专利名称:塑料生物芯片的键合和封装方法及其装置的利记博彩app
技术领域:
本发明属于微机电系统(MEMS)技术领域,具体涉及一种塑料生物芯片的键合和封装方法及其装置。
背景技术:
以非硅塑料材料为主的加工工艺在微流芯片及生物芯片MEMS的研究日益受到重视,形成了一类新的生物MEMS器件。塑料高分子材料不仅具有与生物分子化学兼容的优点,而且塑料种类繁多,价格低廉,且易于通过模压、注射成型和其他复制技术实现大规模低成本的生产,克服了以硅或玻璃材料为主的加工工艺生产生物MEMS的高成本低产量的局限性。
随着生物芯片制造成本的下降,封装成本所占的比重大大增加。目前,生物芯片的封装与其他MEMS一样,仍然是在微电子的封装的工艺基础上做一些小的改进,以适应MEMS的一些特殊要求(如气密、真空、液体、转动等),没有通用性,也未形成一致的标准。因此,相对于生物芯片和其他微流体系统的制造技术,其微键合、封装和组装技术已大为落后。发展适合于“poor-man chips”的低成本高可靠性的键合封装和组装技术成为微流芯片实用化和工业化的当务之急。
传统的MEMS键合方法,如阳极键合、熔融键合和共晶键合等方法都不适用于生物芯片的键合和封装。因为这些方法对需键合的表面的平整度要求较高,且要在高温下才能获得足够的键合能(Si-Si阳极键合300~450℃,熔融键合则需>1000℃,Si-Au键合363℃),显然聚合物不能承受如此高的温度。另外两种方法紫外光敏胶粘接和超声键合虽然避免了温度问题,但是胶粘方法对粘接材料的选择性及其表面状况的依赖性很强,不具有通用性,而超声键合易于振坏MEMS中的微器件。其他用于一般用途的塑料键合方法如热板加热、振动摩擦加热、电阻加热以及感应加热等熔融键合方法也不适用于微尺度的塑料MEMS,因为它们一般都有热影响区难以控制、易引起热畸变、键合速度慢以及效率低等不足之处。
L.W.Lin等提出了在芯片制造完成后采用局部电阻加热使需键合的局部区域熔融键合而芯片其他部位处于低温状态的后封装方法。(L.W.Lin,″MEMS Post-Packaging by Localized Heating and Bonding,″IEEE Trans.on Advanced Packaging,Vol 23,pp.608-616,Nov.2000)。但是这种方法工艺复杂,增加了淀积微加热器的工序,且加热时间和温度难以控制,微加热器的功率均分难以保证。这种方法以及上述的几种传统方法,用于生物芯片的封装,都存在可能的污染问题。
发明内容
本发明的目的是提供一种塑料生物芯片的键合和封装方法,采用这种方法,可以实现上述芯片的非接触、低温和低污染高速局部加热键合封装。
本发明的另一目的的提供实现上述方法的装置,以满足MEMS特别是生物MEMS的低成本高可靠性高生产效率的要求。
为实现上述目的,一种塑料生物芯片的键合和封装方法,以连续或脉冲近红外激光光源作为辐照能量源,需键合或封装在一起的部件为热塑性塑料部件,其中至少有一个部件对激光波长透明,若两种部件都对激光波长透明,则需在两部件键合的部位涂敷或填充一层吸收薄膜,其步骤为(1)将芯片和封盖对准后,使需键合的塑料部件紧密接触;(2)导引激光光束穿透透明塑料层至需键合部位,进行激光辐照,使吸收塑料或薄膜涂层吸收能量后熔融,随后使与其相接触的塑料熔融;(3)控制激光能量的施加时间和强度,使两种材料达到共熔,并使热影响区控制在允许范围内,而后自然冷却形成渗融键合区域。为实现高精度高效率的键合,塑料生物芯片最好带有特定的对准标记,而与之键合的封盖也带有相匹配的对准标记。另一种形式为芯片和封盖通过热压或浇铸等复制手段产生具有一定宽度且相互匹配的凹凸键合结构线,以实现自对准。在上述处理过程中,通过可见光和红外成像方法,获取键合过程可视图像和温度色温图,通过计算机处理,对激光功率和处理时间等键合参量进行反馈控制。
实现上述方法的装置,包括激光光源系统、激光光束变换系统、工件对准平台、位移台、伺服控制器和微机主控系统。激光器光源系统发出的激光经过光束变换部件形成点、线或面激光光束,然后作用于工作对准平台上的塑料生物芯片上;对准平台固定于位移台上,提供待键合工件的固定、对准和接触功能;位移台至少拥有x,y两轴位移调整功能;伺服控制器与微机主控系统位移台相连,它从微机主控系统获得指令,控制位移台的运动。
