专利名称:称量秤的模块化测力元件以及称量秤的利记博彩app
技术领域:
本发明涉及分别如权利要求1和12的前序部分所述的称量秤的模块化测力元件以及带有模块化测力元件的称量秤。
称量秤的测力元件通常配备有一力传感器,该力传感器在一侧连接至一用作支座的秤架,在另一侧连接至一称重托盘架,将被测量的力通过该称重托盘架引入。力传感器可以以多种方式构造。广泛使用的传感器设计是带有一作为一核心元件的弹性变形体,或带有一在大多数情况下利用由一电流调节电磁铁所产生并通过一杠杆机构起作用的平衡力进行力平衡的设备。
举例来说,如参考文献[1],DE 199 39 633 A1所述以及在参考文献[2],EP 0 670 479 A1中称为“反作用力件”或“受力体”的力传感器具有一弹性变形体,该弹性变形体将传感器的一安装在秤架上的固定部件连接至一力作用部件,对于称量秤,则是连接至一称重负载作用部件。一般来说,力传感器在位于变形体和用于将该力传感器连接至该秤架和称重托盘架的部件之间的过渡部位上具有若干横向沟槽。该横向沟槽用于机械地去耦该变形体,其中,利用传感器(优选的是利用应变仪)测量由作用力所引起的变形。
该变形体优选为构造成一平行四边形形状的测量元件,该测量元件具有一类似于平行四边形的导向构件布置(例如参见参考文献[3],EP 0511 521 A1)。
代表测量的模拟信号由应变仪产生,该应变仪优选在一桥接电路中彼此相连。通常在一转换电路中对该信号进行数字化,并且随后对其进行更多的处理步骤。例如参考文献[4],U.Tietze,Ch.Schenk,Halbleiterschaltungstechnik,第十一版,第一次重印,Springer Verlag,柏林1999,第1242-1243页中描述了一种带应变仪的桥接电路的基本结构。
参考文献[6],EP 0 319 176A中描述了一种称量秤,其具有一力传感器、一附着于该力传感器的转换设备以及一电路装置。力传感器和前述相关元件一起封闭在一紧凑单元中。电路设备通过一插塞式连接器与称重设备的电子元件通讯。电路设备包括一用于产生作用于负载接受体上的力的数字表示的设备、一对该数字表示施加至少一修正因子的设备以及一用于传送该数字表示的输出的设备。因此,封闭的力传感器可以作为一个单元进行调整并安装在称重装置中。然而,该解决方案具有模拟和数字信号处理元件非常接近力传感器装置的缺点。电路的热消散而引起的温度效应很难处理,这会使温度补偿处理复杂化。而且,这些力传感器的制造很昂贵,一旦出现故障,则包括电子部件在内的整个单元便不得不进行更换。
为支持对数字化测量信号的进一步处理,参考文献[2]中所述的测量元件具有一存储补偿数据的存储模块,这些补偿数据对于每个测量元件都是特定的,并用于测量信号的修正。
如参考文献[5],专利说明书GB 1 462 808所述,前述修正尤其应用于由非线性、滞后现象、温度和蠕变效应所引起的误差。在工厂制造期间,通过特殊试验和测量过程确定修正所需的补偿数据并存储在存储模块中(也参见参考文献[1])。
在参考文献[2]公开的模块化测力元件中,用于存储补偿数据的存储模块与力传感器固定连接并且与一局部电路装置在空间上分开,因此四个组件,即应变仪桥路、温度传感器、受力体和存储模块一起形成一模块化部件。补偿数据和修正系数主要取决于同样永久附着于力传感器上的温度传感器的测量信号。参考文献[4]第1224-1231页中描述了温度测量的适宜元件和方法。
参考文献[2]中所述模块化测力元件的存储模块通过一扁平挠性带状电缆连接至一局部电路装置,该局部电路装置与力传感器热去耦并且包括一A/D转换器和一处理器。
将前述元件集成在一模块化部件中的思路将使得采用了这种模块化部件的称量秤的维修工作简单化。一旦发生故障,这种模块化测力元件可以从局部电路装置中分离出来并进行更换。同样,无需重新校准称量秤(在很多情况下需要将称量秤返回到工厂)就可以对局部电路装置进行更换。
但是,将用扁平挠性带状电缆连接至局部电路装置的存储模块安装到力传感器上会需要一些生产成本。而且,还带来了在使用期间存储模块对力传感器有热影响的危险,这在补偿过程中是必须要考虑的。
