以预定顺序插入到所述生物分子珠粒阵列中的特定生物分子珠粒之间,所述制成球形标记珠粒的材料在光学上可区别于构成所述生物分子珠粒的球形珠粒的材料。
2.依照权利要求1的含生物分子珠粒的管,其中将所述标记珠粒对应于指示识别数据的识别码来排列。
3.依照权利要求1的含生物分子珠粒的管,其具有第一区和第二区,所述第一区中所述生物分子珠粒的数目大于所述标记珠粒的数目,所述第二区中所述标记珠粒的数目大于所述生物分子珠粒的数目。
4.依照权利要求3的含生物分子珠粒的管,其中在所述第二区至少将所述标记珠粒对应于指示识别数据的识别码来排列。
5.依照权利要求2或4的含生物分子珠粒的管,其中所述识别数据包含所述含生物分子珠粒的管的识别号。
6.依照权利要求3的含生物分子珠粒的管,其中在所述第一区将所述标记珠粒对应于指示识别数据的识别码来排列。
7.一种复制器,其通过用光照射含生物分子珠粒的管并检测来自至少一个标记珠粒的透射光或反射光来读取记录在依照权利要求2的含生物分子珠粒的管中的数据。
8.依照权利要求7的复制器,其读取数据;并通过用光照射所述生物分子珠粒和观察来自所述生物分子珠粒的荧光来获得固定在所述含生物分子珠粒的管中的生物分子珠粒上的DNA或蛋白质的信息。
9.依照权利要求7或8的复制器,其获得作为数据的识别信息。
10.依照权利要求9的复制器,其基于获自所述含生物分子珠粒的管的识别信息获得所述含生物分子珠粒的管中生物分子珠粒的排列信息。
11.依照权利要求10的复制器,其基于所述生物分子珠粒的排列信息获得固定在所述含生物分子珠粒的管中生物分子珠粒上的DNA或蛋白质的信息,所述生物分子珠粒的排列信息是基于所述识别信息获得的。
12.依照权利要求8或11的复制器,其从基于所述识别信息获得的DNA或蛋白质的信息来诊断疾病。
全文摘要
本发明的目的是提供检测DNA基底的检测装置,所述DNA基底上排列了许多用于检测的DNA片段,其中不要求绝对精度。通过提供一种基底解决了上述问题,所述基底上形成许多含特定类型的一组生物分子(如DNA等)的生物分子斑点,其中取决于特定数据改变DNA斑点的图案或位置,使得将特定数据的信息记录在基底上。
文档编号G01N33/543GK1653334SQ0381041
公开日2005年8月10日 申请日期2003年5月7日 优先权日2002年5月8日
发明者大嵨光昭 申请人:松下电器产业株式会社