本发明方法与其它局部加热键合方法相比,其优点在于激光是一种可通过光学变换产生可控截面形状和尺寸的高能量密度加热源;聚焦后的激光光斑直径可小到几~几十微米,能量密度高,被键合材料吸收后局部升温快,因而热影响区小,对周围部件无损害;激光头可以远离键合工件,因而光源加热系统对键合材料无污染;易于计算机自动控制,键合速度高,可达到每分钟几米至几十米的速度,因而效率高。
本发明装置与现有的键合装置比较,具有结构简单、易于自动控制、键合效率高和可靠性高的特点。是适用于塑料芯片这一类MEMS器件键合和封装的通用装置。
图1为塑料微流体芯片的一种激光键合封装示意图;图2为塑料微流体芯片的另一种激光键合封装示意图;图3为本发明装置的一种实现方式的通用结构框图;图4为本发明装置的一种具体实现方式的结构示意图;图5为一种芯片和封盖对准平台;图6为一种发明装置中光学系统的结构图;图7为PMMA塑料芯片键合的断面扫描电镜照片。
具体实施例方式
下面结合附图对本发明的具体内容和实施例作进一步详细的描述。
以典型的生物芯片塑料微流体芯片为例。在图1(a)中,芯片10和封盖11利用已有的微细加工技术或复制技术分别制造。封盖11用来密封芯片10上的微流槽12,避免流体流经或渗漏到其他区域,同时起到与外界隔绝保护芯片和提供观察窗口的作用。为了控制键合和封装的精度,在芯片10和封盖11上分别制作相匹配的对准标记13和14,以方便键合对准。图1(B)给出了激光键合微流槽的示意图。激光键合用于将微流体芯片10中的微流槽12周围区域和封盖11键合,实现微流槽的密封。入射激光15透过透明封盖11加热由具有较高吸收率的塑料芯片10。利用施压装置使两塑料紧密接触,则当塑料芯片10吸收足够高的激光加热能量达到其熔点或熔点以上的某一温度时,也引起透明封盖11与芯片10上的接触面熔化,这样在两塑料的接触面上激光加热的部位形成共熔区域16。当激光加热消失后,熔区自然冷却固化下来,形成稳定而牢固的键合区。高能量的激光熔融产生的热影响区15可以通过控制激光束的聚焦光斑尺寸和作用时间实施精确的控制,因而整个激光影响区的尺寸可限定在100μm以下。
图2给出了另一种激光键合的方法。微流芯片20和封盖21都采用模塑工艺制造。它们的待键合表面都带有一定宽度的可相互配合的凹凸键合线22,一般位于微流槽23附近。将芯片20和封盖21上的凹凸键合线22互相咬合,可以实现自对准,无需对准标记。在压力作用下,芯片20和封盖21上的凹凸键合线22紧密接触。激光键合时,激光的作用区域不只限于凹凸结构接触的平面部分,而且可以扩展至其两侧,使键合的表面积更大,键合强度更高,但键合的横向区域并未增加。因此,在合理的设计下,激光键合的热影响区和熔流的扩散都可以限制在键合线内,对周围区域的影响更小。
典型的激光键合和封装装置的结构框图如图3所示。该装置主要由激光光源系统30、激光光束变换系统31、工件(包括芯片和封盖)对准平台33、双目视或CCD显微成像系统32、电控位移台34、红外热像仪测温系统36以及微机主控系统35等组成。从激光器光源系统30发出的激光经过光束变换部件31形成点、线或面激光光束,然后作用于对准平台33上的塑料芯片上。对准平台33固定于多轴电控位移台34上,提供待键合工件的固定、对准和接触功能。电控位移台34至少拥有x,y两轴位移调整功能。伺服控制器37从微机主控系统35获得指令,控制位移台34的运动。目视或CCD显微成像系统32提供工件对准、键合定位和键合情况的观察途径。根据点、线或面激光光束的不同情况,激光束光束变换系统31和显微成像光学系统32可以同轴配置,也可以独立配置。红外测温系统36测量键合区域的温度分布,提供实时监测信息,并给激光光源系统30提供反馈控制信号,用于调整激光功率。键合方式可以有多种形式,即激光头固定,工作台扫描;或者工作台固定,激光头扫描;或者使用掩模限定激光键合光斑大小。