与一模块化设计配置有关的的是希望在将测量元件安装入称量秤之后后者已经进行了最优调整。除了该预期特性之外,通常还要求提高称量秤的精度,以降低需要修正的测量误差以及实现更加精准的调整。
因此本发明的目的是提供一种称量秤的改进模块化测力元件,以及提供一种适于安装这种模块化测力元件的称量秤。
特别是,存在一种需求,即提供一种可以低成本制造并可以更精准地调整的模块化测力元件。而且,还存在一种需求,即提供一种可以装备这种改进测力元件的称量秤。
前述目的可通过分别具有如权利要求1和12所述特征的模块化测力元件和称量秤完成。在其它权利要求中详细给出了本发明的优选改进。
该模块化测力元件具有一带有若干传感器的力传感器,该传感器测量由于力或温度作用而出现的力传感器状态的变化。此外还提供了一可存储测量元件的特定补偿数据的存储模块。根据本发明,包含存储模块和至少一用于对模拟传感器信号进行转换的转换电路的一电路模块与力传感器非常接近地机械耦合,以实现热耦合效应。
如果仅提供一转换电路,其可以用于在未发生力测量的时间间隔期间对一温度传感器的模拟信号进行转换。
优选地,电路模块仅包含那些自身对环境因素(尤其是温度以及湿度)敏感的电路元件。其包括那些与模拟信号处理过程相关的、在功能上与传感器接近的基本元件。因此,这些元件对于那些对测量信号有影响的环境因素的依赖性就可与力传感器的机械部件对于环境的依赖性一起得到考虑。同时,所存储的补偿参数值也将电路元件上的与温度相关的影响考虑在内。可以设想将额外的电路部件布置在该模块上,例如另外的转换电路的数字元件,但这里不需要这么做,因为由数字元件产生的信号不需要补偿,而它们的热消散将是一负面因素。
根据本发明的模块化测力元件的配置结构具有很多优点。将存储模块置于电路模块上的布置消除了存储模块在力传感器上的粘附以及从存储模块至电路模块的连接。这种布置还消除了由于存储模块的热消散而引起的力传感器上的局部温度效应。
根据本发明可以实现对模块化测力元件的更精准调整,因为a)减小了存储模块的干扰因素,例如前述温度效应;b)补偿了由对模拟测量信号进行处理的电路模块所引起的测量偏差;c)避免了由应变仪测量桥路中电连接的电阻变化所引起的测量变差;以及
d)更加精准地对修正因子,即力传感器的有效平均温度值进行测量。
电路模块和力传感器之间由于相互非常接近而引起的热耦合将导致这些部件之间温度的均匀化,而不会有力传感器的不希望发生的局部加热,因此通过一足以进行温度补偿的单一温度传感器的温度补偿测量不仅可以修正力传感器上与温度相关的测量偏差,而且还可以修正用于处理模拟信号的电路模块上与温度相关的测量偏差。这种创造性的布置还提供了在电路模块上使用更低成本元件(尤其是具有更高温度系数的电阻)的原理上的进一步可能性,这样可以节省成本。
在将一在工厂中正确调整过的模块化测量元件最初地或者更换地安装入一测量系统、尤其是一称量秤之后,整个测量系统或称量秤总是处于最佳调整状态,因为存储在存储模块中的补偿数据解决了力传感器机械部件的所有缺点,例如蠕变、滞后、非线性等,以及例如温度、气压、湿度等总体上对包括电路模块在内的力传感器的环境效应。
转换电路优选根据参考文献[4]第1056页所述的计算系统运行,其可用一便宜的电路实现。该简单的电路配置还具有热消散较低的优点。在该优选的布置中,转换电路产生可以输入到一数字信号处理模块中的双级脉冲宽度已调信号。因此,用于基于计数的电路的计数模块便可以布置在处理模块中,以使电路模块上的电路数量进一步减少。
为了避免不希望产生的热效应,数字信号处理模块在很大程度上与测量元件热去耦。因此,与力传感器耦合的电路模块不会被很大程度地加热,从而力传感器内的温度梯度保持很小。
电路模块可以具有一带有导电径迹的挠性或刚性基底,例如一印刷电路板,通过该基底,电路模块和力传感器之间进行温度均匀化。与一电磁场屏蔽层相结合的最佳热传递优选由一金属元件所确保,该金属元件至少部分地与电路模块的基底表面接触并与力传感器可松开地连接(例如通过螺纹连接)在一起,而该电路模块可通过按扣连接器、夹具、螺钉或其它方式与该金属元件相连。