激光光源系统30提供功率可调的近红外波段激光光源;激光光束变换系统31将从激光器发出的激光变换形成聚焦点或线光束;对准平台33将待键合工件对准、固定并使它们以一定的压力相互接触。显微成像系统32对工件上的局部位置在双目视镜或CCD相机上成像,以便操作者对工件实施定位、对准和观察。电控位移台34作为激光相对于工件的位置定位和扫描运动的平台。红外热像仪测温系统36主要获取键合区域的温度分布图像,通过预设热影响区大小和温度范围,可以反馈控制激光能量,同时为事后键合质量评估提供信息。微机主控系统35提供可视化操作界面、主控软件、CAD数据处理和图像处理等功能。
键合的过程可分为对准和键合两大步骤。具体地,先将芯片和封盖分别装载在对准平台33的两个真空吸附固定板上,然后沿上下方向移动其中一个固定板,使芯片和封盖接近但不接触。通过双目视镜或CCD显微成像系统32分别获取芯片和封盖上的对准标记图像。若使用CCD显微成像系统32,可以先存储等一个工件上的对准标记图像,再调焦获取另一个工件上的对准标记图像,然后水平调整移动对准平台,使第二个标记图像和存储的第一个标记图像对准。随后沿Z方向移动对准平台,使两工件相互接触,接触压力由压力传感器获取后显示出来。在一定的接触压力下,启动激光,实施激光键合。键合过程通过CCD显微成像观察系统实时监测。利用红外热像仪测温系统获取键合过程的热图信息,并转换成色温图,通过在控制主机中的温度控制单元预设温度范围,可以反馈控制激光能量和键合速度,保证键合质量。
本发明装置采用半导体激光器发出的近红外激光束作为塑料生物芯片的非接触高速局部加热源,区别于传统的超声或电阻微加热器等接触型加热源。半导体激光器具有小巧紧凑且可直接高速调制的特点。选取的半导体激光器波长范围最好为0.7~1μm。大多数纯净的塑料材料在这个波段都具有较高的透过率,但是大多数添加涂层和吸收剂的塑料在这个波段的吸收率适中,激光熔融深度易于达到几十微米,因而较厚芯片和封盖的键合强度以及对液体的密封性能能够得到保证。合理的光学系统设计可以保证激光聚焦点光束直径或线光束宽度控制在50μm以下。
本发明装置可采用红外热像仪测温系统36实施多功能监测和反馈控制。激光键合过程中塑料熔融产生的红外辐射透过塑料封盖或塑料基底被红外热像仪接受,形成红外热图像,经过高速信号处理单元的图像处理,转换为色温图。色温图提供的键合区域的温度分布实时反映了塑料熔融的温度变化和热影响的区域大小。通过在控制软件中预先设定熔融的温度范围和热影响范围尺寸,可以反馈控制激光能量和键合速度,从而控制键合质量。另外,存储在微机中的色温图还可用于键合质量的事后评估和分析。用于本发明的红外热像仪为在500℃以下具有较高响应的非致冷中波红外焦平面热像仪。
本发明装置的工件对准平台33,采用CCD相机获取工件上的对准标记信息,三轴对准移动台实施对准,压力传感器提供工件接触压力信息,能够实现精确的对准和工件的可控接触。这种平台,具有较强的适应性,可以适用于多种键合方式,如激光头固定,电控工作台扫描;或者工作台固定,激光头扫描;也适用于有掩模的情况。
在具体实施激光键合机的过程中,针对激光键合目的和性能要求的不同,激光键合方式和光学系统可以采用不同的配置。下面给出几种键合方式的配置。
作为本发明的一种优选配置,图4给出了点光束轮廓线扫描键合装置示意图。此实施例装置简单,特别适用于光纤耦合输出小功率半导体激光器的应用场合。
在图4中,激光器采用波长为808nm,功率在30W以下的光纤耦合半导体激光器,光纤芯径≤200μm。半导体激光器301发出的激光经光纤耦合输出端302出射后经透镜扩束准直,再经二色镜311偏转后通过聚焦光学系统310,聚焦到对准平台33的待键合工件上。显微成像系统由CCD图像传感器321、显微成像光路320以及工业显示器322组成。激光聚焦光路和CCD显微成像光路同轴配置在一个镜筒中。镜筒可沿z方向移动以调整工作距离。此配置中,激光头在水平方向上无移动,激光沿键合轮廓线的扫描依靠伺服控制器37驱动电控位移台34来完成。在芯片对准完成后开始键合时,主控微机通过伺服控制系统同时给电控位移台和激光电源启动指令,使激光的出光和位移台的运动同步。由于聚焦点光束是沿轮廓线进行二维扫描,因此无需掩模。激光键合过程中塑料熔融产生的红外辐射透过塑料封盖或塑料基底被红外热像仪360接受,形成红外热图像,经过信号处理单元361图像处理,转换为色温图。色温图提供的键合区域的温度分布实时反映了塑料熔融的温度变化和热影响的区域大小。用于此实施例的红外热像仪为波长为8~12微米的非致冷320×240元红外焦平面热像仪。
在使用掩模时,选取对热辐射透过率较高的塑料材料作为基底,将红外热像仪置于芯片背面一侧。
图5给出了对准平台的基本结构图。对准平台由四轴小行程移动台40、上真空吸附固定板41、可滑动下真空吸附固定板42、带滑动槽的底板43、压力传感器44、以及四面支撑壁45组成。压力传感器44的底座固定于移动台40上,其受力面连接带滑动槽的底板43。下真空吸附固定板42可在平板上沿滑动槽滑动;上真空吸附固定板41位于下真空吸附固定板42的上方,由四面支撑壁支撑;上真空吸附固定板41和下真空吸附固定板42之间留有一定的空间,以便装载芯片46和封盖47。封盖47和芯片46分别固定于上、下真空吸附固定板41、42上。上真空吸附固定板41采用对可见光和近红外光透明的材料制作,如石英玻璃和透明有机玻璃。下真空吸附固定板42可以在带滑动槽的底板43上自由抽动,方便芯片的装载。上真空吸附固定板41由一对金属压条(未画出)将其两边缘部分紧固在支撑壁45上。松动压板上的紧固螺栓,可以将上真空吸附固定板41从支撑壁45上沿一个方向抽出,方便装载封盖47。芯片46和封盖47分别固定后,移动z轴,调整它们的间距,可使芯片46和封盖47达到接近但不接触的状态。然后移动显微成像系统的物镜头49,先在显示器上得到封盖的对准标记的清晰像,存储后,再调整显微头49的焦距,使在显示器上也得到芯片46上对准标记的清晰像。调整移动平台,使各个芯片上准标记的像与相应的封盖上对准标记的像全部重合,然后移动z轴使芯片和封盖接触,直至压力传感器44上的接触压力读数达到合适的值。然后可以实施激光键合。在轮廓线扫描键合方式下,对准平台固定于工作台48上。若激光头不动,而工作台移动,则对准平台和工作台在键和时将一起移动。
上真空吸附固定板使用的材料为对可见光和近红外光高透明的材料组成。
作为本发明的另一种优选配置,图6给出了线光束扫描键合装置中产生线光束激光的光学系统示意图。
在图6中,一个或多个并排放置的激光二极管条形阵列40上的各单元发出的激光经过一定长度的实心或空心矩形玻璃波导41时将在上下和左右四个面上不断反射而在波导的出射口形成沿波导宽度方向等光强分布的条形光束,再经柱透镜42聚焦后形成窄条形线光束43。利用掩模上的透光区定义键合图形和光束作用宽度。当线光束沿垂直于光束方向一维扫描时,光束能量键合作用遍历一宽度为线光束长度的矩形区域。重复这种一维扫描过程,可以在很短时间里遍历整个芯片。线光束宽度一般要求在几百微米,大于掩模上透光区的宽度(4~5倍)。此键合方式适合于利用高功率激光二极管阵列键合大尺寸芯片的场合。
在后一种配置中,需要使用掩模来定义键合区域。掩模的使用阻挡了红外热辐射的传播,因而红外热像仪不能再置于芯片的正面一侧。一个可能的途径是将红外热像仪置于芯片背面一侧。由于热辐射要透过较厚的塑料基底,因此选择基底塑料材料时要考虑其在中波红外波段应具有较高的透过率。
作为一种实施例,塑料芯片为两块阴阳配合的微流体模塑有机玻璃(PMMA)芯片。其中一块芯片的键合线上涂有吸收层。典型的吸收层为炭黑墨水或掺有碳黑的涂料,使用微型喷墨设备沿键合线喷涂。用于键合的激光器为波长为808nm的半导体光纤耦合输出激光器,聚焦光斑直径为50微米。采用点光束轮廓线扫描方式,键合速度在5~50mm/秒可调,调节激光器电流和扫描速度,可以调节激光功率密度,相应的键合宽度和深度也发生变化。控制激光功率、激光光斑尺寸、键合时间和接触压力等参量,使键合区域达到两种材料的共熔温度,而后通过自然冷却,形成稳定的具有所需宽度的渗融键合区域。
图7为PMMA芯片键合的断面扫描电镜照片,在存在一定的离焦量的情况下,激光键合导致的熔融宽度约为120微米。
权利要求