力传感器的变形体构造为例如一平行四边形测量元件,其带有若干个布置在变形区域或变薄部位的应变仪。在一优选布置中,应变仪由至少两个挠性带状连接器连接至电路模块,在该处它们组成一桥接电路。可以由例如压阻元件构成的应变仪连接至若干导线,这些导线优选印刷在一挠性带上,并且其尺寸设计成使得所有从桥接电路节点至应变仪端点的连接导线具有至少大致相等的电阻值,包括一连接导线由两个或两个以上部分组成的情况。因此,连接导线中与温度相关的电阻变化会互相补偿,以致当力传感器上没有负载时,桥接电路即使在操作期间出现温度变化仍能保持平衡。优选地,形成桥接电路连接的导电径迹还与力传感器热耦合,以使得在所有导线线路中由温度变化而引起的电阻变化都相等。
通向应变仪的导线线路的分段可以在连接至电路模块之前先接入测量桥接电路的一节点,以便减少电路模块上所需的接头数目。
电路模块优选附着于力传感器的安装在秤架的一固定位置上的部件。当称量秤处于使用状态时,这将在力传感器中引起一纵向温度梯度。作为一确定与力传感器的动作相关的温度的最佳方式,因此将一温度传感器布置在一个其温度可代表测量桥接电路中若干传感器温度平均值的位置处是很有利的。在前述变形体为平行四边形形状的例子中,温度传感器可布置在该平行四边形的一水平部件的中点处。
下面将参考一力传感器的示例的附图对本发明进行更详细的说明,该力传感器带有一变形体,该变形体构造为带有作为传感器的若干应变仪的平行四边形测量元件。然而,所示的示例并不是对本发明范围的限制。本发明也可用于其他类型的测力元件。图中
图1图示出了一模块化测力元件2,其由一带有传感器28、29的力传感器20以及一电路模块24组成,并且具有与一紧固件3连接的螺纹连接件和一称重托盘架4;图2示出了图1中模块化测力元件2的一侧视图;图3图示出了图1中模块化测力元件2的力传感器20,其具有分别用于连接紧固件3、称重托盘架4以及一金属元件23的螺钉36、46、231,该紧固件3又连接至一秤架5,该金属元件23用于保持电路模块24;图4图示出了俯视时的测力元件2,其带有两个扁平带状连接器22T、22B,电路模块24通过它们连接至传感器28、29;图5示出了一优选电路模块24的模块化结构,该电路模块通过带状连接器22T、22T`、22B与传感器28、29通讯,并通过另一连接元件500与一处理模块501通讯;图6图示出了转换电路243、244的优选结构,该转换电路用于转换模拟的传感器信号并布置在电路模块24上。
图1和图2图示了根据本发明的一模块化测力元件2,其分别通过螺钉36和46连接至一称重托盘架4和一紧固件3,并且其由一带有传感器28、29的力传感器20和一电路模块24组成,该电路模块24带有一用于存储补偿数据的存储模块245以及至少一个用于转换模拟测量信号的电路装置243、244(也参见图5)。
在图3的一优选实施例中所示的力传感器20具有一变形体207,其设计为一带有水平部件2071、2072的平行四边形测量元件(参见图3,元件20`),该两个水平部件以一平行四边形连杆的方式可枢转地被引导。变形体207将力传感器20的安装在秤架上的固定部件206连接至力引入部件,在此情况下为负载接受部件208。为了去耦变形体207的应力场,力传感器在用于连接至紧固件3和称重托盘架4的部件208和206的边界处具有若干横向沟槽209。在由测量元件形成的虚拟平行四边形连杆的角部,变形体207具有若干个安装有应变仪28TF、28TB、28BF、28BB的变薄材质部位。变薄材质部位的最大弯曲变形的位置由垂直于平行四边形所在平面而延伸的弯曲轴aTF、aTB、aBF、aBB表示。
此外,所需的用于温度补偿的一温度传感器29布置在变形体207的上水平部件2071的中点处。由于图示的布置的特征在于沿纵向的温度梯度,因此由传感器29测得的温度便表示变形体207内的温度的平均值。基于该平均值,可以更精准地修正由于温度变化而引起的测量偏差。
应变仪28TF、28TB、28BF和28BB分别通过两个分开的挠性带状连接元件22T、22B(优选为带有印刷导电径迹的箔带)连接至电路模块24。一通过螺钉231连接至力传感器20的角形金属元件23将电路模块保持,以可促进电路模块24与力传感器20之间的热交换。为实现该热交换功能,金属元件23具有一抵靠电路模块24放置的平板状部件232,该电路模块24例如为一带有电路元件的电路板。
以下将对两个挠性带状连接器22T、22B的优选配置进行进一步的说明,其中该两个挠性带状连接器分别将电路模块24连接至位于变形体顶面的成对应变仪28TF、28TB以及底面的成对应变仪28BF、28BB。
以上已经对根据本发明的模块化测力元件2的优点进行了说明。与参考文献[2]中提出的解决方案相比,存储模块245(参见图5)可直接置于电路模块24之上,这便消除了存储模块直接附着于力传感器以及存储模块所需的额外电连接部件。如以下的详细说明所述,电路模块24和力传感器20之间的热耦合使得可以基于一单独的温度测量而对由力传感器20和电路模块24引起的混合测量偏差进行补偿。因此,在工厂中进行调整之后,这种创造性的模块化测力元件2可以安装入新生产的称量秤或者用户处的已有称量秤中,以替换有缺陷的测量元件并无需对称量秤进一步调整。由于由电路模块24引起的测量偏差包括在补偿之中,因此在任何情况下称量秤都具有最佳精准度。
图5示出了电路模块24的模块化结构的一优选实施例,该电路模块24通过接线条241和带状连接器22T、22T`、22B连接至应变仪28TF、28TB、28BF、28BB和温度传感器29,并通过接线条242和另一带状连接器500连接至一处理模块501。该处理模块反过来连接至一显示装置502和一接口模块503。处理模块501置于称量秤的内部,并与电路模块24隔开,以避免这两个模块之间的热耦合。因此,处理模块501所产生的热对根据本发明的模块化测力元件2没有明显的影响。
电路模块24包括两个转换电路243、244。第一转换电路243将应变仪桥接电路28TF、28TB、28BF、28BB的模拟信号转换为双级脉冲宽度已调信号pwml,而第二转换电路244将温度传感器29的模拟信号转换为双级脉冲宽度已调信号pwm2,通过带状连接器500将信号pwm1、pwm2传送至处理模块501,在该处对信号进行进一步处理。优选地,在开启称量秤后,可从存储模块245中再调出有用的补偿数据,以使得可以对随后的测量偏差进行修正。
图5还图示出了挠性带状连接器22T、22B的一优选实施例,其用于将电路模块24分别连接至成对应变仪28TF、28TB和28BF、28BB,这些成对应变仪布置在变形体207的顶面和底面上并在一桥接电路中彼此相连。
优选地印刷在一挠性带状连接器22T、22B上并分成多个分段281TF、282TF、283TF;281TB、282TB、283TB;…的若干导电径迹的尺寸被选择,以使得所有从测量桥接电路的节点至应变仪28TF、28TB、28BF、28BB的终端的连接导线具有至少大致相等的电阻值。
电阻值的相等非常重要,因为与应变仪28BF、28BB相比,应变仪28TF、28BF距离电路模块24较远并且因此需要较长的连接导线。作为一种避免由于较长长度而引起电阻值增加的补偿措施,较长导线优选构造为具有相应较大的横截面积。因此,桥接电路连接导线的电阻值变化就会相互补偿,从而没有作用力变化时,在操作期间可能出现的任何量级的温度变化期间,桥接电路的平衡或偏压仍保持不变。
在图5所示的电路布局中,每个挠性带状连接器22T、22B分别具有一节点K1、K2,在该处两个印刷电路轨迹接合成一单个轨道,因此电路模块24上的连接终端的数目从八个降低到六个终端241-1、241-2、241-3、241-4、241-5和241-6。作为一种保持电路装置简单的方式,采用了两个完全分离的挠性带状连接器22T、22B,其中在该两个挠性带状连接器中的每一个之上,两个导电径迹通过分开的连接器终端例如241-2、241-3、241-4、241-5通向电路模块24,在此它们分别连接入各节点K3和K4。
图6图示出了转换电路243、244的优选结构,该两个转换电路用于转换模拟传感器信号,它们布置于电路模块24之上,并且其工作原理基于一在参考文献[4]第1056-1062页中所描述的计算过程。