1.一种塑料生物芯片的键合和封装方法,以连续或脉冲近红外激光光源作为辐照能量源,需键合或封装在一起的部件为热塑性塑料部件,其中至少有一个部件对激光波长透明,若两种部件都对激光波长透明,则需在两部件键合的部位涂敷或填充一层吸收薄膜,其步骤为(1)将芯片和封盖对准后,使需键合的塑料部件紧密接触;(2)导引激光光束穿透透明塑料层至需键合部位,进行激光辐照,使吸收塑料或薄膜涂层吸收能量后熔融,随后使与其相接触的塑料熔融;(3)控制激光能量的施加时间和强度,使两种材料达到共熔,并使热影响区控制在允许范围内,而后自然冷却形成渗融键合区域。
2.根据权利要求1所述的方法,其特征在于在上述处理过程中,通过可见光和红外成像方法,分别获取键合过程可视图像和温度色温图,通过计算机处理,对激光功率和处理时间等键合参量进行反馈控制。
3.根据权利要求1或2所述的方法,其特征在于塑料生物芯片带有特定的对准标记,而与之键合的封盖也带有相匹配的对准标记。
4.根据权利要求1或2所述的方法,其特征在于通过热压或浇铸制作的芯片和封盖上具有一定宽度的相匹配的凹凸键合结构线。
5.根据权利要求1或2所述的方法,其特征在于键合用激光器为半导体激光器,波长范围为0.7~1μm,激光聚焦点光束直径在50μm以下。
6.实现权利要求1所述方法的装置,包括激光光源系统(30)、激光光束变换系统(31)、工件对准平台(33)、位移台(34)、伺服控制器(37)和微机主控系统(35);激光器光源系统(30)发出的激光经过光束变换部件(31)形成点、线或面激光光束,然后作用于工作对准平台(33)上的塑料生物芯片上;对准平台(33)固定于位移台(34)上,提供待键合工件的固定、对准和接触功能;位移台(34)至少拥有x,y两轴位移调整功能;伺服控制器(37)与微机主控系统(35)位移台(34)相连,它从微机主控系统(35)获得指令,控制位移台(34)的运动。
7.根据权利要求6所述的装置,它还包括独立配置或与激光光束变换系统(31)同轴配置的CCD显微成像系统(32),它提供工件对准、键合定位和键合情况的观察途径。
8.根据权利要求6或7所述的装置,其特征在于该装置还包括红外测温系统(36),它连接在对准平台(33)与微机主控系统(35)之间,用于测量键合区域的温度分布,提供实时监测信息,并给激光光源系统(30)提供反馈控制信号,用于调整激光功率。
9.根据权利要求6或7所述的装置,其特征在于所述对准平台由四轴小行程移动台、压力传感器、带滑动槽的平板、可滑动的下真空吸附固定板、上真空吸附固定板和四面支撑壁组成;压力传感器底座固定于移动台上,其受力面上连接带滑动槽的平板;下真空吸附固定板可在平板上沿滑动槽滑动;上真空吸附固定板位于下真空吸附固定板的上方,由四面支撑壁支撑;上真空吸附固定板和下真空吸附固定板之间留有空间,以便装载芯片和封盖;上真空吸附固定板使用的材料为对可见光和近红外光高透明的材料组成。
10.根据权利要求6或7所述的装置,其特征在于所述激光光源系统包括一个或多个激光二极管,呈条形阵列并排放置,实心或空心矩形玻璃波导紧贴其发射面;各发射单元发出的激光经过玻璃波导时,在波导上下和左右四个面上不断反射而在波导的出射口产生沿波导宽度方向等光强分布的条形激光束,经过柱透镜聚焦后形成窄条形线光束。
全文摘要
本发明公开了一种塑料生物芯片的键合和封装方法,其步骤为(1)将芯片和封盖对准后,使需键合的塑料部件紧密接触;(2)导引激光光束穿透透明塑料层至需键合部位,进行激光辐照,使吸收塑料或薄膜涂层吸收能量后熔融,随后使与其相接触的塑料熔融;(3)控制激光能量的施加时间和强度,使两种材料达到共熔,并使热影响区控制在允许范围内,而后自然冷却形成渗融键合区域。其装置包括激光光源系统、激光光束变换系统、工件对准平台、位移台、伺服控制器和微机主控系统。其优点在于被键合材料吸收后局部升温快,热影响区小,对周围部件无损害;对键合材料无污染;易于计算机自动控制,键合速度高。装置结构简单、易于自动控制、键合效率高和可靠性高的特点。
文档编号G01N35/00GK1480724SQ0312834
公开日2004年3月10日 申请日期2003年7月18日 优先权日2003年7月18日
发明者赖建军, 易新建, 刘胜, 连崑 申请人:华中科技大学