在每一个转换电路243、244中,各开关301和401在位置V-和V+之间交替,以使得在一第一时间段期间分别聚积在电容305、405中的电荷与在一第二时间段期间从该电容中释放的电荷相平衡(电荷平衡过程)。当然,电荷的流入量和流出量取决于输入信号,即被测量的数量,以使电容305、405充电和放电的各自时间段相应地变化。如果电容305、405在一第一时间段期间由输入信号进行充电,那么随后电容放电的时间段长度就代表该输入信号大小的度量。因此,所得到的脉冲宽度已调信号可以传送至一优选地集成在处理模块501中的计数电路。
因此,转换电路243和244可以设计为只有少量的元件。各自的输入信号分别传送至运算放大器306、406,这两个运算放大器分别借助于电容305和405作为一积分器而设置,并且在该电路中的下游处还设有比较器309和409。
在第一转换电路243的比较器309中,运算放大器306的输出信号与一大致呈斜坡形时间曲线的电压相比较,该电压借助于一电容307、一电阻308和一周期性开闭的开关310而产生。因此,在该第一转换电路243中,运算放大器306的输出信号呈现一与该输入信号相对应的数值,即与作用在力传感器20上的力相对应。
与第一转换电路243相反,第二转换电路244的比较器409将运算放大器406的输出信号与一借助于分压器407、408而形成的恒定电压相比较。根据输入信号的极性,运算放大器406的输出信号在一第一时间段期间遵循一向上的斜坡函数,直到其达到由分压器407、408设置的电压水平,在该电压水平点处,开关401进行切换,输出电压沿着一向下的斜坡返回。因此,该切换时间提供了一种输入信号大小的度量,因此也为由传感器29所测量的温度提供了一度量。第二转换电路的工作原理与参考文献[4]第1059页所述的双斜度方法相似。当然,很多不同的方法和电路装置也可以用于同样的目的。
如图6所示,转换电路243、244具有简单的结构,从而使得电路模块24上的元件对于力传感器20的热消散效应相对较小。
根据一种将如图1所示的创造性模块化测力元件2安装在一称量秤上的优选方式,力传感器20的安装在秤架上的固定部件206由若干个螺钉36连接至一带有若干翼部38的U形轮廓紧固件3上。紧固件3的若干翼部38具有用于若干螺钉32的通孔31,这些螺钉32用于将紧固件3安装在支架构件51上,这些支架构件51为此设置于秤架5上并配备有若干个螺纹嵌件。支架构件51优选由绝缘材料制成,以使测力元件2与秤架5以及布置在秤架中的其它模块(例如处理模块501)不会热耦合。
称重托盘的带有锥形底架41的称重托盘架4由螺钉46连接至力传感器20的力作用部件或负载接受部件206。
此外,如图2所示,连接至紧固件3的螺栓33穿过位于称重托盘架4的侧部43的一孔44。螺栓33配备有两个螺母34、35,该两个螺母是可调的,以限定称重托盘架4、特别是其侧部43在上下方向上的移动范围,从而防止由于模块化测量元件上的拉力或推力所引起的过载。
参考文献目录[1]德国公开专利申请DE 199 39 633 A1[2]欧洲专利申请EP 0 670 479 A1[3]欧洲专利申请EP 0 511 521 A1[4]U.Tietze,Ch.Schenk,Halbleiterschaltungstechnik,第十一版,第一次重印,Springer Verlag,柏林1999[5]英国专利说明书GB 1 462 808[6]欧洲专利申请EP 0 319 176 A权利要求
1.一种模块化测力元件(2),尤其是用于称量秤的模块化测力元件,其包括一配备有传感器(28,29)的力传感器(20),该传感器(28,29)用于测量力传感器(20)中由于力或温度而引起的状态变化,并且还包括一用于存储与该模块化测力元件(2)有关的补偿数据的存储模块(245),其特征在于,一电路模块(24)与该力传感器(20)机械和热耦合,其中所述电路模块(24)包括该存储模块(245)、至少一个用于转换由传感器所传送的模拟信号的转换电路(243,244)、以及一连接器终端装置(242),通过该连接器终端装置(242),该存储模块(245)和该转换电路(243,244)可分离地与一处理模块(501)相连。
2.如权利要求1所述的模块化测力元件(2),其特征在于,除了存储模块之外,该电路模块基本上仅包括与模拟信号处理活动相关的电路元件,该处理活动在功能上与传感器接近。
3.如权利要求1或2所述的模块化测力元件(2),其特征在于,提供有两个用于产生数字信号的转换电路(243,244),该数字信号可由对应于该模拟信号的脉冲宽度已调信号pwm1、pwm2所组成,该模拟信号由分别表示力传感器(20)的作用力和温度的两个传感器(28,29)所传送。
4.如权利要求1、2或3所述的模块化测力元件(2),其特征在于,该电路模块(24)可通过另一个带状连接器(500)连接至一处理模块(501),其中后者在空间上与测力元件(2)分开,以在该处理模块(501)和测力元件(2)之间提供良好的热去耦,所述处理模块(501)用于从存储模块(245)中读出补偿数据,并对至少一个转换电路(243、244)所传送的数字信号进行所需处理。
5.如权利要求1至4之一所述的模块化测力元件(2),其特征在于,该电路模块(24)包括一带有导电径迹的挠性或刚性基底,其可以呈印刷电路板的形式。
6.如权利要求5所述的模块化测力元件(2),其特征在于,提供一至少与电路模块(24)的基底表面接触并可松开地连接至力传感器的金属元件(23),其中该电路模块(24)设计为与该金属元件(23)相连。
7.如前述任一权利要求所述的模块化测力元件(2),其特征在于,该力传感器(20)包括一变形体(207),该变形体可构造成一平行四边形测量元件,其具有带有至少一个、优选为四个传感器的弹性变形材质部位,该传感器构造成应变仪(28TF,28TB,28BF,28BB),并通过至少一个挠性带状连接(22T,22B)连接至电路模块(24),在此这些传感器连接起来,从而形成一测量电路,优选为一测量桥接电路。
8.如权利要求7所述的模块化测力元件(2),其特征在于,通向传感器(28TF,28TB,28BF,28BB)并优选为印刷在一挠性带或箔料上的该挠性带状连接器(22T,22B)的导电径迹的尺寸设定成使得所有通向应变仪(28TF,28TB,28BF,28BB)终端的接线具有至少大致相等的电阻值,包括接线由两个或两个以上的分段(281TF,282TF,283TF;281TB,282TB,283TB;…)组成的情况。
9.如权利要求7或8所述的模块化测力元件(2),其特征在于,传感器(28TF,28TB,28BF,28BB)通过至少两个在路线上分开的挠性带状连接器(22T,22B)连接至电路模块(24)。
10.如权利要求7或8所述的模块化测力元件(2),其特征在于,通向传感器(28TF,28TB,28BF,28BB)的导电径迹具有部分分段(281TF,281TB,281BF,281BB),这些分段由两个或两个以上传感器(28TF,28TB,28BF,28BB)所共用,以减少电路模块(24)上的连接器终端(241-1,241-2,…)的数目。
11.如权利要求1至10之一所述的模块化测力元件(2),其特征在于,一温度探测传感器(29)布置于表示测量桥接电路的平均温度的温度水平的位置处。
12.一种带有如权利要求1至10之一所述的模块化测力元件(2)的称量秤(1)。
全文摘要
公开了一种模块化测力元件,其包括一配备有传感器的力传感器(20),通过传感器,由力或温度而引起的力传感器(20)的状态变化可以被测量。该创造性的测力元件还包括一用于存储与该模块化测力元件有关的补偿数据的存储模块。包括有该存储模块和至少一个转换电路装置的一电路模块(24)与该力传感器(20)机械和热耦合。所述转换电路用于转换由传感器所传送的模拟信号。
文档编号G01G3/14GK1643349SQ03806520
公开日2005年7月20日 申请日期2003年3月10日 优先权日2002年3月18日
发明者西里尔·布赫, 乌尔斯·洛尔, 琼-莫里斯·特伦巴赫 申请人:梅特勒-托莱多有限公司